
Appl Intell (2014) 41:383–404
DOI 10.1007/s10489-014-0522-4

Towards automated choreography of Web services using planning
in large scale service repositories

Guobing Zou · Yanglan Gan · Yixin Chen ·
Bofeng Zhang · Ruoyun Huang · You Xu · Yang Xiang

Published online: 15 March 2014
© Springer Science+Business Media New York 2014

Abstract Automated composition of Web services is be-
coming a prominent paradigm for implementing and de-
livering distributed applications. A composed service can

This work was supported by the National Natural Science Foundation
of China (61303096, 61300100), Shanghai Natural Science
Foundation (13ZR1454600,13ZR1451000), an Innovation Program
of Shanghai Municipal Education Commission (14YZ017),
a Specialized Research Fund for the Doctoral Program of Higher
Education (20133108120029), and a National Science Foundation
(IIS-0713109).

G. Zou · B. Zhang
School of Computer Engineering and Science,
Shanghai University, Shanghai 200444, China

G. Zou
e-mail: gbzou@shu.edu.cn

B. Zhang
e-mail: bfzhang@shu.edu.cn

Y. Gan (B)
School of Computer Science and Technology,
Donghua University, Shanghai 201620, China
e-mail: ylgan@dhu.edu.cn

Y. Chen · R. Huang · Y. Xu
Department of Computer Science and Engineering,
Washington University, St. Louis, MO 63130, USA

Y. Chen
e-mail: ychen25@wustl.edu

R. Huang
e-mail: ruoyun.huang@wustl.edu

Y. Xu
e-mail: youxu@wustl.edu

Y. Xiang
Department of Computer Science and Technology,
Tongji University, Shanghai 201804, China
e-mail: shxiangyang@tongji.edu.cn

be described either by orchestration or choreography. Ser-
vice orchestration has a centralized controller which coordi-
nates the services in a composite service. Differently, service
choreography assumes that all of the participating services
collaborate with each other to achieve a globally shared task.
Choreography has received great attention and demonstrated
a few key advantages over orchestration such as data effi-
ciency, distributed control, and scalability. Although there is
extensive research on the languages and protocols of chore-
ography, automated design of choreography plans, espe-
cially distributed plans for multiple roles, is more complex
and not studied before. In this paper, we propose a novel
planning-based approach, including compilation of contin-
gencies, stateful actions, dependency analysis and commu-
nication control, which can automatically convert a given
composition task to a distributed choreography specifica-
tion. The experimental results conducted on large scale ser-
vice repositories show the effectiveness and efficiency of our
approach for automated choreography of Web services.

Keywords Service choreography · Automated planning ·
Service composition · Service orchestration

1 Introduction

Web services are modular, self-describing and Web accessi-
ble distributed software components. They can be published
on the Web, discovered by software agents and composed
as new services with more complex functionalities. As the
Service-Oriented Architecture (SOA) paradigm plays a key
role in the development of enterprise application integration,
Web services are becoming the most important fundamental
building blocks for fast developing next generation appli-
cations. Despite the traditional Web service core standards

mailto:gbzou@shu.edu.cn
mailto:bfzhang@shu.edu.cn
mailto:ylgan@dhu.edu.cn
mailto:ychen25@wustl.edu
mailto:ruoyun.huang@wustl.edu
mailto:youxu@wustl.edu
mailto:shxiangyang@tongji.edu.cn

384 G. Zou et al.

Fig. 1 The coordination model of service orchestration

(i.e., WSDL, SOAP, UDDI) support registry, discovery and
consumption, in many cases there is no single Web service
satisfying a given request.

The problem of combining a set of connected Web ser-
vices together to create a more complex, value-added and
cross-organizational business process is called Web service
composition (WSC). It is designed and applied in the sce-
nario, where no single service can be used to satisfy a ser-
vice request. There are two ways for the description and ex-
ecution of combining Web services, which are service or-
chestration and service choreography, respectively. That is,
a WSC problem can be described from the view of a sin-
gle participant by orchestration or a global perspective by
choreography [2].

Service orchestration refers to an executable business
process that has a central controller to coordinate all of
the participating Web services [6, 25]. As shown in Fig. 1,
the service orchestration model contains n participating ser-
vices, each of which needs to communicate with the com-
posite service by message exchanges, i.e., orchestrator ΣW .
In this way, it provides a mean to generate the internal ex-
ecutable behavioral business process of some specific ser-
vice [5], which is responsible to coordinate the n services to
complete a composition task. Business processes described
by an orchestration language (e.g. BPEL4WS) can be exe-
cuted on an orchestration engine, such as Active BPEL Open
Engine [26]. Extensive researches based on service orches-
tration have been reported, such as continuous orchestration
[3], dynamic service selection [16] and automated compo-
sition in asynchronous domains [4, 26, 27]. On the other
hand, service choreography does not have an orchestrator,
conversely all of the participating Web services collaborate
with each other in order to achieve a shared goal. As il-
lustrated in Fig. 2, the service choreography model tracks
the message sequences among n independently autonomous
services, rather than a specific business process that a sin-
gle party executes [7, 22]. Typically, it concerns about dis-
tributed sequences and conditions. Thus, choreography is
more collaborative and addresses the interactions that imple-
ment the collaboration among multiple services. Web Ser-

Fig. 2 The collaboration model of service choreography

vices Choreography Description Language (WS-CDL)1 is
an XML-based W3C candidate language for describing mu-
tual collaboration of Web services.

Compared to service orchestration, a few advantages ex-
ist in Web service choreography from the perspective of
large scale real-world applications: (1) data transfer effi-
ciency. It requires less data transfer, compared to orchestra-
tion which requires large quantities of data exchanged be-
tween central controller and all participating services. (2) ro-
bustness. Choreography is more robust, since orchestration
processes depend on a single central server whose failure
may easily paralyze the whole system. (3) fairness. Chore-
ography also provides a fair peer-to-peer model where each
peer takes an equal role in collaboration, whereas in orches-
tration a central server has control over others. (4) design-
ing multiple peers together in choreography also helps avoid
deadlocks, which may occur when each peer executes its
own orchestration plan.

Although service choreography is widely advocated, to
the best of our knowledge, research efforts regarding auto-
matic generation of service choreography specification have
never been taken so far. WS-CDL describes choreography
from a global view in a single master plan. We argue that
choreography plans should be distributed. Although a global
view (e.g., WS-CDL) is helpful, at the execution end, each
role should have a “local plan”, such as the Multiagent Pro-
tocols (MAP) [2] that specifies what it needs to do from its
individual perspective. In this aspect, some recent research
mainly focuses on new languages for distributed plans in
choreography, but relies on users to manually generate the
specifications. Examples include MAP [2] which can be
used to describe a service choreography for multiple peers,
and WS-CDL+ [17] which provides an extended execution
engine for the enactment of the description of Web service
choreography. They do not solve the problem of how to gen-
erate these choreography specifications, although there are
works that verify the protocol using model checking [2, 30].
Due to the complexity of decentralized logics, manually de-
veloping such a specification for service choreography can

1http://www.w3.org/TR/ws-cdl-10/.

http://www.w3.org/TR/ws-cdl-10/

Towards automated choreography of Web services using planning in large scale service repositories 385

be a time-consuming, tedious and error-prone task, which
is not appropriate for large-scale collaboration of Web ser-
vices. Providing automated choreography of Web services is
therefore essential to reduce the time to market of services,
and ultimately to successfully enact the service-oriented ap-
proach.

Planning has been applied for automated service orches-
tration and ensures its correctness, but it is difficult and has
not been applied for service choreography in several chal-
lenges. More specifically, while planning is suitable for con-
structing the composition plan from the view of a single
party in orchestration, service choreography by definition
needs distributed plans for multiple participants, making the
problem more difficult for automated planning. Also, ser-
vice choreography needs asynchronous communication sup-
port between peers and contingent plans that depend on the
outcomes of services. Consequently, each service evolves
independently with unpredictable speed, and collaborates
with the other services only through asynchronous message
exchanges. Therefore, how to automatically and efficiently
build a service choreography has become a challenge and
received considerable attention from both academia and in-
dustry.

In this paper, to address the above challenges, we pro-
pose a novel planning-based approach extended from our
previous work [33] that automatically generates distributed
choreography plans using automated planning. Our frame-
work translates a set of available Web services, along with
user-defined contingencies, into a planning domain in Plan-
ning Domain Definition Language (PDDL). This process
compiles the contingency on action outcomes into a deter-
ministic planning problem. Then, given a composition re-
quirement task, a highly efficient automated planner is used
to find a solution plan. Dependency analysis is performed on
the solution plan to derive a dependency graph, which can
be directly marked to provide a global view of the chore-
ography master plan. We further propose a decentraliza-
tion scheme which supports the synthesis of multiple lo-
cal plans, one for each peer. Our decentralization scheme
addresses three main features in choreography, including
choice, parallelism, and communication control. As a result,
our scheme ensures that all possible distributed execution
sequences carried out by the participating peers are valid se-
quences under the centralized master plan, and collaborate
together to solve a service choreography problem.

We implement a prototype system based on our scheme,
and conduct extensive experiments on large scale Web ser-
vice repositories containing 81,464 services collected from
ICEBE05. The experimental results validate the feasibility
of our work for service choreography. Comparison against
other planning-based composition solvers shows that our ap-
proach also has superior efficiency in terms of solution plan
generation.

The rest of this paper is organized as follows. In Sect. 2,
we present a running example on a real world e-commerce
application. Section 3 presents the problem formulation.
In Sect. 4, we present our approach to automated service
choreography using planning and dependency graph analy-
sis. Section 5 gives the system architecture and implemen-
tation. Section 6 shows extensive experimental results on
large scale Web service repositories. Section 7 reviews re-
lated work on Web service composition. Finally, Sect. 8 con-
cludes the paper and discusses future work.

