
The Dynamically Efficient Mechanism of HDFS Data Prefetching 

Shaochun Wu, Guobing Zou, Honghao Zhu,Xiang Shuai,Liang Chen,Bofeng Zhang 
School of Computer Engineering and Science, Shanghai University 

Shanghai, China 
scwu@shu.edu.cn, guobingzou@gmail.com, 15170015668@163.com 

Abstract—In recent years, along with cloud computing 
developing as a widely used computing paradigm, Hadoop 
Distributed File System (HDFS) has become one of the 
mandatory techniques, which has many important features, such 
as master and slave construction of HDFS, direct client accessing,
and multi-duplicate of each data block. All of these make HDFS 
data prefetching much harder than the traditional data 
acquisition approaches. Moreover, the basic problems of HDFS 
data prefetching mainly include what kind of data to prefetch, 
where to prefetch data, how many data to prefetch, and the 
balance of prefetching data services and normal data access 
conflicts. Under above analysis, this paper tries to solve these 
problems and propose the mechanism of the two-layer HDFS 
data prefetching. The experimental results show that the Hadoop 
platform which offers data prefetching mechanism can improve 
60% of whole performance on data prefetching. 

Keywords—Cloud computing, HDFS, Data prefetching, Metadata, 
Data block 

I. INTRODUCTION

The Hadoop Distributed File System (HDFS) is a 
representative of Internet file system, which has been widely 
used in Web applications. For most of the Internet applications, 
data access delay which caused by access data from the file 
system has become the main cost of processing user requests.
This cost is even more obvious in the Internet applications 
based on Hadoop. Due to the HDFS data access mechanism,
data access delay has encountered serious drawbacks when 
accessing data from HDFS, especially access to a large 
number of small files. In general, there are three kinds of 
impacts on the performance of reading file from the HDFS.
These three aspects consist of the delay caused by each file 
reading metadata from the metadata server, the I/O delay for 
reading a file from the disk, and the network delay when 
transferring files to an end client.

Data prefetching is a simple and effective technique to 
reduce data access delay. In order to hide visible I/O latency 
and shorten the response time for a user request, it is effective 
to prefetch the data to a local disk based on the limit of data 
access before a user submits a data access request. On the other 
hand, the data that Internet applications need to access has so 
many limitations. Data prefetching techniques can solve the 
problem of HDFS data access latency and effectively improve 
the performance of HDFS. However, it cannot be directly 
applied to the HDFS for data access, due to some personalized 
features of HDFS as we have mentioned before, such as the 
master and slave construction of HDFS, direct client accessing, 
and multi-duplicate of each data block. All of these make 
HDFS data prefetching much harder than the traditional.

II. RELATED WORK

The Lin Lin et al.[6] proposed a method for the 
optimization of HDFS to improve the performance of Hadoop. 
It analyzed the reason of HDFS poor performance is the 
hypothesis of HDFS portability. As we know, in order to 
enhance the portability, HDFS used Java to implement the 
platform, which is a potential reason why the HDFS is 
inefficient when accessing data for users. While Java 
enhanced Hadoop portability, it shields the underlying file 
system and makes it cannot use some of the underlying APIs 
to optimize read-write and data storage. First, a large number 
of concurrent read-writes increase the time of random seeking 
in the environment of shared cluster, which reduces the 
efficiency of read-write operation. Then, concurrent write will 
increase the disk fragmentation as well as the cost of read. As 
far as this problem, some researchers have improved task 
tracker thread model, i.e., the Hadoop of nowadays is the 
model of a thread corresponding to a client. The threading 
model can deal with the client-side communication and store 
data at the same time. One kind of improvement of this thread 
model is divided thread into two groups, one is to deal with 
the client communication, and the others are to store data. 
Using the thread model, we can solve the problem effectively. 
For improving the efficiency of threading model, Lin Lin et al. 
[6] can enhance the performance of Hadoop. The goal of this 
paper is to enhance the performance of the HDFS data read 
which can be provided by a two-layer data access echanism. 

Yong Chen et al.[7] proposed a strategy to optimize the 
performance of Hadoop by data prefetching technique. The 
strategy included two-layer prefetching: within block 
prefetching and interblock prefetching. The functionality of 
within block prefetching is to optimize the mode of internal 
data processing. The two-way processing strategy can improve 
the efficiency of data access in Hadoop by calculating the data 
and then prefetching the data. To apply this strategy for 
accessing data from Hadoop, two issues need to be solved. 
First, it is necessary to calculate and control the 
synchronization of data prefetching. To solve this issue, this 
paper uses the progress bar to monitor status. Thus, when the 
synchronization process is broken, a signal is called to deal 
with the problem. Second, it must determine the appropriate 
rate of data prefetching.  

