
AI Planning and Combinatorial Optimization for Web
Service Composition in Cloud Computing
Guobing Zou1, 2 Yixin Chen2 Yang Xiang1 Ruoyun Huang2 You Xu2

1
Tongji University

Department of Computer Science
4800 Cao’an Road

Shanghai 201804, China
1-314-935-8501

guobingzou@gmail.com

2
Washington University

Department of Computer Science
Campus Box 1045

One Brookings Drive, St. Louis 63130, USA
1-314-935-7528

{chen, rh11, yx2}@cse.wustl.edu

ABSTRACT
In recent years, there has been an increasing interest in web

service composition due to its importance in practical applications.

At the same time, cloud computing is gradually evolving as a

widely used computing platform where many different web

services are published and available in cloud data centers. The

issue is that traditional service composition methods mainly focus

on how to find service composition sequence in a single cloud, but

not from a multi-cloud service base. It is challenging to efficiently

find a composition solution in a multiple cloud base because it

involves not only service composition but also combinatorial

optimization. In this paper, we first propose a framework of

service composition in multi-cloud base environments. Next, three

different cloud combination methods are presented to select a

cloud combination subject to not only finding feasible

composition sequence, but also containing minimum clouds.

Experimental results show that a proposed method based on

artificial intelligence (AI) planning and combinatorial

optimization can more effectively and efficiently find sub-optimal

cloud combinations.

Keywords
Service Composition, Multi-Cloud Base, Cloud Combination,

Composition Planner

1. INTRODUCTION
A web service is a modular, self-describing, self-contained and

web-accessible software unit component that can be published by

service provider and invoked by service requesters over the

Internet. In recent years, people become more interested in web

services because of its potential power in real applications. Thus

an increasing amount of companies and organizations prefer to

keep only their principle business, but outsource other application

services over the Internet [1]. Nowadays, different kinds of web

services have been published and made available for individual

users and organizations. A huge amount of research works have

been devoted to areas such as service discovery. The resulting

techniques are currently powerful enough to help web service

requesters find a standalone web service.

Nevertheless, in many cases to have a standalone web service is

not enough. When there is no single service has the capability to

satisfy a service requester’s requirement, service composition is

needed to select several correlative web services together for the

purpose of fulfilling the service requester’s goal. Therefore, the

problem of how to effectively and efficiently compose existing

web services has attracted a lot of research interests and is an

important open problem.

In earlier research, service composition methods take an

assumption that all selected web services found in the

composition sequence come from the same service repository. In

other words, these existing methods try to find composite web

services just storing in one service repository, rather than those

web services distributed in multiple different locations. However,

with the emergence of some representative cloud computing

platforms, such as Windows Azure Platform [3] and Amazon

S3[4], it will be very common for service providers to publish

their web services at different cloud platforms, which has

distinctive advantages such as adaptivity, scalability and

transparency of load scheduling. In such a case, when we need

web services from multiple service repositories to obtain a valid

composition, traditional methods may not find a solution.

In environments with multiple clouds involved, it is more likely

that a service composer can find a sequence of web services than

in an individual cloud. Thus in many scenarios, we need to find

web services from multiple clouds, if a single cloud cannot give

us all the services that we need. In such a situation, however, it is

challenging for a service composer to find an appropriate

composition sequence. The reason is that instead of a composition,

we actually need to find a valid composition with the minimum

number of clouds involved in, which is very important since the

communication cost between two web services from different

clouds would be expensive and time consuming. How to

effectively and efficiently choose a service plan that minimizes

the cloud used is an open issue.

In this paper, we address the problem of web service composition

in environments with multiple clouds. To our best knowledge, this

is the first work addressing this problem. Due to the expensive

communication cost among web services from different clouds,

the goal of our work is to effectively and efficiently minimize the

number of clouds involved in a service composition sequence. It

is a challenging problem because it couples planning according to

Annual International Conference on Cloud Computing and Virtualization (CCV 2010).
Edited by Prof. Gagan Agrawal.
Copyright © CCV 2010 & GSTF.
ISBN: 978-981-08-5864-3.
doi:10.5176/978-981-08-5837-7 166

28

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

service providing constraints and optimization for cloud selection.

The key idea of our work is to convert this problem to a set

covering model, and find a sub-optimal cloud combination

solution using an approximation algorithm, while using AI

planning to compose web services. More specifically, we model a

multiple cloud service base as a tree, use an approximation

algorithm to optimize cloud selection, while employing an AI

planning system for service composition. Our experimental results

show that the proposed smart cloud combination method can

effectively and efficiently find a desirable cloud combination for

web service composition.

This paper is organized as follows. In Section 2, we review

previous work. In Section 3, we present the problem formulation.

In Section 4, we first present the overall framework of our

semantic service composer in multiple cloud base environments,

and then three different algorithms for web service composition in

a multi-cloud environment. We give experimental results and

analysis in Section 5 and conclude the paper in Section 6.