2 A running example

In this section, we initially give a motivating example in
e-commerce application that will be used throughout the
paper. Our running example includes three service roles
for choreography: Customer, Supplier and Warehouse. Each
service as a role provides a collection of functionalities by
performing its operations. Specifically, the Customer in-
quires product information, sends a product request and
makes a payment for product ordering. The Supplier fo-
cuses on receiving a purchase request, acquiring product
availability and confirming an order status. The Warehouse
checks the availability status of a product as requested and
provides the shipping of a product order.

The goal is to implement a composed service for prod-
uct purchasing and delivering by composing independent
existing service roles. These service roles collaborate with
each other to achieve a situation where either the Customer
service role is successfully provided with a given product
from the Supplier service role, or the product ordering fails
due to product unavailability from the Warehouse service
role. Figure 3 illustrates detailed process of product order-
ing among three choreography roles.

The Customer sends a quote request to the Supplier
on a given product, and then the Supplier receives the re-
quest (ReceiveRFQ) and replies. After receiving it (Receive-
Quote), the Customer sends a product order request to the
Supplier. Once receiving an order (ReceivePO), the Sup-
plier sends order information to the Warehouse, who re-
ceives it (ReceiveOI), checks its availability (CheckAvail),
and replies to the Supplier. When Supplier receives it (Re-
ceiveAvail) from the Warehouse, it makes a decision for the
request.

There are two possibilities. If a product order is un-
available, the Supplier cancels it (CancelPO) and notifies
the Customer with an order rejection confirmation. Af-
ter the Customer receives it (ReceivePOReject), the or-
der process terminates. Otherwise, the Supplier accepts it
(ConfirmPO). In such a case, the Supplier replies an or-
der acceptance to the Customer and sends a shipping order

386 G. Zou et al.

Fig. 3 The choreography interaction flow of service roles

request to the Warehouse. After receiving acceptance (Re-
ceivePOAccept), the Customer makes a payment (Make-
Payment) and replies a payment confirmation to the Sup-
plier. Meanwhile, after receiving the shipping order request
(ReceiveShipOrder), the Warehouse sends a request to the
Customer for shipping details. Once the Customer receives
it (ReceiveShipDetailR), it replies details to the Ware-
house. After receiving it (ReceiveShipDetails), the Ware-
house replies a shipping confirmation to the Supplier. Fi-
nally, when a payment confirmation from the Customer and
a shipping confirmation from the Warehouse are both re-
ceived (ReceiveShipPayment), the Supplier replies a pur-
chase success confirmation to the Customer, who receives
it (ReceiveBuyConfirm) and the product order process ter-
minates.

Notice that here we assume multiple participating ser-
vices exist in a service composition problem, and we mainly
demonstrate the mutual interactions among different service
roles involved in service choreography. However, we will
elaborate how to automatically compose these service roles
and then generate distributed choreography specification us-
ing planning and dependency graph analysis in the subse-
quent sections.

3 Problem formulation

We first formulate our problem using a simplified model.
In this paper, we focus on understanding the fundamental
principles of automated choreography of Web services by
planning, and simplify or omit certain issues in Web ser-
vice composition, such as ontology [1] and background the-
ory [13]. It is our future work to integrate the theory and

algorithms with other techniques into more advanced sys-
tems.

Definition 1 (Web Service) Web service w consists of a
set of operations, denoted as w = {op1, op2, . . .}, where
∀op ∈ w is a 2-tuple 〈I,O〉, I = {I 1, I 2, . . .} is a set of in-
put interface parameters. Similarly, O = {O1,O2, . . .} is a
set of output interface parameters. We use op.I and op.O to
denote I and O in op, respectively. For each interface pa-
rameter x, we use Dom(x) to denote its possible values and
x.value ∈ Dom(x) to denote the value of x.

Note that each Web service plays a role that can perform
a set of operations. A service repository is a set of services.

Definition 2 (Contingency) Given an operation op with its
input interface parameters op.I = {I 1, I 2, . . .}, a contin-
gency is a tuple c = (op, I i ,prei) where prei ⊂ Dom(I i).

A contingency c = (op, I i ,prei) means that to invoke op,
we need its input parameter I i to take the values in prei ,
instead of any value in Dom(I i).

We define a service state as a set of interface parameters
Q = {x1, x2, . . .}. We assume that parameters not in Q are
unavailable at the state.

Definition 3 (Applicability) Without contingency, an op-
eration op is applicable at a service state Q if op.I ⊆ Q.
We denote this as Q � op. An operation op under contin-
gency c = (op, I i,prei) (denoted as c � op) is applicable at
Q if op.I ⊆ Q and op.I i .value ∈ prei . We denote this as
Q � c � op.

When an applicable operation op or c � op is applied to
Q, the resulting state Q′ = Q ⊕ op (or Q′ = Q ⊕ c � op)
is Q′ = Q ∪ op.O . An execution sequence is an ordered
list L = (o1, . . . , om), where each element is either an oper-
ation op or an operation with contingency c � op. Applying
a sequence L to a service state Q results in Q′ = Q ⊕ L =
(· · · ((Q⊕o1)⊕o2) · · ·⊕om) if every step is applicable (oth-
erwise Q ⊕ L is undefined).

Definition 4 (Choreography Request) A choreography re-
quest, r , is a 2-tuple 〈rin, rout〉, where rin = {r1

in, r
2
in, . . .} is

an initial interface parameter set provided as request inputs,
and rout = {r1

out, r
2
out, . . .} is a goal interface parameter set

desired to be returned to the users.

Given a set of Web services and a service choreography
request, we define a service choreography problem as below.

Definition 5 (Service Choreography Problem) A service
choreograph problem (SCP) is defined by a 4-tuple (W,C,

rin, rout). Where,

Towards automated choreography of Web services using planning in large scale service repositories 387

(1) W = {w1, . . . ,wN } is a service repository;
(2) C = {c1, . . . , cNc } is a set of contingencies;
(3) rin = {r1, r2, . . .} is an input parameter set;
(4) rout = {q1, q2, . . .} is an output parameter set.

Example 1 Following our running example in Sect. 2, its
SCP is represented as below. W = {Customer,Supplier,
Warehouse}, where Supplier = {ReceiveRFQ,ReceivePO,

ConfirmPO, . . .}. An operation in Supplier is ReceiveRFQ =
〈I,O〉, where I = {pid,pid_name}, and O = {pid_price}.
Another operation is ConfirmPO = 〈I,O〉, where I =
{po_avail}, O = {po_accept, shiporderR}. Dom(po_avail)
= {avail,not_avail}, while po_accept and shiporderR rep-
resent an order acceptance and shipping order request, re-
spectively.

The contingency set consists of C = {c1, c2}, where
c1 = (ConfirmPO,po_avail, {avail}) and c2 = (CancelPO,

po_avail, {not_avail}).
The request inputs include three interface parameters,

rin = {pid,pid_name,pid_quantity}. Goal specification is
rout = {purchase_confirm,po_order_reject}, which has
purchase_confirm for success purchase confirmation and an
order rejection po_order_reject.

A user can specify multiple possible goal states desired
by the business process of composition request. Typically,
the users are knowledgeable of these multiple choreography
goals, because they are advanced model developers of Web
service composition. A SCP should consider all of the con-
tingencies and give service choreography plans that can han-
dle the various goals. In our example, the user specifies both
purchase_conf irm and po_order_reject as goals, so that
the service choreographer can find plans contingent on the
availability of the product.

Given a SCP = (W,C, rin, rout), choreography master
plan is any expression P defined by the language.

P ::= op (op ∈ w ∈ W)

| talk(i, j) (role i talks to j)

| P ;P (sequential)
| P ‖ P (parallel)
| c � P or P (c ∈ C, choice)

where op is an operation in a Web service and c is a con-
tingency. We allow only one contingency for each or choice
to simplify the presentation, although it is easy to extend
to multiple contingencies. Our language is similar to other
choreography description models [2, 28], except that we ex-
plicitly introduce contingency in our definition. The talk ac-
tion is applicable to any service state and brings no change
to the state.

Given a service state Q, let t (P) denote all of the possible
execution sequences from Q, we can define:

t (op) = {
(op)

}

t
(
talk(i, j)

) = {(
talk(i, j)

)}

t (P1;P2) = t (P1) ◦ t (P2)

t (P1 ‖ P2) = t (P1) �� t (P2)

t (c � P1 or P2) =
{

t (P1), if Q � c � P1;
t (P2), otherwise.

where ◦ denotes the concatenation of two sequence sets (i.e.
A ◦ B = {(a, b)|a ∈ A,b ∈ B}), and �� is the interleaving
of two sequence sets; Q � c � P1 should be understood as
Q � c � op for any op that can be the first operation in a
sequence in t (P1).

Given any expression P , the function t (P) denotes the
combination of the sequences that can be drawn from the P .
As a result, starting from a service state we apply each se-
quence in t (P) and merge their execution states as one,
which can reach a desired goal state. It is defined as below.

Definition 6 (Centralized Solution) A centralized solu-
tion to a SCP = (W,C, rin, rout) is a choreography master
plan P , such that for every sequence Lk ∈ t (P), rin ⊕ Lk is
defined and

⋃
Lk∈t (P) (rin ⊕ Lk) ⊇ rout .

In SCP, there are multiple roles and each corresponds to
a w ∈ W . The philosophy of service choreography is to let
each role execute a local plan so that the multiple roles col-
laborate and finish a global task. A local plan is any expres-
sion R defined by the language.

R ::= op (op ∈ wi)

| send(ch, i, j) (send to role j)

| recv(ch, j, i) (receive from role j)

| R;R (sequential)
| R ‖ R (parallel)
| c �R or R

(
c ∈ Ci, choice

)

where Ci ⊆ C is the set of contingencies related to wi (i.e.
Ci includes those c whose operation op is in wi); and ch is a
unique communication channel ID for each send/recv pair.
Like talk, send and recv are applicable to any service state.

