
An Efficient Web Service Annotation Method Utilizing Concept Mapping and
Interface Expansion

Guobing Zou1, Yang Xiang1, Yanglan Gan1, Hongyu Sun1, Zengbao Liu2

1 Department of Computer Science and Technology, Tongji University, Shanghai, 201804, China
2 Dongtan Coal Mine, Yanzhou Coal Mine Co.,Ltd, Zoucheng, 273500, China

guobing278@sina.com

Abstract

With the number of services published on the Internet

growing at an explosive speed, it is difficult for service
requesters to discover satisfactory web services. The
reason for this phenomenon is that traditional service
organization mode lacks semantic information metadata,
which results in low discovery effect. In this paper, we
firstly give a service description model and then present
an overall framework for service semantic annotation.
Based on constructed domain ontology, mapping function
of interface concept set and service interface expansion
algorithm are proposed respectively. Finally, web services
annotation algorithm is presented. Extensible experiment
results demonstrate that annotated web services by our
proposed method can more satisfy requirements of service
requesters than keyword-based described web services. It
can achieve higher service discovery effectiveness.

1. Introduction

The internet is emerging not only as an infrastructure
for data, but also for a wide variety of information
resources, which are increasing being made available as
web services [1]. With the rapid development of web
services technology in these years, although XML based
standards (i.e., UDDI, WSDL and SOAP) has been very
mature in registration and discovery mechanism, it is very
difficult for requesters’ to discover optimal web services.
The reason is that current standards focus on operational
and syntactic level in the implementation and execution of
web services, which limits service discovery process to the
keyword-based techniques. Therefore, we should seek for
more efficient approaches to implement interoperation and
discover user satisfactory web services.

Our investigation has shown that semantic metadata
annotation technique can help us solve disadvantages of
keyword-based service matching by adopting ontology,
which is a formal, explicit specification of a shared
conceptualization [2], and can provides domain knowledge.
Therefore, we will utilize and semantic context of domain
ontology to annotate existing web services and turn them
into semantically described web services.

In summary, our main contributions are listed in the
following four aspects. Firstly, rather than establishing a
dictionary or knowledge index, domain ontology has been
designed and constructed in this paper, which is used for
mapping function of interface concept set and service
interface expansion. Secondly, on the basis of constructed
domain ontology, we propose an overall web service
semantic annotation framework consisting of five closely
correlative components. Thirdly, In order to enrich ample
semantic information for web service interface, we provide
a mapping mechanism between source service interface
and ontology concept. An interface expansion algorithm is
also given for expanding mapped service interface set.
Finally, we present a service annotation algorithm, which
is in charge of annotating web services based on the results
of interface expansion algorithm.

The remainder of this paper is organized as follows.
Section 2 reviews related work about service discovery and
annotation. Domain ontology is defined and modeled in
Section 3. In Section 4, we firstly give a web service
semantic description model, and then propose the overall
service semantic annotation framework, service interface
expansion algorithm and service annotation algorithm
respectively. Simulation experiment is shown in Section 5.
Finally, Section 6 concludes the paper and future work.
2. Related work

Service annotation is the first step but very critical to
achieve full scope of web service interoperation, service
discovery and service composition. The goal of our work is
to give a service annotation method for automatically
understanding service function interfaces. In this section,
we discuss some related efforts that describe how to add
semantics to web services. We also look into some service
description models because they are the foundation of our
approach to efficiently organize semantic web services.

The work proposed in the literature [1] presented a
semantic annotation framework called MWSAF. Authors
utilized domain ontologies to categorize web services into
domains and implemented semi-automatically marking up
web services descriptions. In [3], the authors explored a
variety of machine learning techniques, including Bayesian
learning and inference algorithm, to semi-automatically

2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery

978-0-7695-3735-1/09 $25.00 © 2009 IEEE

DOI 10.1109/FSKD.2009.297

183

2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery

978-0-7695-3735-1/09 $25.00 © 2009 IEEE

DOI 10.1109/FSKD.2009.297

183

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on January 6, 2010 at 15:09 from IEEE Xplore. Restrictions apply.

create semantic metadata for describing semantics of web
services. In [4], the authors proposed a semantic annotation
method by workflow definitions. From the investigation to
these service annotation methods, we can conclude that
current methods are short of the ability of automatically
understanding semantics of service function interface.

There are two main semantic description languages
for web services are DAML-S in [5] and OWL-S in [6].
However, modeling web services by these two description
languages are really complicated and difficult for service
providers to publish their service information and service
requesters to submit their service requirements. Therefore,
a simple and useful semantic description model is required
to help us organize web services.