2. PREVIOUS WORK
In this section, we discuss some related works about the methods

of web service compostion. We also look into the latest progress

of cloud computing researches.

In terms of applied technology and theory foundation [1, 2],

service composition methods can be divided into workflow-based

composition, AI planning composition, and composition via

program synthesis. Here, we focus on methods of web service

composition by AI planning. It compiles a web service

composition problem into an AI planning problem, where services

are considered as actions in planning formulations.

There are several good composition planners. OWLS-XPlan [5, 6]

is an OWL-S [7] service composition planner that has been

applied to an agent based mobile eHealth system for emergency

medical assistance (EMA) planning tasks. It first converts a

service composition request, along with all candidate services

described by OWL-S 1.1, into a composition problem plus a

composition domain. It then executes a composition planner

XPlan to find a composition plan. SHOP2 [8] is a Hierarchical

Task Network (HTN) planning system, which can be used to do

automatic composition of web services. All candidate services,

described in OWL-S, are firstly translated into a SHOP2 domain

by a sound and complete conversion algorithm. Then the SHOP2

planner recursively divides composition task into many subtasks

until every subtask can be executed by a single web service. At

last a composition plan can be generated to satisfy requester’s

composition goal. Hoffmann [9] introduced a planning formalism

to represent web service composition, and also identified a special

case of web service composition called “forward effects”, where

semantics become easier to deal with. An initial experiment has

been conducted by using the conformant-FF planner [10]. Another

service composer in [11] converts DAML-S [12] described

services into Verb-Subject-Object (VSO) triples, and then

constructs a sequence of atomic services to satisfy a user’s service

composition request.

Nowadays, cloud computing is becoming a prominent platform

for providing web services. In the Industry, Microsoft has

published its cloud computing platform, Windows Azure [3],

which provides not only computing resources, but also cloud data

storage centers. Other companies, like Amazon [4] and Salesforce

[13], provide similar cloud computing infrastructures. In the

academia, Zhang [14] proposed a cloud computing open

architecture CCOA, and pointed out that virtualization and

Service-Oriented Architecture (SOA) are the two key enabling

techniques. Wang [15] introduced several enabling techniques for

cloud computing.

In this paper, we tackle the problem of cloud selection for web

service composition in a multiple cloud base, which is composed

of different clouds. It exploits OWLS-XPlan [5] as service

composer to generate a composition plan after a cloud

combination is chosen by our methods.

3. PROBLEM FORMULATION
In this section, we first define what web service and web service

composition are. Next, we present the formulation of web service

composition in the cloud computing setting, and the

corresponding metrics that we will optimize for the purpose of

boosting the efficiency of service composition.

Definition 1 (Web Service). A web service is a 2-tuple ,I O ,

where both I and O are service interfaces. An interface is a set of

propositions. Given an interface J, service ,I O is applicable to

J if and only if I . The resulting interface, after J ,I O

applied, is \J I O .

Note that an interface could be of complicated expressions, not

only each proposition has a data type, but also a name. Here we

assume an interface consists of ontology concepts, although in

practice we handle much more complicated service interfaces.

Definition 2 (WSC Problem). A web service composition (WSC)
problem, in a general environment setting, is defined as , , I G S ,

where

1. is an initial interface, provided by a user in its request,

indicating the starting point.

I

2. is a goal interface, provided by a user in its request,

indicating the ultimate interface the user wants to obtain.

G

3. is a set of candidate web services. S

Given a web service composition problem , , I G S , a solution to

this problem, called a composition plan , is a sequence of totally

ordered web services such that S . By applying each service

in , the resulting interface is a superset of G .

Definition 3 (Service Provider). A service provider publishes a
set of web services, which corresponds to a service file sf

where 1 2{ , , ..., }nsf s s s , and (1)is i n is a web service

from the service provider.

In a real world application, service provider often specifies their

published web services in a standard OWL-S specification file.

Definition 4 (Cloud Service Base). A cloud service base C is a

set of service files where { , , ..., }mC sf sf sf , (1)isf i m is

a service file published by a service provider.

A cloud service base usually refers to many service files.

Nowadays, there are many clouds on the market. They give us the

underlying infrastructure for fulfilling a user’s service requests.

29

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

Definition 5 (Multiple Cloud Base (MCB)). A multiple cloud

base is a set of clouds, such that 1 2{ , , ..., }NMCB C C C , where

each is an independent cloud service base. i (1)C i N

In a MCB environment, web services in different commercial

cloud computing platforms, can be used together via mutual

communication to satisfy a complex service request.

Definition 6 (Cloud WSC Problem). A cloud WSC problem is

defined as , , I G MCB , where

1. and G are the same as those in the general web service

composition.