Given a service state Q, for role wi with a local plan
Ri , we define t (Ri), the set of possible execution sequences
of wi from Q. A distributed choreography plan R is a
set of local plans Ri , one for each role wi . Then, the set of
combination sequences is

C(R) = {��∗ (L1, . . . ,LN)|Li ∈ t (Ri), i = 1..N
}

where ��∗ denotes any interleaving of N sequences sub-
ject to one constraint: send(ch, i, j) is always sent before
recv(ch, j, i) for any ch, i and j .

388 G. Zou et al.

Fig. 4 The approach of automated choreography of Web services using planning

Definition 7 (Distributed Solution) A distributed solution
to a SCP = (W,C, rin, rout) is a distributed choreography
plan R, such that for every sequence Lk ∈ C(R), rin ⊕ Lk is
defined and

⋃
Lk∈C(R) (rin ⊕ Lk) ⊇ rout.

Definition 8 (Equivalence) A centralized solution shows
equivalence to a distributed one when their sequence sets
contain identical sequences, ignoring talk, send, and recv.

A closely related equivalence has been studied in [28].
We comment that WS-CDL can be viewed as an extended
language for choreography master plan, while MAP [2] and
the Role Language in [28] are examples of languages for
distributed plans.

4 Automated choreography by planning

We develop an approach that can correctly generate a dis-
tributed solution for a SCP. Figure 4 illustrates an overview
of how we solve a SCP. It has a few major steps. (1) Trans-
late a SCP into a PDDL planning problem, which complies
action contingencies. (2) Solve the planning problem using
an automated planner to obtain a solution plan. (3) Perform
a dependency analysis on the solution plan to build a chore-
ography dependency graph (DG). (4) Mark the DG using
node out degree to generate a master plan P . (5) Project P

to a distributed plan R based on the DG.

4.1 SCP translation

In this section, we translate a SCP into a classical planning
problem. As a classical planning task is defined by a plan-
ning domain and a planning problem, the task of translating
a SCP corresponds to domain translation and problem trans-
lation. We use the Planning Domain Definition Language
(PDDL)2 to describe a choreography planning problem.

2PDDL is an action-centered description language that is inspired by
STRIPS formulations of AI planning problems and widely used for
describing classical planning tasks.

Definition 9 (Choreography Planning Problem) In a SCP =
(W,C, rin, rout), SCP translation transforms it into a chore-
ography planning problem, denoted as 〈D,P〉, which has
a choreography domain D and a choreography problem P ,
where, D and P are as follows.

1. D = (T ,S,A), where T ,S,A are types, predicates and
actions in a PDDL choreography domain D.

2. P = (O, so, g), where O, so, g are objects, initial state
and goal state in a PDDL choreography problem P .

As described above, given a SCP = (W,C, rin, rout), do-
main translation converts the service repository W and con-
tingencies C into a choreography domain D in PDDL. Prob-
lem translation is responsible to translate a choreography re-
quest 〈rin, rout〉 into a choreography problem P in PDDL.

4.1.1 Choreography domain translation

The core process for domain translation, listed in Algo-
rithm 1, models an operation op ∈ w (or a contingency
c ∈ C) as an operation action a (or a contingency ac-
tion bc). Each action has a set of preconditions pre(a) and
effects eff (a). For each action a ∈ A, we also define two
properties: key(a) denotes the operation or contingency that
a is representing; and host(a) denotes the Web service w

that key(a) belongs to.
In SCP translation, to simplify problem expression, we

assume that all of the input and output parameters in an op-
eration have a uniform type string, and all of the precondi-
tion and effect propositions in an action are used to express
availability of a parameter by a general predicate (yes ?p).
Although we only allow a simple data type and a predefined
predicate for the presentation of service interface parame-
ters, it is easy to extend our approach to deal with situations
where there are complex data types involved and multiple
predicates. The reason is that to find a choreography solution
plan for a deterministic planning problem, as described in
Definition 9, most of existing off-the-shelf AI planners (e.g.,
FF [15]) apply heuristic search algorithm for the matching
of effect and precondition propositions between two actions
with logic reasoning techniques. They can accept multiple

Towards automated choreography of Web services using planning in large scale service repositories 389

Algorithm 1: choreography_domain_translation
Input: service repository W ; a set of contingencies C;
Output: a choreography domain D; facts F to be used

as objects in P ;
let D(T ,S,A),F be empty sets;1

T ← {string}; S ← {(yes ?p)};2

assign actions a ← 〈{}, {}〉; bc ← 〈{}, {}〉;3

foreach w ∈ W do4

let OP be the set of operations in w;5

foreach op ∈ OP do6

key(a) ← op; host(a) ← w;7

if ∃c ∈ C,c = (op, I i,prei) then8

key(bc) ← c; host(bc) ← w;9

pre(bc) ← {(yes I i)};10

eff (bc) ← {(yes contc)};11

foreach I j ∈ op.I \ {I i} do12

pre(a) ← pre(a) ∪ {(yes I j)};13

pre(a) ← pre(a) ∪ {(yes contc)};14

foreach Oj ∈ op.O do15

eff (a) ← eff (a) ∪ {(yes Oj)};16

A ←A∪ {a} ∪ {bc};17

F ←F ∪ op.I ∪ op.O ∪ {contc};18

else19

foreach I j ∈ op.I do20

pre(a) ← pre(a) ∪ {(yes I j)};21

foreach Oj ∈ op.O do22

eff (a) ← eff (a) ∪ {(yes Oj)};23

A ←A∪ {a};24

F ←F ∪ op.I ∪ op.O;25

a ← 〈{}, {}〉; bc ← 〈{}, {}〉;26

return D, F ;27

data types and first-order predicates. However, when service
providers publish services in a repository, they need to spec-
ify input and output parameters with our provided data types
and multiple predicates. By doing so, our approach can au-
tomatically translate Web services into a choreography do-
main without any manual deployment.

Based on above assumption, the domain translation pro-
cedure in Algorithm 1 works as follows. First, we assign the
data type set T as {string} for the input and output parame-
ters in an operation or a contingency (Line 2), which is re-
quired to represent a choreography domain in PDDL fed into
an automated planner to find a solution plan. Then, for each
service w ∈ W , we translate each of its operations op ∈ w

(or a contingency c) into an operation action a ∈ A (or
a contingency action bc) (Lines 4–26). For each operation
op ∈ w, we first set its operation action a with key(a) = op

and host(a) = w (Line 7). Then, there are two possibilities
to model an action for the operation op.

(1) If op has a contingency c ∈ C, c = (op, I i ,prei)

(Lines 8–18), we first introduce a contingency action
bc and define key(bc) = c, host(bc) = w, pre(bc) =
{(yes I i)}, and eff (bc) = {(yes contc)}, where op ∈ w

(Lines 9–11). Here, contc is a special fact introduced
for each contingency c. We also define an operation
action a for op by pre(a) = {(yes I j) | I j ∈ op.I, I j �=
I i}∪{(yes contc)} and eff (a) = {(yes Oj) | Oj ∈ op.O}
(Lines 12–16). After a and bc are modeled, we put them
into the action set A, and aggregate all of the input
and output parameters (op.I and op.O) and the special
contingency fact contc together into F (Lines 17–18),
which is used as objects in a choreography problem P .

(2) If op does not have a contingency c ∈ C (Lines 19–
25), we only define an operation action a for op by
pre(a) = {(yes I j) | I j ∈ op.I } and eff (a) = {(yes Oj) |
Oj ∈ op.O} (Lines 20–23). Then, we put a into A and
its parameters into F (Lines 24–25).

Example 2 By the Algorithm 1, the SCP shown in Ex-
ample 1 is translated into a choreography domain D with
A = {ReceiveRFQ,ConfirmPO, . . . , bc1, bc2}, which in-
cludes 18 actions (16 operation actions and 2 contin-
gency actions). For action a from ReceiveRFQ, pre(a) =
{(yes pid), (yes pid_name)}, eff (a) = {(yes pid_price)}.
For contingency c1 = (ConfirmPO,po_avail, {avail}), its
translated action bc1 has pre(bc1) = {(yes po_avail)} and
eff (bc1) = {(yes contc1)}. Moreover, the action a′ for
ConfirmPO has pre(a′) = {(yes contc1)} and eff (a′) =
{(yes po_accept), (yes shiporderR)}. Finally, we get facts
F = {pid,pid_name, . . . , contc1, contc2}.

4.1.2 Choreography problem translation

Based on a set of facts F extracted from the input and output
parameters of operations, including all of the special contin-
gency facts, Algorithm 2 translates a choreography request
into a PDDL problem P .

The procedure of Algorithm 2 works as follows. We first
take each fact f ∈ F as a problem object in O (Line 2).
Then, for each request input ri

in ∈ rin, we apply predicate
(yes ?p) to generate an initial state proposition (yes ri

in). The
conjunction of all the propositions produced by rin makes an
initial state s0 = {(yes ri

in) | ri
in ∈ rin} (Lines 3–5). Finally,

we apply (yes ?p) to each goal parameter ri
out ∈ rout for gen-

erating a proposition set {(yes ri
out)} as goal specification. As

a result, g = {(yes ri
out) | ri

out ∈ rout} (Lines 6–8).

Example 3 By the problem translation of Algorithm 2, the
SCP shown in Example 1 is translated into a choreogra-
phy problem P with a set of objects O = {pid,pid_name,

390 G. Zou et al.

Algorithm 2: choreography_problem_translation
Input: a choreography request: rin and rout; a set of

facts F as objects;
Output: a PDDL choreography problem P ;
let P(O, so, g) be empty sets;1

O ←O ∪F ;2

foreach ri
in ∈ rin do3

apply (yes ?p) to ri
in, generate (yes ri

in);4

so ← so ∪ {(yes ri
in)};5

foreach ri
out ∈ rout do6

apply (yes ?p) to ri
out, generate (yes ri

out);7

g ← g ∪ {(yes ri
out)};8

return P ;9

. . . , contc1, contc2}, an initial state s0 = {(yes pid), (yes
pid_name), (yes pid_quantity)}, and g = {(yes purchase_
confirm), (yes po_order_reject)}.