In order to address these issues, this paper proposes
an efficient service annotation method. Our final goal is to
automatically understand and annotate web services so that
it can improve service interoperability and discovery effect
between human and computer.
3. Domain ontology

On the basis of the definition about domain ontology
in [2], we respectively give a formal description of domain
ontology (DO) and semantic relation set as follows.

Definition 3.1 Domain ontology. DO is defined in a
specific domain as a five tuple:

={ , , , , }cDO C P R I A (1)
 C represents all domain concepts;
 PC includes all properties attached to C;
 R denotes all kinds of relations among concepts,

 properties and instances;
 I consists of all instances that belong to concepts;
 A is composed of all axioms in the domain.

In terms of the relation characteristic among concepts,
properties and instances, four different kinds of semantic
relations are considered in this paper as it appears in the
following definition.

Definition 3.2 Semantic relation set. In a domain
ontology DO, R is formally denoted as a four tuple:

={ - , - , - , - }R compose of kind of attribute of instance of (2)
Where, compose-of depicts whole and part relation

between two concepts. kind-of represents the successive
relation between two concepts. attribute-of describes the
relation between concept and its corresponding properties.
instance-of denotes the relation between a concept and its
subordinate instances.

According to above two definitions, we utilize node
represent a concept, property or instance. Meanwhile, joint
edge is used by four different kinds of semantic relations.
Therefore, a directed hierarchy tree (DHT) is formed as the
structure of domain ontology. A part of the DHT for city
traffic domain ontology is shown in Figure 1.

From the DHT in Figure 1, we can see that ‘subway’
is an ontology concept, ‘line name’ and ‘speed’ are the
properties affiliated to ‘subway’, ‘no.1 subway’ is one of
the instances correlative to ‘shanghai subway’.

Thing

...

city traffic

bus

magnetic suspension light railsubway

speed

shanghai subway beijing subway

line name departure station

terminal station

1no. subway 2 no. subway 6no. subway

taxitrack traffic

-kind of -compose of
-attribute of -instance of

:Legend

Figure 1. DHT segment of city traffic domain ontology

4. Web service annotation method
4.1 Semantic description model

Service description model plays an important role in
the process of web service discovery. In order to make web
service understood and interoperated between human and
computer, it is necessary to model web service for adding
semantics to its input/output interfaces. In this paper, we
give a light semantic description model WS-SDM, which
includes web service model and service operation model.

Definition 4.1 Web service model. A web service in
semantic web service repository is defined as a four tuple:

={ , , , }ws wsId wsName wsDesp OprSet (3)
Where, wsId is the unique identifier. wsName is the

web service name. wsDesp is service functional description.
OprSet is the service operation set, which is formalized as

={ }1 2 sOprSet opr , opr , ..., opr .
OprSet consists of a series of correlative web service

operations. Especially, each opri(1≤i≤s) can be executed
for a special function. From the analysis of process model
in OWL-S, we can conclude that an output interface maps
to one or multiple input interfaces. Considering parameter
binding relationship in a service operation, we give its
definition in the following one.

Definition 4.2 Service operation model. A service
operation in the OprSet can be formalized as a four tuple:

={ , , , }opr oprName InSet OutSet IOMap (4)
 oprName is the name of service operation;
 ={ }1 2 mInSet inP , inP , ..., inP denotes input interface

set, which has m parameters and each inPi (i=1,2,…,m) is
an input interface;

 ={ }1 2 nOutSet outP , outP , ..., outP is output interface
set, which contains n parameters and each outPj (j=1,2,…,n)
represents an output interface.

184184

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on January 6, 2010 at 15:09 from IEEE Xplore. Restrictions apply.

 IOMap is an I/O mapping function between input
and output parameters denoted as : 'j IOMap outP InSet∞ ,
where 'InSet Inset⊆ . For an outPj (j=1,2,…,n), there exists
a corresponding subset of InSet by I/O mapping.

WS-SDM will be used in the following web service
semantic annotation framework.
4.2 Service annotation framework

We propose the general framework of web service
semantic annotation called WS-SAF as it appears in Figure
2, which is composed of an interface extractor, concept set
mapper, interface semantic expander, domain ontology,
service annotator, and semantic web service repository.

Figure 2. The general framework of service semantic annotation

Interface extractor is in charge of acquiring service
file described by WSDL description language from WSDL
document pool and then extracting initial input and output
interface parameter set with the help of XML schema
syntactic structure. The function of concept set mapper is
to find corresponding optimal concept set from domain
ontology so that it can express the basic interface function
semantics for extracted interface parameter set. In order to
enrich semantic information of the mapped concept set, we
use interface semantic expander to further expand service
interface set by semantic analysis and reasoning.