I

2. MCB is a multiple cloud base.

A composition for a cloud WSC problem is a sequence of

, >service cloud pairs, ,

such that applying the sequence of services results in an

interface

, >, , >, ..., , >{ }i p j q k rs C s C s CW =

, R G R .

An optimal composition to a cloud WSC problem is a sequence of

, >service cloud pairs, ,

with the minimum . In other words,

an optimal service composition has the minimum number of

clouds involved in service composition sequence.

', '>, ', '>, ..., ', '>{ }i p j q k rs C s C s CW =

' ' ||{ | ', ' ' }C s s W s C

In order to make the problem more explicit, we give a specific

example. Suppose that there is a MCB consisting of four clouds

. Each of these has a set of service files, which is

a subset of . Moreover, each service file contains a

certain number of web services. Thus, a service file is mapped

into a service provider who publishes one kind of web services. In

particular, respectively corresponds to {“EMA

services”, “Medical Flight Company Services”, “Medical

Transport Company Services”, “Non Medical Flight Company

Services”, “Non Medical Transport Company Services”} in the

emergency medical assistance (EMA) planning tasks, called

Health-SCALLOPS, which is also used as experiment data in [5,

6]. Table 1 shows this multiple cloud base and the distribution of

its cloud service base.

1 2 3 4{ , , , }C C C C

, , , , {a b c d e}

}, , , , {a b c d e

Table 1. A multiple cloud base and its cloud distribution

Cloud C1 C2 C3 C4

Service file a b c d e c d a b c e

Services
number 2 3 8 3 3 8 3 2 3 8 3

In the above MCB environment, there exist different cloud

combination situations when a service requester provides initial

and goal description of service composition requirement. For

example, if a service file set {a, b, e} is required to be included in

a requester’s service composition request, then {C1, C2, C3, C4},

{C1, C2, C3}, {C1, C2, C4}, {C1, C3, C4}, {C2, C3, C4}, {C1, C2},

{C1, C4}, {C2, C4}, {C3, C4} and {C4} are all the candidates of a

valid cloud combination.

4. CLOUD COMBINATION ALGORITHMS
4.1 Service Composer Overview
In a multiple cloud base environment, the service composer

consists of several correlative modules, including cloud combiner,

composition convertor, composition planner, service ontologies

and a MCB environment. Its overall structure is illustrated in

Figure 1.

Service Composition Sequence
Service

Ontologies

Multiple Cloud Base Environments

Service Composition

Request

Cloud Combiner

s1 s2

a

s3 s4
b

s5 s6

c

s7

C1

s1

s2

a
s9 s10

e

C2

f

CN

s8

d

s11 s12

s4

b
s3

s13 s14

s16

s15

s17

Composition

Convertor

Composition

 Planner

Composition

Domain

Composition

Problem Start s3

s1

s2

s4

s5

sk-1

End

sk

Service Requester

Figure 1. Service composer in MCB environments.

Service requester first provides initial and goal descriptions of

service composition request using service ontologies. Next, the

cloud combiner selects appropriate cloud combination from the

MCB using a combinatorial optimization method. After that, the

composition convertor transforms the composition request and the

selected cloud combination into a composition domain and a

composition problem. Finally, a composition planner executes and

finds a composition plan, which is composed of a service

composition sequence that can satisfy the requester’s service

composition goal.

When generating a service composition plan, the cloud combiner

tries to pick the most appropriate clouds for service conversion

and planning. The quality of the selected cloud set is important,

because it affects not only the number of clouds involved in the

final service composition sequence, but also the time efficiency to

obtain a good composition plan.

We propose three different methods for selecting the cloud

combination: (1) all clouds combination method, (2) base cloud

combination method, and (3) smart cloud combination method.

4.2 All Clouds Combination Method
In this combination method, we put all clouds in MCB as inputs

for composition conversion. The description of this process is

shown in Algorithm 1.

In this algorithm, it first coverts all web services involved in

MCB and composition request into a composition domain and a

composition problem, respectively. Next, it executes a

composition planner to find a planning solution. If there is a

composition plan sequence, it is returned to the service requester.

30

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

Algorithm 1: All Clouds Combination

Input: MCB, composition request compReq;

Output: composition sequence compSeq or NULL;

1. ; /*get cloud combination setcur_combSet MCB

2. ;(,) ,cur_combSet compReq Domain Problem

3. ;NULLcompSeq

4. Exec composition planner;

5. get compSeq;

6. if (compSeq is not NULL) then {
7. return compSeq;

8. }

9. return NULL;

We take a MCB in Table 1 as an example. For a composition

request, suppose that { is needed to satisfy its

functionality requirement. Using OWLS-XPlan as the

composition planner, the all clouds combination method can find

a composition sequence

, , , }a b c d

{ , , }i j i j< s C > s is a service C MCB . In

such a case, it contains twelve web services and three different

clouds in the found service composition sequence. 1 3 4{ , , }C C C

Time Complexity. We assume it takes time to execute the

composition planner one time, and convert each web service as

well. The time complexity of this method is determined by its

composition conversion for all web services involved in the MCB.