4.2 Time complexity analysis of SCP translation

Let SCP = (W,C, rin, rout) be a Web service choreography
problem, where W = {w1, . . . ,wN } is a repository with N

number of Web services, C = {c1, . . . , cNc } is a set of con-
tingencies, rin = {r1, r2, . . .} is a set of input parameters that
are provided as initial conditions, and rout = {q1, q2, . . .} is
a set of output parameters as desired goal specification.

The choreography planning formulation of SCP is com-
posed of a domain translation and a problem translation.
The former part models each operation op ∈ w or contin-
gency c ∈ C as an operation action a or a contingency ac-
tion bc that leads to a choreography domain D. The latter
translates 〈rin, rout〉 together with facts F to a choreography
problem P .

The computational complexity of generating a choreog-
raphy domain is determined by mapping operations or con-
tingencies into actions as well as problem objects. Its time
complexity is calculated by Tdomain = O(

∑
w∈W

∑
op∈w(2+

|C| + 4 + |op.I | + 1 + |op.O| + 1 + |op.I | + |op.O| + 1)),
where |C| is the number of contingencies in W . For each
op ∈ w ∈ W , we denote the number of input and output pa-
rameters as KI

op = |op.I | and KO
op = |op.O|, respectively.

Suppose that K = maxop∈w{|op.I | + |op.O|} is an upper
bound on the number of input and output parameters among
all the operations in W . We use M to denote the maxi-
mum number of operations involved in each service within
a repository. By the replacement with above parameters,
the time complexity of choreography domain translation
can be recalculated by Tdomain = O(

∑
w∈W

∑
op∈w(Nc +

2 ∗ (KI
op + KO

op) + 9)) = O(N ∗ M ∗ (2K + Nc + 9)) =
O(N ∗ M ∗ (K + Nc)).

The time cost of choreography problem translation is
dominated by three parts: the number of objects in facts F ,
the size of initial and goal parameters in a request 〈rin, rout〉.
Considering the worst case, no repeated input and out-
put interface parameters exist among Web services. Thus,
the time complexity of problem translation is Tproblem =
O(

∑
w∈W

∑
op∈w (|op.I | + |op.O|)+|C|+ |rin|+ |rout|) =

O(
∑

w∈W

∑
op∈w (|KI

op| + |KO
op|) + Nc + |rin| + |rout|) =

O(N ∗M ∗K +Nc +|rin|+ |rout|). In terms of a large scale
Web service repository, since we have Nc � N , |rin| � N ,
and |rout| � N , the computational complexity of choreogra-
phy problem translation is Tproblem = O(N ∗ M ∗ K).

From the above computational analysis, we can see that
for a large scale service repository where we have N �
M,N � K , and N � Nc, our approach of SCP translation
is almost a linear time algorithm with respect to the num-
ber of services in W . Thus, a SCP can be efficiently per-
formed and translated into a choreography planning problem
in polynomial time.

4.3 Finding a solution plan

Given a SCP = (W,C, rin, rout), we translate it into a
〈D,P〉. Then, we use an AI planner to automatically find
a solution plan that can transform the initial state s0 to an
end state S such that g ⊆ S.

Given a planning state X = {(yes x1), (yes x2), . . .}, an
operation action a (or a contingency action bc) can be appli-
cable to X, if pre(a) ⊆ X. Again, we denote it as X ⊕ a =
X ∪ eff (a).

Definition 10 (Choreography Planning Satisfiability) Given
two planning states X = {(yes x1), (yes x2), . . .}, Y =
{(yes y1), (yes y2), . . .}, and a set of actions A, if X ⊕
ai ⊕ · · · ⊕ aj ⊇ Y , 1 ≤ i, j ≤ |A|, we say (ai, . . . , aj) is
a solution plan sequence and denote this relationship as
(ai ⊗ · · · ⊗ aj) ∝ (X → Y).

Definition 11 (Solution Plan) Let 〈D,P〉 = (D, s0, g) be
a choreography planning problem, a solution plan is a se-
quence of actions, π = (a1, . . . , am), such that (a1 ⊗ · · · ⊗
am) ∝ (s0 → g) is satisfiable.

Any automated planner that supports PDDL 1.0 and up
can be applied to solve the choreography planning problem.
Currently, we adopt two planners: FF [15] and SatPlan06
[19].

We analyze the time complexity of generating a solution
plan using FF, which is one of the most successful automatic
planners. It utilizes heuristic search strategy called relaxed
GraphPlan to find a non-optimal plan for a given determin-
istic planning problem. In almost all of the existing bench-
mark domains, it can be proven to solve relaxed tasks in

Towards automated choreography of Web services using planning in large scale service repositories 391

Fig. 5 The solution plan for the
running example. The host of
each action is also added on top
of the action. (C: Customer;
S: Supplier; W: Warehouse)

polynomial time and work well empirically on a large class
of planning tasks.

Example 4 Reconsider our SCP in the running example.
After SCP translation, we take 〈D,P〉 shown in Exam-
ples 2 and 3 as input, and then use FF [15] to find a
solution plan. Figure 5 illustrates the solution plan. As
described in Definition 10, it fulfills choreography plan-
ning satisfiability: (ReceiveRFQ ⊗ ReceiveQuote ⊗ · · · ⊗
bc1 ⊗ · · · ⊗ ReceivePOReject) ∝ (s0 → g), where s0 =
{(yes pid), (yes pid_name), (yes pid_quantity)}, and g =
{(yes purchase_confirm), (yes po_order_reject)}.

4.4 Constructing choreography dependency graph

From a solution plan π = (a1, . . . , am), we can extract a
choreography dependency graph based on dependency anal-
ysis between actions.

Definition 12 (Dependency) Given a solution plan π =
(a1, . . . , am), an action aj depends on ai (denoted as ai �
aj) if and only if i < j and there exists at least a fact
f ∈ pre(aj), such that f /∈ s0 and ai is the last action in
a1, . . . , aj−1 and f ∈ eff (ai).

Dependency is general for both operation actions and
contingency actions, and it can exist between two actions
from the same or different service roles. By using depen-
dency relationship among actions, we draw a dependency
graph as below.

Definition 13 (Dependency Graph (DG)) Given a solution
plan π = (a1, . . . , am), a dependency graph is a directed
graph G = (V ,E) such that V = π and there is an edge
(ai, aj) ∈ E if and only if ai � aj .

Intuitively, a dependency graph describes a choreography
model encompassing interactions among the actions of mul-
tiple collaborative roles. Each vertex in G is an operation
action a or a contingency action bc . Each edge (ai, aj) in G

represents an interaction activity, in which the role of action
ai sends messages to the role of action aj , so that the action
aj can be performed after receiving the messages from ai .

Algorithm 3: choreography_dependency_graph
Input: a solution plan π ; an initial state s0; a goal

specification g;
Output: a choreography dependency graph G;
G(V) ← π ;1

G(E) ← {};2

foreach a ∈ G(V) do3

visited[a] ← f alse;4

choreography_edges(s0, Start, {}, {});5

return G;6

Given a solution plan π , an initial state s0 and a goal state
g, the choreography_dependency_graph() in Algorithm 3
generates a dependency graph G.

In Algorithm 3, all actions are directly collected from π

as the vertex set G(V). Then, for each vertex a in G(V),
we mark it unvisited. Starting from the initial state s0, we
call a recursive procedure choreography_edges() to gener-
ate a choreography graph edges set G(E). An artificial ac-
tion Start to serve as the beginning action is created in the
dependency graph.

Each invocation to procedure choreography_edges() (as
shown in Algorithm 4) works as follows. We first choose a
set of actions applicable to the current planning state S and
put them into F (Line 2). Specifically, for each action a that
is involved in G(V), if it is not visited and its preconditions
can be satisfied by S (i.e., pre(a) ⊆ S), we put it into F as
an applicable action (see Algorithm 5). After choosing a set
of applicable actions in F , there are two possibilities.

(1) If F has at least one applicable action, for each action
ar ∈ F , we first update the current planning state S as
Su by adding the effects of ar , mark ar as a visited ac-
tion, create a new edge into G(E) from al to ar (Lines
3–7), and recursively call choreography_edges() using
updated state Su and action ar (Line 8).

(2) The second possibility is that there is no action appli-
cable to the current planning state S. In such case, we
first update combination planning state S′ using the cur-
rent state S and append al to combination actions set
A′ (Line 10). Then, we search for an applicable ac-
tion using S′ (Line 11). If no such action can be found

392 G. Zou et al.

Algorithm 4: choreography_edges
Input: a planning state S; a left vertex al used to create

a new edge; a combination planning state S′; a
set of combination actions A′;

Output: a graph edges set G(E);
if S ∩ g �= {} then return;1

F ← choose_actions(S);2

if F has applicable actions then3

foreach ar ∈ F do4

Su ← S ∪ eff (ar);5

visited[ar] ← true;6

G(E) ← G(E) ∪ {(al, ar)};7

choreography_edges(Su, ar , S′, A′);8

else9

S′ ← S′ ∪ S; A′ ← A′ ∪ {al};10

F ′ ← choose_actions(S′);11

if F ′ = {} then return;12

else if F ′ has an applicable action ac then13

Su ← S′ ∪ eff (ac);14

visited[ac] ← true;15

foreach a′ ∈ A′ do16

G(E) ← G(E) ∪ {(a′, ac)};17

S′ ← {}; A′ ← {};18

choreography_edges(Su, ac, S′, A′);19

Algorithm 5: choose_actions
Input: a planning state S;
Output: a set of actions F applicable to S;
F ← {};1

foreach a ∈ G(V) do2

if visited[a] = f alse and pre(a) ⊆ S then3

F ← F ∪ {a};4

return F ;5

(Line 12), we return to the previous planning state S

and choose another applicable action to recursively find
graph edges (Lines 4–8). On the contrary, if we find
an action ac applicable to S′, we first update Su using
S′ and the effects of ac, and mark ac as a visited ac-
tion (Lines 14–15). Then, we create a set of new edges
from each combination action a′ to ac (Lines 16–17).
Finally, we clear S′ and A′ and recursively call chore-
ography_edges() with updated state Su and left vertex
ac (Lines 18–19).