The function of service annotator is to firstly create an
empty instance on the basis of WS-SDM, and then fill its
fields with the semantic information of function interface
generated by interface semantic expander. Semantic web
service repository stores all the annotated web services that
will be discovered and invoked in semantic level. Domain
ontology is in the format of an OWL document providing
semantic context for mapping and expansion module.
4.3 Interface concept mapping

For a web service, input and output interface in each
operation set cannot provide explicit semantic information.

Therefore, it restricts the whole process of discovering web
services in keyword-based level. Here, a specific mapping
function is given to map optimal domain ontology concept
that can best match each service interface.

Definition 4.3 Interface concept mapping. In domain
ontology ={ , , , , }cDO C P R I A , for a random service interface
element inE∈ {InSet ∨ OutSet}, there exists an ontology
concept oc mapped to inE from the concept set C.

()conMapFunc inEoc ← (5)
In equation (5), concept mapping function calculates

similarity between ontology concept and interface element.
It includes linguistic similarity and structural similarity.
The measure of linguistic similarity value borrowed from
match algorithm NGram in [7] collects statistics of the
common qgrams between name of ontology concept oc
and interface element inE. In structure level, similarity is
calculated in [8] between interface element inE and all the
adjacent subclass concepts of oc.

For each interface element inEk(1≤k≤u), there is a
corresponding ontology concept in concept set C that has
the maximum similarity with inEk. Therefore, interface
concept set ICS={si1,si2,…,siu} is generated by mapping
set function based on single interface concept mapping.

()ICS mapSetFunc interface set← (6)
Where, each sik(1≤k≤u) in ICS is an ontology concept

corresponding to the semantic information for interface
element inEk(1≤k≤u). ICS is used in the following section.
4.4 Service interface expansion

For a concept c C∈ , its semantic context in domain
ontology is yielded by directed hierarchy tree (DHT) and
semantic reasoning. In order to facilitate description of the
following service interface expansion algorithm, several
related definitions are firstly given as follows.

Definition 4.4 Synonym set. ={ , , , , }cDO C P R I A ,
1 2={ }, , , vC c c ... c , for c C∀ ∈ , its synonym set is denoted as:

Syn(,)={ | }i i iDOc c c C c c∈ ∧ ≅ (7)
Where, (1)i i vc ≤ ≤ is one of the elements in concept

set C and has the same meaning with concept c. i.e., With
regard to concept ‘magnetic suspension’, Syn(‘magnetic
suspension’)={‘magnetic levitation’, ‘Maglev’}.

Definition 4.5 Property set. ={ , , , , }cDO C P R I A ,
PC={p1,p2,…, pw}, DHT is directed hierarchy tree of DO.
For c C∀ ∈ , its property is denoted as:

Prop(,)={ | }j j j
cDHT Pc p p p c∈ ∧ (8)

Where, (1)j j wp ≤ ≤ is one of the elements in set PC
and also attached to concept c. Taking concept ‘subway’
for example in Figure 1, Prop(‘subway’, DHT)={‘speed’,
‘line name’, ‘departure station’, ‘terminal station’}.

Definition 4.6 Instance set. ={ , , , , }cDO C P R I A ,
I={Inst1, Inst 2,…, Instr}, DHT is the directed hierarchy tree
corresponding to DO. For a random c C∈ , its instance set
is defined in the following equation.

Ins(,)={ | }k k kDHTc inst inst I inst c∈ ∧ ≺ (9)

Service annotator

C
oncept set

Domain Ontology

Semantic Web
service repository

WSDL
document pool 2

mapping and expansion

Concept set mapper

WSDL
document pool 1

WSDL
document pool n

…

WS-SDM
use

XML Schema

use

generate

Interface
 semantic expander

Interface extractor

185185

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on January 6, 2010 at 15:09 from IEEE Xplore. Restrictions apply.

Where, (1)k k rinst ≤ ≤ is one of the elements in set I
and subordinate to concept c. i.e., taking the ‘shanghai
subway’ as an example, Ins(‘shanghai subway’)={‘no.1
subway’, ‘no.2 subway’, ‘no.6 subway’}.