III. TWO-LAYER MECHANISM OF HDFS DATA PREFETCHING

A. Metadata prefetching 

2013 IEEE International Conference on Green Computing and Communications and IEEE Internet of Things and IEEE Cyber,

Physical and Social Computing

978-0-7695-5046-6/13 $26.00 © 2013 IEEE

DOI 10.1109/GreenCom-iThings-CPSCom.2013.413

2188



M. Stonebraker et al.[5] proposed that the correlation 
information can be used to help prefetch file data, especially 
improve the prefetching accuracy of the HDFS file metadata. 
In this paper, the correlation file information provide a 
foundation of the metadata prefetching algorithm to reduce the 
cost of HDFS file data prefetching and effectively alleviate the 
performance bottleneck of the metadata server. 

In a typical storage system, because there are hundreds of 
metadata needs to be updated at the same time, Shivnath Babu 
et al. [1] proposed metadata access operations account for 
most of all I/O operations. That is, the metadata server is a 
performance bottleneck of a distributed storage system. We 
often solve the performance bottlenecks of metadata server 
from two aspects. On one hand, ultiple metadata servers can 
be used to coordinate metadata requests for the system load 
balance. On the other hand, the distributed system can reduce 
metadata operation costs by improving the hit ratio of storage 
system. 

In the HDFS, D. Jiang, B. C et al.[2] proposed there is 
50% of I/O operation associated with metadata access, and Yu 
SZ et al.[8] proposed typically the normal size of file metadata 
is less than 5% of file data. In particular, positive data is one 
of strategies by prefetching a large amount of data to improve 
system performance. Since the metadata is relatively small, 
HDFS can improve performance through the strategy of 
positive metadata prefetching, when the incorrect prefetching 
ratio is low. However, if prefetching is inaccurate, then the 
error prefetching can quickly eliminate the performance 
improvement which is caused by active prefetching. In order 
to alleviate this problem, we set the threshold of file relevancy, 
and remove the irrelevant files or the files that are below the 
threshold value from the list of related documents. Through 
reasonable setting of the relevancy threshold of files, we can 
acquire near-optimal performance under the prefetching 
circumstances where mistakes will happen as low as possible. 
     Metadata prefetching algorithm only needs to prefetch the 
metadata information of related file list to the NameNode 
cache. By adopting a positive data prefetching strategy, 
together with the analysis of document relativeness under a 
predefined relevance threshold, we can substantially improve 
data prefetching accuracy. The NameNode proposed by A. 
Abouzeid, K et al.[3] uses the LRU algorithm to replace the 
invalid metadata in cache. 

B. The file data prefetching 

a. The file data prefetching model 
     Peng Xia et al.[9] proposed Prefetching file can hidden I/O 
latency, and reduce the network transmission delay. In order to 
solve the four fundamental problems difficult in HDFS data 
prefetching, we propose a data prefetching model, as shown in 
the following Figure 1. 

Figure 1 Prefetching data model 
In Figure 1, document relevance analysis by mining related 
file list from the log is to predict the related files which it is 
used as references for data prefetching. Obviously, the more 
correct the document relevant analysis is, the more useful 
prediction will be for data prefetching. Therefore, to find an 
algorithm that can really reflect the degree of document 
relevance. As is known to us, data prefetching technique is not 
a kind of highly efficient optimization technique. Therefore, 
how to coordinate data prefetching and normal data access 
services is important. A. Pavlo et al.[4] proposed Prefetching 
control is mainly to control the balance between data 
prefetching services and normal data access service. At the 
same time, according to the usage of current network 
resources and the load of server to control the amount of 
prefetching and its associated threshold, we can avoid bad 
influence on other network applications. By controling data 
prefetching coordination, candidate prefetching data set can 
help get the data set which we really need. Prefetching data set 
through the prefetching module read the data set into local 
disk of HDFS client-side. Before the client-side needs to 
access data from the HDFS, it should read the data from local 
disk primarily. If the data set the client-side want is not 
prefetched and stored in local disk, then it accesses the data by 
normal HDFS data access processes. When reading a request 
is missing in the metadata cache, it will trigger a metadata 
prefetching and file data prefetching. 