Given a solution plan, π = (a1, . . . , am), it contains m

operation or contingency actions. The time complexity of
mapping from π to a dependency graph G is dominated by

the generation of vertices and edges. Thus, we have TDG =
O(m+Tedges), where O(m) is the cost of the construction of
vertices with unvisited marking, and Tedges denotes the time
complexity of creating graph edges. Considering the special
case, where l actions are found for edge expansion in each
recursive process, so we have Tedges(m) = l ∗ Tedges(m/l) +
O(m ∗ K), where K is the maximum number of precondi-
tion and effect propositions in an action. Suppose that m =
lk and Tedges(m) = Tedges(l

k) = h(k), then we transfer the
complexity to h(k) = l ∗ h(k − 1) + K ∗ lk . After the recur-
sive computation, we have h(k) = K ∗ lk +K ∗ lk ∗k. That is,
Tedges = O(K ∗m+K ∗m∗ logm

l) by replacing lk and k with
m and logm

l , respectively. As a result, the time complexity of
DG generation is TDG = O(m + K ∗ m + K ∗ m ∗ logm

l) =
O(K ∗ m ∗ logm

l). Moreover, the expansion factor l and the
number of actions m in π are considerably small compared
to a large scale service repository, i.e., l � N and m � N .
Therefore, it is extremely efficient in dependency graph gen-
eration.

Example 5 Taking the solution plan π (shown in Fig. 5),
the initial state s0 and goal specification g (specified in
Example 3) as inputs, we apply above three algorithms to
generate a dependency graph G. Figure 6 shows the de-
pendency graph, in which three roles collaborate with each
other to complete a product order process. The dependency
graph discovers multiple control flow structures, including
sequential, parallel and conditional. We observe that there
is a choice based on contingency actions (bc1 and bc2) after
the Supplier receives the availability information of an order.
Moreover, once an order is accepted (ConfirmPO), the three
service roles work in parallel to make payment and arrange
shipping.

4.5 Generating the master choreography plan

A choreography master plan can be derived from a depen-
dency graph (DG). Here, the following are the main rules.

1. For every operation action a whose out degree is 1, we
mark a by the sequential sign “;”.

2. For every contingency action bc in the DG, we mark it by
the contingency sign “�”.

3. For every action a whose out degree is more than 1, we
mark a by the parallel sign “‖” if its successors do not
include contingency actions and mark a by the choice
sign “or” otherwise.

4. For every edge (ai, aj), if host(ai) �= host(aj), we mark
the edge by talk(i, j).

After marking a DG according to above rules, we can
write out the choreography master plan by viewing the
marked DG as the parsing graph for the master plan lan-
guage.

Towards automated choreography of Web services using planning in large scale service repositories 393

Fig. 6 The choreography
dependency graph for the
solution plan in Fig. 5. The goal
states (G1 and G2) are also
added to the graph for better
illustration

Fig. 7 The choreography
master plan derived from the
DG for Example 5

For the generation of choreography master plan, the cost
is dominated by the traversal of a dependency graph DG.
Considering the linked table as the representation of DG, the
time complexity is Tmaster = O(|V | + |E|) = (m + l ∗ m),
where m and l are the number of actions and the maxi-
mum expansion factor of each action in DG. Since m � N

and l � N are still satisfiable for a large scale reposi-
tory, DG can be quickly marked as a choreography master
plan.

Example 6 We consider the DG shown in Fig. 6. After using
the rules, Fig. 7 illustrates the marking of DG (talk’s are
not shown). The choreography master plan derived from the
marked DG can be written out by our proposed description
language P as follows.

ReceiveRFQ; talk(S,C); ReceiveQuote; talk(C,S); Re-
ceivePO; talk(S,W); ReceiveOI; CheckAvail; talk(W,S);
ReceiveAvail; (c1� (ConfirmPO; (talk(S,C); ReceivePO-
Accept; MakePayment; talk(C,S)) ‖ (talk(S,W); Receive-
ShipOrder; talk(W,C); ReceiveShipDetailR; talk(C,W);
ReceiveShipDetails; talk(W,S)); ReceiveShipPayment;
talk(S,C); ReceiveBuyConfirm)) or (c2� (CancelPO;
talk(S,C); ReceivePOReject)).

4.6 Generating the distributed choreography plans

To generate distributed plan, we partition DG = (V ,E). We
partition the vertex set V into multiple, disjoint sets, one for
each role w ∈ W . That is, V = V1 ∪ · · · ∪ VP , where a ∈ Vi

if and only if host(a) = wi . For example, the DG in Fig. 6 is
partitioned into three vertex sets, according to the role each
vertex (action) is associated with. It is illustrated in Fig. 8.

Since ai � aj is satisfiable only when i < j , the DG is
acyclic. Hence, aj is an offspring of ai if there is a path
from ai to aj in DG. An action ai depends on a contingency
c if ai is an offspring of bc in DG.

Definition 14 (Lead Operation) Given a solution plan π =
(a1, . . . , am), for a contingency c ∈ C and service role w ∈
W , the lead operation lead(c,w) is the first action a in π

such that host(a) = w and a depends on c. w may not con-
tain a lead operation if no action in w depends on c.

Based on the partitioned DG, for every role, we generate
a local plan in the language R defined in Sect. 3. We list
the rules for generation below. For each role wk ∈ W,k =
1, . . . ,N , we consider the actions in partition Vk following
the order in π .

394 G. Zou et al.

Fig. 8 The partitioning of the
DG by service roles

1. For every two actions ai and aj in Vk where i < j , if aj

is an offspring of ai , they are arranged sequentially (“;”);
if not, they are arranged in parallel (“‖”) if they depend
on the same contingency or by choice (“or”) otherwise.

2. For every edge from an operation action in Vk to an action
in another partition Vl , insert send(ch, k, l).

3. For every edge from an operation action in a different
partition Vl to an action in Vk , insert recv(ch, l, k), where
the channel number ch matches the corresponding send
action.

4. For every contingency action bc in the partition Vk , insert
send(ch, k, l) to every other partition Vl that contains a
lead operation.

5. For every action a such that a = lead(c,wk), where
host(bc) = l, l �= k, insert recv(ch, l, k) before a.

For the generation of choreography distributed plan, the
cost is dominated by the vertices partitioning in DG and in-
vocation relationship between two actions in the same par-
titioning set. Considering the worst case, where the vertices
V are divided into only one partitioning set, the time com-
plexity can be calculated by Tdistribution = O(|V | + |E| +
m ∗ (m − 1)/2 ∗ m) = O(m + l ∗ m + m2 ∗ (m − 1)/2). As
the expansion factor l < m in DG, the time complexity of
generating distributed plans is O(m3). Although it is higher
than that of generating a choreography master plan, the dis-
tributed plans can still be done fast enough because we only
need to make conversion within a very small finite number
of actions in DG.

Example 7 Based on the partitioned DG in Fig. 8, we apply
the rules above to generate the local plans for three service
roles:

Customer: send(ch0,C,S); recv(ch1,S,C); ReceiveQuote;
send(ch2,C,S); recv(ch5,S,C); (c2� recv(ch7,S,C); Receive-
POReject) or (c1� ((recv(ch8,S,C); ReceivePOAccept;
MakePayment; send(ch10,C,S)) ‖ (recv(ch11,W,C); Re-
ceiveShipDetailR; send(ch12,C,W))); recv(ch14,S,C); Re-
ceiveBuyConfirm).

Supplier: recv(ch0,C,S); ReceiveRFQ; send(ch1,S,C);
recv(ch2,C,S); ReceivePO; send(ch3,S,W); recv(ch4,W,S);
ReceiveAvail; (send(ch5,S,C) ‖ send(ch6,S,W)); (c2� Can-
celPO; send(ch7,S,C)) or (c1� ConfirmPO; (send(ch8,S,C)
‖ send(ch9,S,W)); (recv(ch10,C,S) ‖ recv(ch13,W,S)); Re-
ceiveShipPayment; send(ch14,S,C)).

Warehouse: recv(ch3,S,W); ReceiveQI; CheckAvail;
send(ch4,W,S); recv(ch6,S,W); (c1� (recv(ch9,S,W); Re-
ceiveShipOrder; send(ch11,W,C); recv(ch12,C,W); Receive-
ShipDetails; send(ch13,W,S))).

The correctness of our distributed plan can be validated
by showing its equivalence to the master plan, which satis-
fies the user’s need as it solves the planning problem model-
ing the logical constraints and contingencies of the SCP.

In [28], the authors studied necessary conditions for such
equivalence and concluded that a natural projection from a
master plan does not always give an equivalent distributed
plan. There is a key difference: their work considers any pos-
sible master plan, while our approach mainly deal with those
master plans and local plans that can be generated from the
planning method. Our planning work, although more restric-
tive, ensures the equivalence of local and master plans by
analyzing the dependency relationship and contingency ac-
tions and using communication scheme to enforce actions’
partial orders.

More specifically, automatic AI planners are applied to
find a solution plan on which we perform dependency anal-
ysis to ensure the correctness of invocation sequence in a
choreography master plan. On the basis of marked depen-
dency graph, partitioning the vertices in DG and decentral-
ization scheme only divide the invocation sequence in the
choreography master plan into multiple ones, each for a ser-
vice role. As a consequence, this kind of partitioning does
not make any changes on logically invocation relationships
among operations from different service roles.