Definition 4.7 Direct subclass set. ={ , , , , }cDO C P R I A ,
DHT is direct hierarchy tree of DO. For c C∀ ∈ , its direct
subclass set is denoted as:

Dss(,)={ | ((,) (,))}l l l lDHT C KR CRc f f f c c f∈ ∧ ∨ (10)
Where, (1)l l vf ≤ ≤ is one of the elements in concept

set C. KR(fl, c) denotes that fl and c satisfy kind-of semantic
relation. CR(c, fl) describes semantic relation compose-of
between c and fl. For instance, Dss(‘track traffic’, DHT)=
{‘magnetic suspension’, ‘subway’, ‘light rail’}.

Service interface expansion algorithm called SIE is
shown in the following Algorithm 1.
Algorithm 1: Service interface expansion (SIE)
Input: ={ , , , , }cDO C P R I A , DHT, ICS={si1, si2, …, siu};
Output: Interface expansion set IES;
1. NULLIES ← ;
2. For each k ICSsi ∈ {
3. IES[k].insert(sik); //append sik to IES
4. Syns ← Syn(sik, DO);
5. If (NULLSyns ≠) //judge synonym set
6. IES[k].insert(Syns);
7. Dss ← Dss(sik, DHT); //get direct subclass set
8. If (NULLDss ≠) {
9. IES[k].insert(Dss);
10. Continue; } //finish sik expansion
11. Inst=Ins(sik, DHT);
12. If (NULLInst ≠) {
13. IES[k].insert(Inst);
14. Continue; } //finish sik expansion
15. Pset ← Prop(sik, DHT);
16. If (NULLPset ≠)
17. IES[k].insert(Pset); //add property set
18. }
19. Return IES;

In Algorithm 1, we loop each interface concept sik and
generate its interface expansion set IES based on domain
ontology and its corresponding DHT. For each sik (1≤k≤u),
we firstly append itself to interface expansion set IES, and
then its synonym set Syns is yielded and attached to IES
(line 3-6). If generated direct subclass set Dss is not empty,
we append it to IES and finish its interface expansion (line
7-10). Similarly, if generated instance set Inst is not empty,
it is also inserted to IES and finishes its interface expansion
(line 11-14). Under the condition of both empty interface
expansion result of direct subclass set and instance set, we
further get property set Pset and expand to IES (line 15-17).
Finally, IES is generated and returned.

4.5 Service annotation algorithm
By utilizing ontology to provide the semantic context,

service automatic annotation algorithm is given based on
interface concept mapping and service interface expansion.
The description of service automatic annotation algorithm
called SAA is shown Algorithm 2 as follows.
Algorithm 2: Service automatic annotation (SAA)
Input: DO, DHT, ={ , , , }ws wsId wsName wsDesp OprSet ;
Output: Annotated web service aws;
1. NULLaws ← ;
2. Define anno_opr, mappedInSet, mappedOutSet;
3. For each i OprSetopr ∈ {
4. anno_opr.oprName ← opri.oprName;
5. mappedInSet ← mapSetFunc (opri.InSet);
6. anno_opr.InSet (, ,)DO DHTSIE mappedInSet← ;
7. mappedOutSet ← mapSetFunc(opri.OutSet);
8. anno_opr.OutSet (, ,)DO DHTSIE mappedOutSet← ;
9. generate IOMap to anno_opr;
10. aws.OprSet.add(anno_opr);
11. }
12. aws.wsId=ws.wsId;
13. aws.wsName=ws.wsName;
14. aws.wsDesp= ws.wsDesp;
15. Return aws;

In Algorithm 2, we respectively get service operation
opri in ws and yield its corresponding annotated operation
in aws. For each opri (1≤i≤s), its operation name is firstly
acquired and set to annotated operation anno_opr (line 4).
Subsequently, we use mapSetFunc to get mapped input set
mappedInSet, and then SIE is invoked to get input interface
expansion set and attach it to annotated operation (line 5-6).
Similarly, output interface expansion set is generated and
appended to anno_opr (line 7-8). Meanwhile, we generate
new IOMap in anno_opr according to original input and
output parameter binding relationship. Finally, we append
wsId, wsName and wsDesp of ws to aws (line 12-14).
5. Experiment and analysis

In order to validate the effectiveness of the proposed
service annotation method, we have established domain
ontology in the area of city traffic by ontology editor
Protégé 3.3.1, which includes approximate 220 concepts,
properties and instances. At the same time, 362 WSDL
web services files about city traffic have been collected for
our experiment data set. We have designed a web service
annotation prototype based on proposed WS-SAF.

We utilize service recall Srecall and service precision
ratio Sprecision to evaluate service discovery effectiveness.
Srecall refers to proportion of matched correlative service
number Smcn out of total correlative service number Stcn in
web service repository. Sprecision is defined as proportion of
matched correlative service number Smcn relative to total
matched service number Stmn.