For a multiple cloud base

1O()

1 2{ , , ..., }NMCB C C C , we assume that

each cloud has (1)iC i N iL service files and iM web

services. Let L= 1 2{ , , ..., }NMax L L L , M= 1 2{ , , ..., }NMax M M M .

In order to calculate its time complexity, we need to calculate the

total number of web services involve in MCB :
1

N

i

i

M . So the

whole time complexity of the all clouds combination method is

= = O(N .T(MCB)
1

N

i

i

O(M) * M)

4.3 Base Cloud Combination Method
Although the all clouds combination method can find a service

composition sequence quickly, it does not minimize the number of

clouds in the final service composition sequence. It can result in a

serious issue because web services distributed in different clouds

remarkably increase communication cost and financial charges.

We give another cloud combination method, called the base cloud

combination method, which can find an optimal cloud

combination with a minimum number of involved clouds. It is

described in Algorithm 2. In this algorithm, it recursively

enumerates all different cloud combination possibilities until a

composition solution is found in a cloud combination. More

specifically, it starts from testing all singleton sets of clouds and

stops if a valid composition plan can be found using a single cloud,

Otherwise, it tests cloud sets of size two, three, etc., until reaching

a cloud set from which a service plan can be found. In Algorithm

2, RecurComb is a recursive algorithm designed to find all cloud

combinations containing k number of clouds from a total number

of clouds.S

Algorithm 2: Base Cloud Combination

Input: MCB, clouds number N, composition request compReq;

Output: composition sequence compSeq or NULL;

1. foreach 1i to do {i N

2. ; /*initialize cloud combination listNULLcombList

3. RecurComb();, , , NULL, 1MCB N i

4. get C N

i cloud combinations in combList;

5. foreach to =1j C N

ij do {

6. ()cur_combSet combList j ; /*get a combination

7. (, ;) ,cur_combSet compReq Domain Problem

8. NULLcompSeq ;

9. Exec composition planner;

10. get compSeq;

11. if (compSeq is not NULL) then
12. return compSeq;

13. }

14. }
15. return NULL;

RecurComb(, , , , MCB S k cloudSet pos)

1. if () then {1k ==

2. foreach to dom = pos 1m pos S

3. add ([into ;])cloudSet MCB m combList

4. return;

5. }

6. foreach to 1l = 1l S k do {
7. te ([1])mpCloudSet cloudSet MCB pos +l - ;

8. RecurComb(, , -1, , +MCB S - l k tempCloudSet pos l);

9. }

Taking the same 1 2 3 4{ , , , }MCB C C C C in Table 1 as an

example, suppose that is needed to satisfy a service

requester’s functionality requirement, the base cloud combination

method first tries all single cloud combinations. In other words, it

checks C C and . However, none of them can satisfy the

service request because of their insufficient service files to satisfy

. Then it begins to examine cloud combinations with

two clouds. The cloud combination { , is selected to

generate a composition sequence for the service requester,

because it includes all service files { needed by the

service requester.

{ , , , }a b c d

1 2 3, , C

}C C

N

4C

{ , , , }a b c d

1 2

, , , }a b c d

Time Complexity. Considering the worst case behavior, it will

check all cloud combinations in order to find a composition

sequence. The time complexity is also determined by its

composition conversion for all involved web services. Under the

same notation as in our previous analysis, for each kind of cloud

combinations with i i(1) clouds, there are C N

i different

cloud combinations, each of which has (+1 2+...+)jM j jiM M web

services, where1 . So, time complexity of the base cloud

combination method is: =

C N

ij

T(MCB) 1 2

1 1

C

(+ +...+)

i
NN

j j ji

i j

O(M M M)

31

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

= = =

= .

1 1

C

(*)

i
NN

i j

O(i M)
1

(* * C)
N

N

i

iO(i M)
1

C
N

N

i

iO(N * M *)

2NO(N * M *)

4.4 Smart Cloud Combination Method
Although the base cloud combination method can generate the

optimal cloud combination, which contains the minimum number

of clouds, its time complexity is very high (exponential in the

number of clouds) since it needs to enumerate all possible cloud

combinations in the worst case. In order to quickly find a good

combination plan, we present a smart cloud combination method.

It is designed for efficiently finding a near optimal cloud

combination based on an approximative algorithm.

The smart cloud combination method first models a MCB as a tree,

and then finds a minimum request set by searching in the MCB

tree.