A counterexample in [28] is a master plan (a1
1 ‖ a2

1); a1
2 ,

where a1
1 and a1

2 are in role 1 and a2
1 in role 2. The dis-

Towards automated choreography of Web services using planning in large scale service repositories 395

Fig. 9 The system architecture
of service choreography

tributed plan is a1
1 ; a1

2 for role 1 and a2
1 for role 2, which al-

lows a1
1 ; a1

2 ; a2
1 , a sequence the master plan does not allow.

In our planning approach, however, such a non-equivalence
will not occur. If a1

2 depends on a2
1 , then there will be a

send/recv pair that enforces the order; if a1
2 does not de-

pend on a2
1 , then the choreography master plan will be

(a1
1;a1

2) ‖ a2
1 , which is equivalent to the multiple distributed

plans.
From another perspective, under contingencies, it is sug-

gested that equivalence relies on the existence of a dominant
role [28], which makes choices that all other roles will fol-
low. In our method, we essentially have a dominant role for
each contingency (whoever generates the output parameter),
and the dominant role sends the decision to the lead opera-
tions in other roles.

5 System architecture and implementation

5.1 System architecture

We propose a general framework for automated service
choreography using state of the art planners. Figure 9 illus-
trates the system architecture. There are several system com-
ponents, including a SCP Graphical User Interface (GUI),
a choreography domain translator, a choreography problem
translator, a service repository with WSDL description, AI
planners (FF [15] and SatPlan06 [18, 19]), a dependency
graph (DG) mapper, a choreography specification converter
and a MAP converter. In addition to these components, there
are two kinds of participants: service provider and service

requester. Service providers publish their Web services to
the service repository for use. Service requesters consume
Web services offered by service providers.

The process of service choreography involves the follow-
ing steps. First, service providers publish their Web services
through GUI to the SCP system, which stores all the reg-
istered Web services in the service repository. Second, the
choreography domain translator reads all the services from
the Web service repository and translates them into a PDDL
domain. Third, a service requester submits a choreography
request, which is further translated into a PDDL problem by
the choreography problem translator. Based on the gener-
ated choreography planning problem (consisting of a PDDL
domain and a PDDL problem), the SCP system invokes one
of the planners (FF [15] or SatPlan06 [18, 19]) to find a so-
lution plan. After that, the SCP system takes the DG mapper
to perform dependency analysis between actions on the so-
lution plan to obtain a dependency graph. Then, the chore-
ography converter is used to generate a choreography master
plan, which is then converted into choreography distributed
plans. Finally, we translate the distributed plans in the R lan-
guage to the MAP specifications [2]. The MAP translation
is described below.

5.2 Translating R to MAP

Based on the distributed choreography plans in the R lan-
guage, we can directly convert each local plan for a ser-
vice role into a MAP specification [2]. MAP is a recently
proposed executable specification to describe local plans
for Web service choreography. A choreography, specified in

396 G. Zou et al.

Table 1 Distributions of the 18
groups of Web service
repositories. Column ‘Service
Repository’ is the service
repository name. Column ‘|W|’
is the number of services in a
service repository. Column ‘|P|’
is the size of input and output
parameters in an operation of a
Web service

Composition1 Composition2

Service Repository |W| |P| Service Repository |W| |P|

Composition1-20-4 2156 4–8 Composition2-20-4 3356 4–8

Composition1-20-16 2156 16–20 Composition2-20-16 6712 16–20

Composition1-20-32 2156 32–36 Composition2-20-32 3356 32–36

Composition1-50-4 2656 4–8 Composition2-50-4 5356 4–8

Composition1-50-16 2656 16–20 Composition2-50-16 5356 16–20

Composition1-50-32 2656 32–36 Composition2-50-32 5356 32–36

Composition1-100-4 4156 4–8 Composition2-100-4 8356 4–8

Composition1-100-16 4156 16–20 Composition2-100-16 8356 16–20

Composition1-100-32 4156 32–36 Composition2-100-32 8356 32–36

MAP, can be sent dynamically to a group of distributed peers
to execute MAP plans at runtime. For each role wk ∈ W ,
k = 1, . . . ,P , we use the following rules to implement the
conversion from its local plan Rk to the MAP specification.

1. For every two actions ai and aj in Rk , if they are sequen-
tial (“;”), we arrange them sequentially (ai then aj); if
they are parallel, they are arranged in parallel (“ai par
aj ”).

2. For every two actions ai and aj , if they are conditional
(“or”) and their contingencies are ci and cj , respectively,
we arrange them by choice (“if ci then ai or else if cj

then aj ”).
3. For every send action send(ch, k, l) from wk to another

role wl , we insert reply($p) => peer($wl), where p are
communication messages.

4. For every receive action recv(ch, l, k) from wl to wk , we
insert request($p) <= peer($wl).

5. For every receive action recv(ch, l, k) in Rk , we insert a
waitfor loop before request($p) <= peer($wl).

6. For every group of contingencies in Rk , we create a new
method and use call to invoke it.

Based on the above rules, we can convert generated
distributed choreography plans to the MAP specifications,
where each local plan in R corresponds to a MAP specifica-
tion.

6 Experimental evaluation

6.1 Experimental setup and datasets

We developed a prototype system in Java. It takes service
repositories in WSDL as input, allows a user to specify ini-
tial state and choreography goals, and implements our ap-
proach to generate a distributed choreography plan in the
MAP specification [2]. Two planners FF [15] and SatPlan06
[18, 19] are integrated in our system. We ran our experi-
ments on a PC with Intel Pentium(R) dual core processor
2.4 GHz and 1 G RAM.

We conducted experiments on 81,464 WSDL Web ser-
vices involved in 18 groups of large scale service reposito-
ries. All the datasets are published on ICEBE053 and can be
freely downloaded from the website of Web Services Chal-
lenge. These Web service repositories are categorized into
Composition1 and Composition2, which are shown in Ta-
ble 1.

As shown in the distributions, the number of services in-
volved in a service repository ranges from 2,156 to 8,356,
and the size of input or output interface parameters in an op-
eration of a Web service ranges from 4–8, 16–20 to 32–36.
In terms of the number of services and parameter size, the
easiest dataset to be dealt with is Composition1-20-4. In
contrast, the most difficult dataset is Composition2-100-32.
Each service repository has 11 choreography requests for
use.

Unlike traditional service registration mechanism, the 18
groups of experimentally large scale service repositories are
structured by independent service directories. Each corre-
sponds to a finite number of WSDL services as shown in
Table 1, although they are distributed into two upper cate-
gories by the number of services and interface parameters.

Currently, a service provider needs to specify contingen-
cies when a Web service is published. In fact, this involves
only a slight enhancement to a Web service description lan-
guage such as WSDL or OWL-S. In our experiment, we en-
hanced WSDL by some special annotations to describe the
contingencies. Since only a small number of Web services
involve contingencies, it does not require much work as
most Web services do not need any changes. Then, the trans-
lation from the WSDL repository to the planning formula-
tion is completely automated and does not involve any man-
ual work. That is, our planning translation algorithm will
automatically generate the correct planning domain specifi-
cation in the PDDL language. It can parse the special an-

3ICEBE05 provides a set of test data for both service composition and
service discovery challenges.

Towards automated choreography of Web services using planning in large scale service repositories 397

Fig. 10 Local plan of Customer in MAP specification

notations for contingencies and correctly translate them into
contingency actions.

Taking the choreography dependency graph in Fig. 8 as
an example, we converted it into three MAP specifications.
Figures 10, 11, and 12 show the local plans for Customer,
Supplier and Warehouse, respectively. The translation from
our language R to MAP is direct from the example. Details
of MAP specifications are described in [2]. Starting from a
product order request, the three MAP specifications as three
roles collaborate on a product purchase task.

Since the most time-consuming components in choreog-
raphy are SCP translation and plan generation, we report the
cost of these two parts, respectively.

6.2 SCP translation

We first tested the SCP translation performance of our ap-
proach on 81,464 Web services involved in the 18 groups
of service repositories. Table 2 presents the time cost of
SCP domain translation and average SCP problem transla-
tion. The results indicate that the average time for generating
a PDDL problem is short, ranging from 1.36 milliseconds
to 14.27 milliseconds. However, with the increasing num-
ber of services involved in different service repositories, the
SCP domain translation time takes from 74.031 seconds to
1,103.38 seconds.

Although the most difficult Web service repository with
the largest number of services and I/O parameters (Compo-
sition2-100-32) takes more than 1,100 seconds for the SCP
translation, it can be performed offline only once. To find a

Fig. 11 Local plan of Supplier in MAP specification

Fig. 12 Local plan of Warehouse in MAP specification

service choreography, the user only needs to specify the in-
puts and possible choreography goals. The system will au-
tomatically generate the adjusted planning formulation very
quickly. In other words, once we translate operations in a
large Web service repository into planning actions, the ser-
vice repository does not need to be parsed again when a user
submits a choreography task.

6.3 Response time of finding a solution plan

From the view of practicality in real world applications, the
response time is of vital importance, because it determines

398 G. Zou et al.

Table 2 SCP Translation time
for generating a choreography
PDDL domain and a
choreography PDDL problem
on all of the 18 groups of
service repositories. Column
‘SCP Dom’ is the SCP domain
translation time for a service
repository. Column ‘SCP Prob’
is the average SCP problem
translation time for all 11
choreography requests of a
service repository

Composition1 Composition2

Service Repository SCP
Dom

SCP
Prob

Service Repository SCP
Dom

SCP
Prob

Composition1-20-4 74.031 s 1.36 ms Composition2-20-4 164.922 s 1.36 ms

Composition1-50-4 109.765 s 1.45 ms Composition2-50-4 400.140 s 2.91 ms

Composition1-100-4 250.922 s 1.45 ms Composition2-100-4 964.031 s 2.82 ms

Composition1-20-16 75.641 s 1.45 ms Composition2-20-16 625.453 s 2.82 ms

Composition1-50-16 112.250 s 2.91 ms Composition2-50-16 412.312 s 2.82 ms

Composition1-100-16 253.000 s 2.91 ms Composition2-100-16 972.469 s 1.45 ms

Composition1-20-32 77.203 s 2.82 ms Composition2-20-32 175.735 s 8.55 ms

Composition1-50-32 112.953 s 2.82 ms Composition2-50-32 417.438 s 11.18 ms

Composition1-100-32 260.172 s 14.27 ms Composition2-100-32 1,103.38 s 8.45 ms

whether a choreography solution plan can be rapidly re-
turned to the users within a short period of time. Therefore,
we adopt response time as the evaluation metric to com-
pare the performance of our approach with WSPR [23, 24]
throughout our experiments.