186186

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on January 6, 2010 at 15:09 from IEEE Xplore. Restrictions apply.

 =
 S

mcn

recall
tcn

matched correlative service number S
total correlative service number S

 (11)

=
 S

mcn
precision

tmn

matched correlative service number S
total matched service number S

 (12)

For comparing service discovery effectiveness of our
proposed method with other related methods, we have set
up three different kinds of service index repositories based
on collected WSDL web services. They are respectively
JAXR service registry denoted as Keyword by using UDDI
registration and discovery mechanism, JUDDI extended
registry [9] that is denoted as OWL-S by utilizing OWL-S
description ontology, and semantic web service repository
denoted as WS-SAM by adopting WS-SDM.

We adopt a set of service requests {sr1, sr2, sr3, sr4,
sr5} in the city traffic domain to calculate evaluation index.
Service recall ratio and service precision ratio among three
kinds of methods are shown in Figure 3 and 4.

Figure 3. Service recall ratio of three different methods

Figure 4. Service precision ratio of three different methods

From experimental results of three different methods,
we can conclude that service annotation method proposed
in this paper can outperforms other related two methods in
a specific service request set. We have constructed domain
ontology as semantic context in service annotation process,
which can help us understand semantic information of web
service function interface and improve service precision
ratio. Moreover, we have expanded interface concept set,
which can enlarge the scope of web service semantics and
improve service recall ratio.
6. Conclusion and future work

By utilizing constructed domain ontology to provide
semantic context, this paper has discussed and proposed a

new service annotation approach on how to add semantic
information to web services. We firstly give a semantic
description model WS-SDM, and then an overall service
annotation framework is presented based on the previous
model. Secondly, we extract interface concept of each I/O
service interface and generate interface concept set by the
given interface concept mapping function and mapping set
function. Thirdly, service interface expansion algorithm is
presented to generate interface expansion set by expanding
interface concept set. Finally, service annotation algorithm
is proposed in terms of previous results. So annotated web
services contain semantic information and are discovered
by matchmaking engine in the semantic level.

There are two major directions in our future work.
Firstly, we will mainly concentrate on the improvement of
interface concept mapping, and the optimization of more
efficient interface expansion algorithm. Secondly, we will
further consider how to add semantic weight to annotated
web service interface so that it can promote the synthetic
effectiveness during the service discovery process.

Acknowledgements

This work is funded by the National ‘863’ High-Tech
Research and Development Plan of China under Grant No.
2008AA04Z106, the NSFC under Grant No. 70771077,
and the Project of Science and Technology Commission of
Shanghai Municipality under Grant No. 08DZ1122300.

References

[1] A Patil, S Oundhakar, A Sheth, et al. METEOR-S web

service annotation framework. In Proc. of the 13th Intl.
World Wide Web Conference, 2004, pp.553-562.

[2] R Studer, V Benjamins, D Fensel. Knowledge engineering,
principles and methods. Data and Knowledge Engineering,
1998, Vol. 25(12), pp.161-197.

[3] A Heβ, N Kushmerick. Learning to attach semantic
metadata to web services. In Proc. of the second Intl.
Semantic Web Conference, 2003, pp.258-273.

[4] K Belhajjame, S Embury, N Paton, et al. Automatic
annotation of web services based on workflow definitions.
ACM Transactions on the Web, 2008, Vol. 2(2), pp.1-34.

[5] M Burstein, J Hobbs, O Lassila, et al. DAML-S: Web
service description for the semantic web. In Proc. of the
First Intl. Semantic Web Conference. Sardinia: Springer-
Verlag, 2002, pp.348-363.

[6] The OWL Services Coalition. OWL-S: semantic markup
for web services [EB/OL]. http://www.daml.org/services
/owl-s/1.0/owl-s.html, 2004.

[7] E Zamora, J Pollock, et al. The use of trigram analysis for
spelling error detection. Information Processing and
Management, 1981, Vol. 17(6), pp.305-316.

[8] Y Li, Z Bandar, D McLean. An approach for measuring
semantic similarity between words using multiple
information sources. IEEE Transactions on Knowledge and
Data Engineering, 2003, Vol. 15(4), pp.871-882.

[9] N Srinivasan, M Paolucci, K Sycara. An efficient algorithm
for OWL-S based semantic search in UDDI. In Proc. of the
First Intl. Workshop on Semantic Web Services and Web
Process Composition, 2004, pp.96-110.

187187

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on January 6, 2010 at 15:09 from IEEE Xplore. Restrictions apply.