4.4.1 Modeling a MCB as a tree
Considering the whole MCB as the root node, a MCB can be

modeled as a tree. Taking the MCB in Table 1 as an example, part

of its tree is shown in Figure 2. Due to limited space, some of the

service file nodes connected with dashed lines, in the third level,

do not show their corresponding web services in the last level of

the tree.

Figure 2. Part of the tree for a multiple cloud base.

There are four levels in a MCB tree. The first level represents a

complete MCB. The second level corresponds to individual cloud

service bases, e.g., it has in the above MCB tree.

The third level models service files, e.g. are

included in the above MCB tree. The last level models web

services, e.g., it contains web services

1 2 3 4, , , C C C C

, , , , a b c d e

1 2 2 19, , , ..., s s s s in the

above MCB tree. In many cases, a service provider may publish

his service file in many different clouds, e.g., service file a is

published to and .1C 4C

4.4.2 Finding the minimum request set
Definition 7 (Minimum Request Set (MRS)). For a MCB ,

given a composition request ,I G that maps to a service

sequence , , , { ...i j k}s s sSeq = , which is part of a composition

sequence . A MRS is a

service file set, where

, >, , >, ..., , >{ i p j q k rs C s C s CW = }

1.
sf MRS

Min sf Seq GetChilds(sf)

2. For sf MCB , is the function to expand

all its web services in a

GetChilds(sf)

MCB tree.

MRS contains the indispensable service files for a service request,

but not other service files. For example, suppose that a service

requester provides a composition request ,I G , and it needs a

service sequence as shown in

Figure 2. Its minimum request set is

1 2 4 7 9 14 16, , , , , , { }Seq = s s s s s s s

, , , { }MRS a b c d .

Given a composition request, its MRS can be found by searching

in a MCB tree, as described in Algorithm 3.

Algorithm 3: Finding a Minimum Request Set

Input: MCB, composition request compReq;

Output: Minimum Request Set MRS or NULL;

1. NULLMRS ; /*initiate MRS

2. NULLcompSeq ; /*initiate composition sequence

3. Invoke All Clouds Combination;

4. get compSeq;

5. if (compSeq is not NULL) then {
6. foreach ,i jC compSeqs do {

7. search jC in MCB tree;

8. find jCsf ;

9. if (sf is not in MRS) then
10. { }MRS MRS sf ;

11. }

12. return MRS ;

13. }
14. return NULL;

The all clouds combination method is first invoked to generate a

composition sequence { , , }i j i j< s C > s is a service C MCB . Next,

to reduce the tree search space, a subtree with root node jC is

located based on each pair ,i jCs , after that a service file

(i)sf s sf can be quickly found out within the subtree jC .

Finally, all searched service files constitute the minimum request

set MRS.

For the above example, suppose that, after invoking all clouds

combination, the composition planner finds comp {<s1,

C1>, <s2, C1>, <s4, C4>, <s7, C3>, <s9, C3>, <s14, C2>, <s16, C2>}.

When dealing with <s1, C1>, the search space is reduced to the

subtree C1, and the service file a can be identified according to

service s1. Other service files b, c and d are found and added into

MRS in the same way. Finally, is determined as MRS.

Seq =

, , , {a b c d}

.

Time Complexity. The time complexity for finding MRS consists

of two parts. The first part is due to the all clouds combination

method, which is O(N . The second part is to find service

files in the

* M)

MCB tree. Suppose that it contains t services in a

composition sequence. Considering the worst case behavior, for

each ,i jCs , it needs to search the whole space of subtree jC to

find its service file sf . It takes O(N time to find subtree) jC and

 time to find O(M) sf . Comparing to M , the composite services

32

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

number is smaller. So the time complexity of Algorithm 3 is

= O(N .

t

T(MCB)= O(N * M +t * (N + M)) * M)

4.4.3 Objective functions and constraint
Given a MRS, a cloud is more likely to be selected as a candidate

in the optimal cloud combination, if all of its service files are

included in MRS. On the other hand, if a cloud includes extra

service files that are not in the MRS, these files are not useful but

cause additional computational cost for the service composition

convertor and composition planner.

Definition 8 (Cloud Cost). 1 2{ , , ..., }NMCB C C C . Given a

MRS , each cloud has a cloud cost defined

as:

(1)iC i N ()iSN C

 , (-)

0 ,

i

ii f (C -MRS)s

sf if C MRS

otherwise

SN(C)=

For a cloud , its cost is calculated by the total number of web

services in service files, which are not included in

iC

MRS . For

example, in Figure 2, given a , , , ={ }MRS a b c d , the costs of

clouds are: ,1 0SN(C)= 2 e 3SN(C)= = , ,3 0SN(C)=

4 e 3SN(C)= = .