We compared the response time of finding a choreogra-
phy solution plan with WSPR [23, 24], since it is a well-
known solver for automated composition of Web services
using AI planning techniques. It applies forward and re-
gression search algorithm to find a solution plan. WSPR
solves service orchestration, a much simpler problem than
the choreography problem that our approach solves, al-
though we compare the response time of finding a solution
plan between these two approaches for dynamic composi-
tion of Web services in large scale service repositories.

The response time lasts the duration from the users sub-
mitting a service request until receiving a solution plan or
failing to find a solution. Specifically, the response time
in our approach lasts the duration, including translating a
choreography request r to its choreography PDDL problem
P , parsing PDDL problem P and PDDL domain D, and ap-
plying a planner to find a solution plan π . On the other hand,
WSPR takes its response time by parsing a request r , pars-
ing services in a service repository W , and searching for a
solution plan π using forward and regression search. Here,
we compared the efficiency of our planning approach with
that of WSPR, although WSPR solves a simpler composi-
tion problem without contingencies while our planners solve
the more complex choreography problem.

In order to validate the efficiency of our approach in find-
ing a solution plan, we tested our approach and WSPR on
all the 18 groups of service repositories containing 81,464
services from the ICEBE05 Web services composition chal-
lenge. Each service repository has 11 choreography requests
for use. The response time (RT) to all 11 choreography re-
quests on each service repository is illustrated in Fig. 13 by
our approach using FF [15] and SatPlan06 [19] and WSPR.
Moreover, Table 3 summarizes the average response time for

all 11 choreography requests on each service repository of
our service choreography planning approach and WSPR.

With regard to the service number, all of them take longer
to find a solution plan when the number of parameters be-
comes larger in a service repository. However, the response
time using FF or SatPlan06 increases substantially slower
than WSPR. More specifically, for the largest instance,
FF takes 14.833 seconds, SatPlan06 takes 92.536 seconds,
while WSPR takes 148.807 seconds. The results show that
our approach using FF and SatPlan06 is faster and has bet-
ter scalability than WSPR. Moreover, our approach can au-
tomatically find distributed plans, while WSPR and other
existing work can only find centralized composition plans.

Comparing to WSPR, we can see that our approach
solves more complex choreography problem and handles
distributed collaboration, communication and contingency.
However, it is more efficient than WSPR in finding a solu-
tion plan in regard to the average response time. The reason
is that our translation to PDDL allows us to leverage on the
advances of automated planners, while WSPR uses its own
planning model and composition solver.

From the experimental results of response time on each
service repository, we conclude that our approach using FF
will most likely lead to better performance for a SCP to find
a solution plan with a short period of response time and good
scalability, so that we can quickly project it into a choreog-
raphy dependency graph and MAP specifications.

6.4 Discussion

During the generation of distributed plans for service chore-
ography specification, all the datasets are from WS chal-
lenge benchmark for composition performance evaluation.
Web services organized in different 18 groups of reposito-
ries are disjoint in terms of functional capabilities. In other
words, no redundant services exist in a translated choreog-
raphy planning domain, when finding a solution plan with

Towards automated choreography of Web services using planning in large scale service repositories 399

Table 3 The average response
time in seconds of finding a
choreography solution plan of
our approach using FF and
SatPlan06 planners and WSPR.
There are 18 service repositories
on ICEBE05. Each repository
has 11 choreography requests
for use. Column ‘|P|’ is the size
of input and output parameters
in an operation of a Web
service. Column ‘|W|’ is the
number of services in a service
repository. Column ‘Generation
time’ is the average response
time of finding a solution plan
for all 11 choreography requests
on a service repository

Service repository |P| |W| Generation time

FF SatPlan06 WSPR

Composition1-20-4 4–8 2156 0.306 0.800 8.674

Composition1-50-4 2656 0.344 0.980 11.242

Composition1-100-4 4156 0.491 1.539 17.665

Composition1-20-16 16–20 2156 1.149 2.334 17.753

Composition1-50-16 2656 1.198 3.565 22.478

Composition1-100-16 4156 1.873 5.419 36.278

Composition1-20-32 32–36 2156 3.224 5.076 29.988

Composition1-50-32 2656 3.422 7.910 37.726

Composition1-100-32 4156 4.792 14.221 62.629

Composition2-20-4 4–8 3356 0.569 2.672 14.878

Composition2-50-4 5356 0.845 4.391 24.046

Composition2-100-4 8356 1.214 7.373 38.934

Composition2-20-16 16–20 6712 4.359 30.210 63.430

Composition2-50-16 5356 3.817 18.307 49.776

Composition2-100-16 8356 5.320 32.235 81.791

Composition2-20-32 32–36 3356 7.819 26.609 50.719

Composition2-50-32 5356 11.098 49.489 86.794

Composition2-100-32 8356 14.833 92.536 148.807

the adoption of efficient automatic planners. Fortunately, our
approach can also adapt to the scenarios where there are
redundant services, because high level planning techniques
that apply heuristic search with logical reasoning can ensure
the correctness of finding a sequence of actions, so that the
found plan transforms the initial state to a state that satisfies
the goal specification.

However, we cannot handle the problem where violations
of one of the actions in a choreography distributed plan oc-
cur with unexpected outputs at execution phase. It depends
on the concrete selection of a specific service at runtime by
a service execution monitor. Instead of the investigation on
service choreography at execution level, we mainly focus
on finding a solution plan which is converted into a chore-
ography master plan and multiple distributed plans at design
and planning level. One possibility for our extended work to
solve this problem is that, AI techniques such as replanning
may be exploited to dynamically select a new service to re-
place the one that does not work with expectation for service
choreography at execution level.

For the contribution of our work, we compile a SCP
as a choreography planning problem with the availability
of multiple contingencies. Accordingly, we translate a Web
service composition problem considering uncertainty into a
deterministic planning problem, which can be solved with
the exploitation of state of the art automatic planners. Al-
though two highly efficient planners have been adopted to
find a solution plan, the major concentration of this work
on the basis of a solution plan lies in the automated chore-

ography of Web services, which involves dependency anal-
ysis, dependency graph analysis, decentralization scheme,
and communication control. First, dependency analysis on a
solution plan is performed to construct a dependency graph,
which mirrors the invocation relationships between two op-
erations of Web services. Moreover, dependency graph anal-
ysis and decentralization scheme have been proposed to gen-
erate a choreography master plan and multiple distributed
plans.

Currently, our approach is compatible with three kinds
of invocation relationships, including sequential, parallel
and conditional. However, there are still other control flows
such as the support of loop execution in practical appli-
cations that we have not taken into account in this work.
It could be further investigated by the extension of our
existing dependency graph analysis and decentralization
scheme.

7 Related work

Our work is related to WSC and AI planning. We classify
WSC approaches by planning from four aspects.

– Orchestration or choreography. There are two ways to
describe Web service composition, i.e., service orchestra-
tion and service choreography [25]. Service orchestration
has a central controller to coordinate all of the participat-
ing services. There are approaches [3, 27] that study ser-
vice orchestration using BPEL4WS specification to de-

400 G. Zou et al.

Fig. 13 The response time (RT) of each 11 composition requests on their corresponding dataset in 18 groups of Web service repositories among
three WSC approaches FF, SatPlan06 and WSPR

scribe executable business processes. Differently, service
choreography tries to achieve a globally shared task by
collaboration of multiple services. It has received many
attentions due to its multiple key advantages over service
orchestration, such as less data transfer and robustness.
Some research efforts have been made for service chore-
ography [2, 17, 28, 30]. However, they need to manually
generate a Web service choreography specification.

– AI search or planner. For automatic composition of
Web services, some approaches use AI search techniques
to find a composition solution, such as heuristic for-
ward and regression search [23] and planning graph con-
struction [32]. On the contrary, some other approaches
[8, 13, 20, 29] directly use AI planner to find a solution

plan. In particular, to solve the possible real world WSC
problems, including partial observability of the environ-
ment, nondeterministic effects and execution failures of
Web services, a novel AI planner [21] called Simplanner
is designed and implemented for working in excessively
dynamic environments.

– Determinism or uncertainty. Many composition ap-
proaches are deterministic, where the initial states and
action outcomes are deterministic. There are also some
approaches that take the uncertainty of the initial state
into consideration, such as [10, 12]. In general, these ap-
proaches transform a WSC problem to a conformant plan-
ning problem with multiple possible initial states. The ad-
vantage is that they allow users to specify a composition

Towards automated choreography of Web services using planning in large scale service repositories 401

Fig. 13 (Continued)

request with uncertain initial conditions. However, solv-
ing a conformant planning problem is a time-consuming
task due to its belief update [14]. Moreover, a solution to
a conformant planning problem must fulfill each state in
the final belief which results in more actions and incurs
expensive communication cost.

– Semantic or syntactic representation. In terms of Web
service representation, we can divide WSC approaches
into semantic and syntactic ones. The semantic ap-
proaches [13, 20] can handle semantic match between
operations where Web services are represented by a Web
service ontology model such as OWL-S or DAML-S.
Nonetheless, the semantic approach still faces many chal-
lenges in practical applications, because most available
services published on the Web are described in WSDL.

Some other WSC methods [23, 32] are based on syntactic
representations.