b. The dynamic adjustment mechanism of data prefetching    
quantity 

In addition to prefetching data, control the quantity of data 
prefetching should also be taken into account in order to keep 
sufficient accuracy in the process of data prefetching. Existing 
data prefetching mechanism mainly adopts two strategies, 
including conservative prefetching and active prefetching. 
Conservative prefetching strategy reduces unnecessary 
prefetching as much as possible, in order to minimize the 
network load caused by prefetching process. However, it can 
also incur low hit rate of data prefetching, such that data 
prefetching cannot achieve the desired performance. On the 
contrary, active prefetching strategy is to prefetch data as 
much as possible, which might cause excessive prefetching 

2189



and potentially increase network transmission load, but can 
improve the hit rate of prefetching data 

Conservative prefetching or active prefetching both have 
their advantages and disadvantages. When analyzing these two 
kinds of prefetching strategies, the prefetching process to 
adjust the prefetching quantity mainly considers the following 
two factors: 

1) Network condition. Network condition is an exterior 
factor that affects the performance of data prefetching. When 
network bandwidth is wider and latency is lower, the 
prefetching process should adopt a positive prefetching 
strategy, and the quantity of data prefetching can be larger 
than before. Conversely, conservative prefetching strategy 
should be adopted and the quantity of data prefetching must be 
small to adapt to the network load.  

2) The client-side characteristics of read requests. The read 
request characterized of client-side is an internal factor to 
influence the data prefetching. In the period of time when read 
requests are intensive, the local hit rate can be improved more 
effectively by a larger prefetching quantity. Conversely, in 
order to reduce the prefetching effects on normal data access 
service, it should be appropriate to reduce data prefetching 
quantity.  
     In this work, we use a metric, called the change of network 
transmission rate, to measure the dynamic changes in a 
specified network condition. The Network transmission rate 
(Network Speed, NS) can be obtained through the 
measurement of the prefetching process. If T period of time is 
spent in prefetching n number of data blocks, then NS can be 
calculated as NS = n/T. Suppose that two times in NS 
measurements are denoted as NS0 and NS1, respectively. 
Similarly the ith time is denoted as NSi. Then the change 
proportion of the network transmission rate, denoted as ΔNS, 
can be computed according to the following formula. 

� �NS1 NS0 /NSi,    if  NS1 NS0 NSi NS1
NSi NS0,                otherwise         

NS
� � ���	 �

���

(1)
     We use the alteration ratio of local failure hit to measure 
the degree of reading requests change of client-side. By the 
number of failure data block in each time, local hit failure MC 
(Missing Count) can be measured. Suppose that two invalid 
data blocks is MC0 and MC1 in two time slice, similarly the 
ith data blocks is MCi. then we have 

� �MC0 MC1 /MCi,    if  if MC1 MC0 MCi MC1
MCi MC0,                 otherwise         

MC � � �
	 �

�

�


�

       (2)
In order to make the prefetching can satisfy the read 

request, we maintain HDFS BS (Block Size) as the minimum 
value of prefetching quantity. For HDFS, the block size can be 
set through the configuration file. Therefore, it can be obtained 
by reading configuration file during the prefetching process. 
Within each time slice, we make the increment of NC and MC 
and BS as the prefetching quantity unit to adjust the quantity 
of data prefetching. When the prefetching quantity is greater 
than a certain value, the local hit rate will be markedly 
reduced. Due to the dramatic changes of the NS and MC, it 
has to avoid the quantity of data prefetching too big or too 

small. By using a bounded increment adjustment factor, we 
can apply its changes with the index to control the changes of 
data prefetching quantity. Let T as average increment, as 
shown in formula (3), then the adjustment factor of 
prefetching quantity increment is calculated by the formula (4). 
Assume that last prefetching quantity is Pn-1, then during the 
current time slice the prefetching quantity Pn can be calculated 
by the following formula (5): 

T= ΔNC+ΔM /2                                                        3
/8 /4( 1) [10 20 / ( 1)]