Definition 9 (Smart Cloud Combination Problem). Given a

MRS and 1 2{ , , ..., }NMCB C C C , a smart cloud combination

problem is the following combinatorial optimization problem with

binary variables , :iSel(C) 1, ,i = ... N

1. Objective functions

1

1

 (1)

N

i

i

N

i i

i

(1) Min Sel(C)

Min SN(C) Sel(C)=

1,

0,

i

i

if C is selected
Sel(C)=

otherwise
,

2. Constraint condition

1

{ , 1
N

i i

i

}MRS sf sf C Sel(C)=

A cloud combination is composed of the selected clouds

(1). The first goal is to minimize the number of clouds

involved in the cloud combination, after that we try to optimize

the total cost of selected clouds (). The constraint condition

is that all service files in

Sel(C)=

SN(C)

MRS must be included in the selected

clouds.

4.4.4 The smart cloud combination algorithm
Based on finding MRS and formalizing it as a combinatorial

optimization problem, smart cloud combination is described in the

following algorithm 4.

It takes four steps in this algorithm, step one is to find MRS,

which has been discussed. In particular, there does not exist a

cloud combination satisfying user’s request, if its MRS cannot be

found in this step. In step two, we preprocess each cloud in MCB

to reduce its service files space, and set its cloud cost. More

specifically, for each service file sf involved in a cloud C , if it is

also included in MRS, then sf is added into the reduced cloud .

Otherwise,

'C

sf is removed from the reduced cloud , and the

number of services involved in

'C

sf is added to the cost of reduced

cloud . After that, all clouds are transformed to their

corresponding reduced clouds, which are stored in a cloud

reduced set c . At the same time, each reduced

cloud C' has a cloud cost .

'C

loudReducSet

SN(C')

Algorithm 4: Smart Cloud Combination

Input: MCB, composition request compReq;

Output: composition sequence compSeq or NULL;

/*Step one. finding MRS*/

1. Invoke Finding Minimum Request Set;

2. if (MRS is NULL) then
3. return NULL;

/*Step two. cloud reduction and cloud cost setting*/

4. cloudReducSet ;

5. foreach do {iC MCB

6. 'iC ; ;0iSN(C ')=

7. foreach isf C do {

8. if (sf is in MRS) then
9. ' ' { }i iC C sf ;

10. else if (sf is not in MRS) then
11. i iSN(C ')= SN(C ') sf ;

12. end
13. }

14. icloudReducSet cloudReducSet C ' ;

15. }

/*Step three. finding cloud combination*/

16. combSet ;

17. while (is not) do {cloudReducSet

18. ; ; 0maxNum 0minCost = 0selFlag = ;

19. foreach do {'iC cloudReducSet

20. if ('imaxNum C) then
21. 'imaxNum C ; ;iminCost = SN(C ') selFlag = i ;

22. else if ((') (i imaxNum C SN(C ')< minCost)) then
23. ;iminCost = SN(C ') selFlag = i ;

24. end
25. }

26. c []ombSet combSet MCB selFlag ;

27. []selCloud cloudReducSet selFlag ;

28. foreach do'iC cloudReducSet

29. c [] []loudReducSet i cloudReducSet i selCloud ;

30. }

/*Step four. getting composition sequence*/

31. ;(,) , combSet compReq Domain Problem

32. Exec composition planner;

33. return compSeq;

Based on approximate algorithms [16, 17, 18] for solving set

covering problems, the third step is to find a sub-optimal cloud

combination by using the cloud reduced set and reduced cloud

costs. We implement an approximate algorithm based on [17], and

also expand it by considering the reduced cloud cost into the

33

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

process of cloud selection. We check each reduced cloud in

, if the number of its included service files is

larger than the current maximum reduced cloud, then is

selected as the current maximum reduced cloud. Meanwhile, if the

number of service files in is equal to the current maximum

reduced cloud, we further examine whether its cloud cost is lower

than that of the currently selected reduced cloud. If that is true, we

replace the current maximum reduced cloud by . So we add the

cloud C that is in MCB and corresponds to into the final cloud

combination. After that, all reduced clouds in the reduced cloud

set are updated by deleting their service files, which also exist in

selected . This process stops when all reduced clouds have

been updated to . At the end of this step, a cloud combination is

found with approximately minimum number of clouds. In the last

step, all service files involved in the cloud combination, along

with composition request, are converted into a planning domain

and problem, which is solved by an AI planner for service

composition. We know a solution composition plan can be found

since the MRS is covered by the selected clouds.

'C

cloudReducSet

'C

'C

'C

'C

'C

Taking MCB in Figure 2 as an example, its clouds are distributed

as: , , , .

For a requester’s composition request, in step one, we suppose

that it can find . In step two, it converts all

these clouds to their corresponding reduced clouds and costs.