0 t 0 t 1

t T Te e

T

� � �  � �

� � �
                    4

,1p BS p p BS p BSn n n n��  � � ��         
5

c. The collaboration strategy of data prefetching 
    Different HDFS client-side's concurrent data access 
requests and data prefetching requests will lead to the 
consumption of HDFS computing resources and network 
bandwidth. In order to improve the comprehensive 
performance of the whole system, this paper uses a global 
collaboration strategy to decide what kind of data eventually 
need to be prefetched. 
    Both two services will consume HDFS computing resources 
and network bandwidth, thus it will cause resource 
competition. Relative to the data prefetching service, data 
access service should have higher priority, because the quality 
of service has more important influence on the performance of 
the entire application. In order to reflect the different priority 
between data prefetching service and data access service, we 
introduce the priority weights PWa and PWp, which represent 
the priority of data access service and data prefetching service, 
respectively. These two priority weights conform to the 
following conditions: PWa > PWp ,  and PWa + PWp =1. In 
order to elaborate the collaboration strategy, we formulate the 
following definitions. 
    Definition 1: PI (Penalty Index . Penalty index, denoted as 
PIj, represents the delay time that another node accesses the 
data when the client-side j prefetching the data, under the 
condition of no comparison with data prefetching. It is 
calculated as below.

Pr ( )

( )

[ ( Pr ( ) )]

, ( )

is efetch i Si
i S AL j

PI j
PW is efetch i S PW tsP i a k

k S i S k Sactive k j AL j active

� 

�
�

� � �  � 

� � ��

6

ts(k) is the total number of dimensions of the data that client-
side k would like to prefetching, but not including the 
prefetching data 

{ | The data client is requesting HDFS service}S i
active

� 7

1 If data i is prefetched
0 If data i do not be prefetchedisPr ( ) {efetch i � 8

Where, SAL(j) is the candidate prefetching  data set of client-
side.  

Definiton 2: BI (Benefit Index). Benefit index is defined as 
the increase proportion of prefetching performance when 
compared with no data prefetching. It is measured by 

2190



T
T

BI prefetch
i �

 where, Tprefetch is the time to access prefetching 
data, while T is the time to access the data without data 
prefetching. 

Based on above analysis, the collaboration strategy of data 
prefetching is to balance the effectiveness and the delay time. 
Thus, the collaboration strategy can be formulated as the 
following optimization problem: 

max{ Pr ( ) }is efetch i BI PIi k
i S s Spre active

� � �
� �

9

Where, Spre is the data set that needs to be prefetched. The 
solution space of the coordination optimization problem is the 
value of isPrefetch(i) that makes the expression achieve 
maximal. Through the collaboration strategy, we can obtain 
set S which involves final items of prefetching data.It can be 
expressed as: 

{ | Pr ( ) 1}S i is efetch i S Spre� � � 10

C. Prefetching process 
 The main process of data prefetching from HDFS 
consisting of server correlated steps is as follows. 

Step1: When a user submits a read request, we then search 
the metadata files in NameNode cache primarily. If metadata 
files exisit, we directly jump to Step 6, otherwise jump to the 
following Step 2. 

Step2: Client user sends the request to the NameNode. 

Step3: In the NameNode, data prefetching module sends 
the file name which the user uses to file correlation analysis 
module. 

Step4: Document correlation analysis module according to 
the file name analyzes relevant documents, and then returns a 
relevant file list for metadata prefetching module and file data 
prefetching module. 

Step5: Metadata prefetching module searches metadata of 
related files primarily, and then returns them to the client as 
well as stores into NameNode cache. 

Step6: HDFS client testes whether the required data block 
is already in the local disk. If it is ready to use, then it reads the 
data block into HDFS client cache, the process ends; otherwise, 
it triggers the file data prefetching module. 

Step7: File data prefetching module reads the data that 
needs to be prefetched into the local disk of HDFS client. 

D. The monolithic construction of prefetching data 
 In the Hadoop platform, we mainly analyze the relevance of 
documents to guide data prefetching, and then optimize the 
performance of Hadoop distributed architecture. The structure 
of data prefetching in Hadoop is shown in Figure

Figure 2 The structure of data prefetching in Hadoop 

The above framework of the data prefetching in Hadoop 
consists of three key components, including log record module, 
document relevance analysis module, and data prefetching 
module. The log records and document relevance analysis 
modules do not interact with native Hadoop , while only data 
prefetching module through the plug-in interface needs to 
interact with the native Hadoop. Log record module records the 
process data that the users access in the log file, provided for 
the use of document relevance analysis module. Document 
relevance analysis module mines the user data access patterns 
from the log data by sequence mining algorithms, and then 
analyzes the relevance of files through the data access mode. 
The goal of document relevance analysis is to improve the 
accuracy of data prefetching. Intelligent analysis module aims 
at avoiding unnecessary data prefetching. Data prefetching 
module is to prefetch data, which consists of metadata 
prefetching module and file data prefetching module. 
According to the relevant of files, metadata prefetching 
prefetches the relevant list, which can be shared by multiple 
users in the cache. The file data prefetching prefetches the file 
that is located in the file relevant list to client's local disk, 
which can reduce data delay and improve the performance of 
data prefetching in Hadoop.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup 
The cluster of running evaluation experiment has seven 

nodes. One of the nodes is NameNode, the other six nodes are 
DataNode. Six DataNode are divided into two groups. The 
machine between two groups is connected with routers, which 
is used to imitate the cluster. Nodes in each group are 
connected by switchboard, which means the node belongs to 
the same rack. 

Each node installs Ubuntu Linux operating system (the 
kernel version is 2.6.30), Hadoop 0.20.203 JDK 1.6.0_27. 
Hadoop NameNode and JobTracker run on the same node, and 
the other nodes run the DataNode and TaskTracker at the 
same time. HDFS block size is set to 64 MB and each block 
has preserved 3 copies. 

2191



In order to facilitate the comparison of experimental 
results, Hadoop platform which adds the function of data 
prefetching is called SHU-Hadoop, while original Hadoop 
platform is called Native Hadoop. We use two experiments to 
evaluate the performance of SHU-Hadoop. The first is the 
Wordcount workflow where Hadoop platform is integrated as 
one component. Wordcount is a chief standard program that 
Yahoo usually uses to evaluate the Hadoop performance. This 
experiment is mainly used to test the whole performance of
SHU-Hadoop. The second experiment downloaded multiple 
files from multiple HDFS clients. The experiment mainly tests 
the whole throughput of SHU-Hadoop platform, the utilization 
rate of NameNode CPU, the network traffic of communication, 
and other performance parameters. 

B. Experimental Results 

In order to evaluate SHU-Hadoop's performance, we use 
the wordcount benchmark test program which has plugged in 
Hadoop platform. However, in order to imitate the complex 
task, we have modified original wordcount program. 

We utilize the sleep function when counting each word in 
order to achieve 1 ms latency. At the same time, in order to 
test the influence of multiple factors on the whole performance, 
five experiment sets have been adopted for experimental 
evaluation, and each experiment set runs in different nodes 
and Map tasks number.  

In addition, each experiment in a given experiment set has 
been done more than five times at least. The configuration of 
each experiment set is shown in Table 1: 

1 2 3 4 5
workflow

wordcount
wordcount wordcount wordcount wordco

unt
Node 2 4 5 6 6

number 
of Map 

task

6 6 6 10 6

number 
of

reduce
task

1 1 1 1 1

size of 
input 
file

4.4GB 4.4GB 4.4GB 4.4GB 4.4GB

Table 1 The configuration of experimental dataset

C.  Experimental Analysis 
To evaluate the efficiency of our modified HDFS with the 

native one, we compare the performance between SHU-
Hadoop and Native Hadoop. We measure the time that spends 
in the experimental platform which completes the relevant 
workflow. The time that SHU-Hadoop and Native Hadoop 
process relevant workflow under each experiment dataset is 
shown in Figure 3. 

Figure 3 Chart of process workflow time comparisons 
From the experimental results, we can conclude that from 

Figure 5, for all of the experimental datasets, SHU-Hadoop 
performance is better than Native Hadoop performance. 
Compared with Native, SHU-Hadoop performance has 
improved 60% or more, especially the best case is 73.2%. 
Note that, the result of the experiment dataset 1 shows that the 
performance is worst among all of the experimental datasets. 
Firstly, it is because the environment of experimental dataset 1 
has the smallest proportion between node number and Map 
tasks number. Thus, it will increase the dispatch cost.In other 
word, when executing the experiment in experimental dataset 
1, we need to spend additional time to allocate task. Secondly, 
it is difficult to make use of the data block location 
information when assigning tasks. Additionally, because 
experimental dataset 1 is configured with the minimum 
number of nodes to perform a task, it is highly possible that 
data block of task is located in other nodes. Consequently, 
despite the experiment dataset 1 and dataset 2 using the same 
input file, the performance of experiment dataset 1 is worse 
than that of experiment dataset 2. 

  Finally, among all of the deployed experiments, the 
experiment dataset 5 shows the best performance. Compared 
with experiment dataset 4, although they have the same 
number of nodes to handle workflow and the number of 
experiment dataset 4 Map task is more than experiment dataset 
5, the performance of experiment dataset 5 is better than that 
of experiment dataset 4. The reason is that MapReduce has a 
moment for reshuffling between Map tasks and Reduce tasks, 
so it needs to cost some system resources. Because the 
experiment dataset 4 has more Map tasks and needs to cost 
more system resources in shuffle phases, the performance of 
experiment dataset 4 is inferior to experiment dataset 5. 