According to the found

1 , , { }C = a b c 2 ,{ }C = d e 3 ,{ }C = c d 4 , , , {C = a b c e}

}, , , {MRS a b c d

MRS , , ,

, . ,

1 , , ' { }C = a b c 2' { }C = d

3 ,' { }C = c d 4 , , ' { }C = a b c 1' 0SN(C)= 2' eSN(C)= = 3 ,

,3' 0SN(C)= 4' eSN(C)= = 3

}

. In step three, for the first time

loop, although has also three service files, its cost is larger

than . So is selected as the maximum reduced cloud, and

 is added into cloud combination. At the end of this loop, all

reduced clouds are recalculated by subtracting . Thus, we can

get , , , . For the second

time loop, and both have one service file. However,

has a lower cost than . So is selected as the maximum

reduced cloud, and is added to the cloud combination. Then

all reduced clouds are recalculated again by subtracting . At

this time, all reduced clouds are . Finally, we get the cloud

combination and feed them as inputs to an AI planner to

get a composition sequence.

4'C

1'C 1'C

1C

1'C

1'C = 2' { }C = d 3' { }C = d 4'C =

2'C 3'C 3'C

2'C 3'C

3C

3'C

1 3,{C C

Time Complexity. Considering the worst case behavior of the

smart cloud composition method, its time complexity consists of

four parts. The first part is due to Finding Minimum Request Set,

which is . The second part is the time used to reduce the

cloud dimension, which is = O(N . The third part is

to generate cloud combination. It takes O(N) time to select the

maximum number of cloud for each time. The worst case is to

select all

O(N * M)

1

N

i

i

O(L) * L)

N clouds as the cloud combination, so it takes

time to generate the cloud combination. In the last step, the found

cloud combination has

2O(N)

combSet number of clouds, so it takes

O(combSet * M) time to convert all selected services and find a

service composition sequence. Comparing to M and N , L and

combSet are smaller. Hence, the total time complexity is

=T(MCB) 2O(N * M + N * L N combSet * M) = .

We see that its time complexity is quadratic, much better than the

exponential complexity of the base method. On the other hand, the

quality of the smart method is nearly optimal, much better than

the all clouds combination method. Hence, the smart method

achieves a superior tradeoff of solution time and quality, and is a

practical solution for deployment in multi-cloud web service

provision environments.

2O(N*M+N)

5. EVALUATION
5.1 Experiment Environment and Data
In order to evaluate the effectiveness and efficiency among our

proposed three cloud combination methods for web service

composition, we have developed a prototype system, called Multi-

Cloud Service Composer, based on OWLS-XPlan [5]. All three

cloud combination methods are implemented to help requesters

select clouds in MCB environments. Experiments are conducted

on a DELL Server with Pentium IV 2.4GHZ CPU and 1G RAM.

We have used Eclipse 3.2 as the prototype development platform,

and Java as the programming language to implement the cloud

combiner module in Figure 1.

Our experimental data comes from default web services test set in

the OWL-S XPlan package. There are in total five service files,

each of which has several web services. In order to simplify them,

we mark { as each of the original service files.

Moreover, {2, 3, 8, 3, 3} represents the number of web services

involved in each of the service files, respectively.

, , , , }a b c d e

We simulate a dynamic MCB environment, where there are four

clouds 1 2 3 4{ , , , }MCB C C C C . Each cloud has some service

files from different service providers. Here, we test five different

MCB configurations as the test data set, as shown in Table 2.

Table 2. Five MCB settings

MCB C1 C2 C3 C4

MCB 1 {a, b, c} {d, e} {c, d} {a, b, c, e}

MCB 2 {a, b} {c} {b, e} {a, d, e}

MCB 3 {a, c, e} {e} {a, b} {c, d}

MCB 4 {b, c, e} {c, d} {a, b, c} {d, e}

MCB 5 {a, b} {b, c} {c} {a, d, e}

5.2 Experimental Results and Analysis
In order to evaluate the three different cloud combination methods,

a service composition request is given to the cloud combiner.

Suppose that a service file set {a, b, c, d} is needed to satisfy the

service composition request <I, G>.

For the {a, b, c, d}, each cloud combination method selects clouds

and generates a cloud combination from each MCB. The

experimental results are shown in Table 3, which gives the cloud

combination (Comb) and the converted (Conv) services number.

Table 3. Comparisons among three combination methods

All clouds Base cloud Smart cloud
MCB

Comb Conv Comb Conv Comb Conv

34

Annual International Conference on Cloud Computing and Virtualization (CCV 2010)

MCB 1 C1 C3 C4 46 C1 C2 65 C1 C3 70

MCB 2 C1 C2 C3 C4 27 C1 C2 C4 148 C1 C2 C4 48

MCB 3 C1 C3 C4 32 C3 C4 128 C3 C4 48

MCB 4 C1 C2 C3 C4 44 C2 C3 68 C2 C3 140

MCB 5 C1 C2 C3 C4 32 C2 C4 112 C1 C2 C4 56

We have following observations from Table 3.

(1) The all clouds combination method can quickly find a

composition sequence. However, it always finds a cloud

combination with the largest number of clouds..

(2) The base cloud combination method can find the optimal

cloud combination containing the minimum number of clouds.

However, it will result in serious issue when the number of MCB

becomes larger and larger, because its time complexity

 increases exponentially. NO(N * M * 2)

(3) The smart cloud combination method finds a cloud

combination by using an approximative algorithm. In all but one

case, it can find an optimal cloud combination. From the Table 3,

we can see that, this method is nearly as good as the second one,

although its time complexity is much lower.

(4) Since the number of conversions (Conv) directly relates to

execution time, we can see from Table 3 that the base method

requires a much larger conversion number than the smart method.

Hence, the smart method is much more efficient.

6. CONCLUSIONS
In this paper, we define and study the problem of web service

composition in a multiple cloud base (MCB) environment. As

cloud based services become increasingly popular, service

composition algorithms that are aware of the cloud selection have

deep impacts to the overall efficiency improvement and cost

saving for enterprises. We first propose a framework of web

service composition in MCB environments. Then, three different

cloud combination methods are represented to help service

requesters select cloud combination. Experimental results indicate

that our proposed method based on artificial intelligence (AI)

planning and combinatorial optimization can more efficiently and

effectively find high quality service composition plans with

minimum cloud expense. The proposed method achieves a

superior tradeoff of solution time and quality, and is a practical

solution for deployment in multi-cloud web service provision

environments.

7. ACKNOWLEDGMENTS
We would like to greatly thank Matthias Klusch and Andreas

Gerber for their providing the open source of OWLS-XPlan, and

the anonymous reviewers for giving insightful comments on this

paper. This work is supported by NSF grant IIS-0713109 and a

Microsoft Research New Faculty Fellowship.

8. REFERENCES
[1] Rao, J. and Su, X. 2005. A survey of automated web service

composition methods. Lect. Notes. Comp. Sc. 3387, 43-54.

[2] Srivastava, B. and Koehler, J. 2003. Web service

composition-current solutions and open problems. In

Proceedings of the ICAPS workshop on planning for web

services.

[3] Windows Azure Platform. Microsoft cloud computing

platform: http://www.microsoft.com/windowsazure/

[4] Amazon S3. Amazon Simple Storage Service cloud

computing platform: http://aws.amazon.com/s3/

[5] Klusch, M. and Gerber, A. 2006. Fast composition planning

of OWL-S services and application. In Proceedings of the 4th

Eruopean Conference on Web Services. 181-190.

[6] Klusch, M. and Gerber, A. and Schmidt, M. 2005. Semantic

web service composition planning with OWLS-XPlan. In

Proceedings of the 1st International AAAI Fall Symposium

on Agents and the Semantic Web.

[7] The OWL Services Coalition. 2004. OWL-S: semantic

markup for web services. http://www.daml.org/services/owl-

s/1.0/owl-s.html

[8] Sirin, E., Parsia, B., Wu, D., et al. 2004. HTN planning for

web service composition using SHOP2. J. Web. Semant. 1, 4,

377-396

[9] Hoffmann, J., Bertoli, P., Pistore, M. 2007. Web service

composition as planning, revisited: In between background

theories and initial state uncertainty. In Proceedings of the

AAAI. 22, 2, 1013-1018.

[10] Hoffmann, J. and Brafman, R. I. 2006. Conformant planning

via heuristic forward search: A new approach. Artif. Intell.

170, (6-7), 507-541.

[11] Sheshagiri, M., DesJardins, M. and Finin, T. 2003. A planner

for composing services described in DAML-S. In

Proceedings of International Conference on ICAPS

Workshop on planning for web services.

[12] Ankolekar, A., Burstein, M., Hobbs, J., et al. 2002. DAML-S:

web service description for the semantic web. In Proceedings

of the 1st International Semantic Web Conference. 348-363.

[13] Force.com. Salesforce cloud computing platform:

http://www.salesforce.com/platform/

[14] Zhang, L. J. and Zhou, Q. 2009. CCOA: Cloud computing

open architecture. In Proceedings of the 2009 IEEE

International Conference on Web Services. 607-616.

[15] Wang, L., Tao, J., Kunze, et al. 2008. Scientific cloud

computing: Early definition and experience. In Proceedings

of the 10th IEEE International Conference on High

Performance Computing and Communications.

[16] Mannino, C. and Sassano, A. 1995. Solving hard set covering

problems.Oper. Res. Lett. 18, 1, 1-5.

[17] Johnson, D.S. 1973. Approximation algorithms for

combinatorial problems. In Proceedings of the 5th annual

ACM Symposium on Theory of computing. 38-49.

[18] Caprara, A. and Fischetti, M. and Toth, P. 1999. A heuristic

method for the set covering problem. Oper. Res. 47, 5, 730-

743.

35

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