V. CONCLUSION

This paper proposes the data prefetching mechanism which 
uses sequence mining to forecast the file relevance, in order to 
improve the accuracy of the document relevance prediction. 
Moreover, during the prefetching time, it needs to control the 
prefetching data in order to increase the hit rate when 
prefetching data to be accessed in the future, and divides the 
prefetching data with different slackness into different queues, 
in order to reduce the prefetching influence on network 
bandwidth. We can see from the experimental results, the 

2192



whole performance of SHU-Hadoop is greatly enhanced. 
When reading the data concurrently, the total throughput of 
reading is increased 146.15% on average, and the increase of 
network traffic is only 66.48% on average. Relative to the 
improvement of throughput, the increase of network traffic is 
acceptable. But when there is a great number of client and low 
accuracy rate of documents relevant forecast, the improvement 
of read throughput is only 60.07%. 

 The master/slave structure of HDFS, direct client access, 
multiple copies of each block, all of this make HDFS data 
prefetching more complex than traditional data prefetching. So 
the data prefetching mechanism in Hadoop platform has many 
problems need to be solved. In this field has the following 
several aspects worthy of further expansion and deepening: 

 Firstly, HDFS is rack awareness, when select a copy to 
read, it's always trying to choose the copy which most close to 
the request node. This strategy will lead to "hot" data nodes 
are frequently access, which influence the load balancing of 
Hadoop platform. Therefore, design a duplicate selection 
algorithm to solve the overheating copies selected problems of 
current Hadoop platform, improve the efficiency of the 
Hadoop platform data prefetching and also can ensure load 
balancing has important research significance. 

 Secondly, Data prefetching is closely related to the 
scheduling algorithm of Hadoop, data prefetching mechanism 
proposed in this paper for some scheduling algorithm has good 
performance, while for other scheduling algorithm the 
performance is not very good. Therefore,It has important 
research significance that adopt dynamic data prefetching 
mechanism according to the different scheduling algorithm for 
ensure the performance of data prefetching. 

ACKNOWLEDGMENT (Heading 5)
 We thank all of the anonymous reviewers for their 
insightful suggestions and comments that will significantly 
improve the quality of our manuscript. This work was 
financially supported by the Ocean Public Welfare Project of 
The Ministry of Science and Technology under Grant 
No.201105033, the National Natural Science Foundation of 
China. (No.40976108), 

REFERENCES

[1] Shivnath Babu. Towards automatic optimization of MapReduce 
programs. In Proceedings  of the SoCC. 2010. 

[2] D. Jiang, B. C. Ooi, L. Shi, S. Wu: The Performance of MapReduce: An 
In-depth Study. In Proceedings of the Very Large Databased (VLDB), 
2010. 

[3] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi,A. Silberschatz, and A. 
Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms 
technologies for analytical workloads. In Proceedings of the VLDB, 
2009. 

[4] A. Pavlo, E. Paulson, A. Rasin, et al. A comparison of approaches to 
large-scale data analysis. In Proceedings of the SIGMOD, ACM , 2009. 

[5] M. Stonebraker, D. Abadi, D. J. DeWitt, et al. Mapreduce and parallel 
dbmss: friends or foes. Communications of the ACM, 53(1):64-71, 2010. 

[6] Lin Lin, Xuemin,Hong Jiang,Yifeng Zhu. AMP: An affinity based 
metadta prefetching scheme in large-scale distributed storage systems. In 
Proceedings of the CCGRID, 2008. 

[7] Yong Chen, Huaiyu Zhu, Xian-He Sun. An adaptive data prefetcher for 
high-performance processors. In Proceedings of the 10th IEEE/ACM 
International Conference on Cluster, Cloud and Grid Computing, 2010.  

[8] Yu SZ., Kobayashi H. A new prefetch cache scheme. In Proceedings of 
the IEEE Global Telecommunication Conference, 2002. 

[9] Peng Xia, Dan Feng, Hong Jiang, et al. FARMER: a novel approach to 
file access correlation mining and evaluation reference model for 
optimizing peta-scale file system performance. In Proceedings of the the 
17th ACM Symposium on High Performance Distributed Computing 
(HPDC), 2008. 

2193