In addition to the application of AI planning techniques
or off-the-shelf highly efficient automated planners, agent-
based techniques have also been exploited for solving WSC
problems, such as composing services in multi-cloud en-
vironments for different kinds of cloud services [11] and
providing business services to conquer the crisis and en-
hance autonomic service cooperation [9]. Furthermore, to
improve the quality of service selection [31] for dynamic
composition of Web services, Learning Automata (LA) so-
lution which has proven to be capable of learning the opti-
mal action has been used to efficiently identify high quality
Web services when operating in unknown stochastic envi-
ronments.

402 G. Zou et al.

8 Conclusions and future work

Automatic and efficient Web service composition can sim-
plify the implementation of business processes. Service
choreography is an important paradigm for WSC with many
advantages over service orchestration. This paper presents
an effective and efficient planning-based method for auto-
mated generation of Web service choreography and pro-
poses a number of novel techniques, including compilation
of contingencies, dependency analysis, dependency graph
analysis, and communication control among actions.

The method first models a SCP as a classical planning
problem and solves it using state of the art planners. Then,
the method performs dependency analysis among actions
on the solution plan, and constructs a choreography de-
pendency graph to express the invocation order among dif-
ferent operation actions and contingency actions. Finally,
the method automatically generates a master plan and dis-
tributed plans for Web service choreography based on de-
pendency graph analysis. We have conducted extensive ex-
periments on large scale Web service repositories. The ex-
perimental results show that the proposed method is effec-
tive and efficient and can be fully automated. Comparison
to an existing planning-based orchestration approach shows
that our approach has superior scalability, although it solves
the more complex choreography problems.

Our future work includes two directions: extending our
current approach to support global constraints linking multi-
ple users for service choreography, and optimization of plan
quality by taking into account important nonfunctional met-
rics, such as the QoS of Web services.

Acknowledgements We thank Jörg Hoffmann, Henry Kautz and
Bart Selman for providing open sources of AI planners FF and Sat-
Plan06. We appreciate all of the three anonymous reviewers for in-
sightful comments.

References

1. Agarwal V, Chafle G, Dasgupta K et al (2005) Synthy: a system for
end to end composition of Web services. J Web Semant 3(4):311–
339

2. Barker A, Walton CD, Robertson D (2009) Choreographing Web
services. IEEE Trans Serv Comput 2(2):152–166

3. Bertoli P, Kazhamiakin R, Paolucci M et al (2009) Continuous
orchestration of Web services via planning. In: Proceedings of the
international conference on automated planning and scheduling
(ICAPS)

4. Bertoli P, Pistore M, Traverso P (2010) Automated composition of
Web services via planning in asynchronous domains. Artif Intell
174(3):316–361

5. Busi N, Gorrieri R, Guidi C et al (2006) Choreography and or-
chestration conformance for system design. In: Proceedings of the
international conference on coordination models and languages
(COORDINATION)

6. Chen L, Wassermann B, Emmerich W et al (2006) Web service
orchestration with BPEL. In: Proceedings of the international con-
ference on software engineering (ICSE)

7. Daniel F, Pernici B (2006) Insights into Web service orchestration
and choreography. Int J E-Bus Res 2(1):58–77

8. Falou ME, Bouzid M, Mouaddib AI et al (2010) A distributed
planning approach for Web services composition. In: Proceed-
ings of the IEEE international conference on Web services
(ICWS)

9. Gao J, Lv H (2012) Institution-governed cross-domain agent ser-
vice cooperation: a model for trusted and autonomic service coop-
eration. Appl Intell 37(2):223–238

10. Giacomo GD, Masellis RD, Patrizi F (2009) Composition of par-
tially observable services exporting their behaviour. In: Proceed-
ings of the international conference on automated planning and
scheduling (ICAPS)

11. Gutierrez-Garcia JO, Sim KM (2013) Agent-based cloud service
composition. Appl Intell 38(3):1–29

12. Hoffmann J, Bertoli P, Helmert M et al (2009) Message-based
Web service composition, integrity constraints, and planning un-
der uncertainty: a new connection. J Artif Intell Res 35(1):49–117

13. Hoffmann J, Bertoli P, Pistore M (2007) Web service composition
as planning, revisited: in between background theories and initial
state uncertainty. In: Proceedings of the national conference on
artificial intelligence (AAAI)

14. Hoffmann J, Brafman RI (2006) Conformant planning via heuris-
tic forward search: a new approach. Artif Intell 170(6–7):507–541

15. Hoffmann J, Nebel B (2001) The FF planning system: fast plan
generation through heuristic search. J Artif Intell Res 14(1):253–
302

16. Hwang SY, Lim EP, Lee CH et al (2008) Dynamic Web service
selection for reliable Web service composition. IEEE Trans Serv
Comput 1(2):104–116

17. Kang Z, Wang H, Hung P (2007) WS-CDL+: an extended WS-
CDL execution engine for Web service collaboration. In: Pro-
ceedings of the IEEE international conference on Web services
(ICWS)

18. Kautz H, Selman B (1999) Unifying SAT-based and graph-based
planning. In: Proceedings of the international joint conference on
artificial intelligence (IJCAI)

19. Kautz H, Selman B, Hoffmann J (2006) SatPlan: planning as sat-
isfiability. In: Abstracts of the international planning competition
(IPC)

20. Klusch M, Gerber A, Schmidt M (2005) Semantic Web service
composition planning with OWLS-XPlan. In: Proceedings of the
AAAI fall symposium on semantic Web and agents

21. Kuzu M, Cicekli NK (2012) Dynamic planning approach to auto-
mated Web service composition. Appl Intell 36(1):1–28

22. Meng S, Arbab F (2007) Web services choreography and orches-
tration in Reo and constraint automata. In: Proceedings of the 2007
ACM symposium on applied computing (SAC)

23. Oh SC, Lee D, Kumara SRT (2007) Web service planner (WSPR):
an effective and scalable Web service composition algorithm. Int
J Web Serv Res 4(1):1–22

24. Oh SC, Lee D, Kumara SRT (2008) Effective Web service com-
position in diverse and large-scale service networks. IEEE Trans
Serv Comput 1(1):15–32

25. Peltz C (2003) Web services orchestration and choreography.
Computer 36(10):46–52

26. Pistore M, Marconi A, Bertoli P et al (2005) Automated composi-
tion of Web services by planning at the knowledge level. In: Pro-
ceedings of the international joint conference on artificial intelli-
gence (IJCAI)

27. Pistore M, Traverso P, Bertoli P (2005) Automated composition of
Web services by planning in asynchronous domains. In: Proceed-
ings of the international conference on automated planning and
scheduling (ICAPS)

Towards automated choreography of Web services using planning in large scale service repositories 403

28. Qiu Z, Zhao X, Cai C, Yang H (2007) Towards the theoretical
foundation of choreography. In: Proceedings of the international
World Wide Web conference (WWW)

29. Sirin E, Parsia B, Wu D et al (2004) HTN planning for Web service
composition using SHOP2. J Web Semant 1(4):377–396

30. Yang H, Zhao X, Cai C, Qiu Z (2008) Model-checking of Web
services choreography. In: Proceedings of the IEEE international
symposium on service-oriented system engineering

31. Yazidi A, Granmo OC, Oommen BJ (2012) Service selection
in stochastic environments: a learning-automaton based solution.
Appl Intell 36(3):617–637

32. Zheng XR, Yan YH (2008) An efficient syntactic Web service
composition algorithm based on the planning graph model. In:
Proceedings of the IEEE international conference on Web services
(ICWS)

33. Zou G, Chen Y, Xu Y et al (2012) Towards automated chore-
ographing of Web services using planning. In: Proceedings of the
national conference on artificial intelligence (AAAI)

Guobing Zou is an assistant pro-
fessor in the School of Computer
Engineering and Science at Shang-
hai University, China. He received
a Ph.D. degree in computer sci-
ence from Tongji University, Shang-
hai, China, 2012. He has worked
as a visiting scholar in the Depart-
ment of Computer Science and En-
gineering at Washington University
in St. Louis from 2009 to 2011,
USA. His current research interests
mainly focus on Web service com-
position, service discovery and un-
certain planning. He has published

more than 20 papers on international journals and conferences, includ-
ing IEEE Transactions on Services Computing (TSC), AAAI, Soft
Computing and CCV. He served as a program committee member
on CIT-12, UUMA-12 and UUMA-13, and organization member on
DISD-13. He worked as a reviewer for Journal of Artificial Intelli-
gence Research (JAIR), IEEE Transactions on Services Computing
(TSC), KDD-09, AAAI-10, ICDM-10, IJCAI-11 and KDD-11.

Yanglan Gan is an assistant profes-
sor in the school of computer sci-
ence and technology at Donghua
University, Shanghai, China. She
received her Ph.D. degree in com-
puter science from Tongji Univer-
sity in 2012. Her research interests
include Bioinformatics, data min-
ing, Web services, and information
retrieval. She has published more
than 15 papers on international
journals and conferences, includ-
ing Bioinformatics, BMC Bioinfor-
matics, Knowledge-Based Systems,
Soft Computing and FSKD. She

served as a program committee member on APBC-12, ADMA-13 and
APBC-14. She worked as a reviewer for varieties of international jour-
nals and conferences, such as BMC Bioinformatics, Knowledge-Based
Systems, KDD-10, IJCAI-11, APBC-12, ADMA-13 and APBC-14.

Yixin Chen is an associate pro-
fessor of computer science at the
Washington University in St. Louis.
Hereceived thePh.D.degree in com-
puter science from the University
of Illinois at Urbana-Champaign in
2005. His research interests include
nonlinear optimization, constrained
search, planning and scheduling,
data mining, and data warehous-
ing. His work on planning has won
First-Class Prizes in the Interna-
tional Planning Competitions (2004
and 2006). He has won the Best Pa-
per Award in AAAI (2010) and IC-

TAI (2005), and Best Paper nomination at KDD (2009). He has re-
ceived an Early Career Principal Investigator Award from the Depart-
ment of Energy (2006) and a Microsoft Research New Faculty Fel-
lowship (2007). Dr. Chen is a senior member of IEEE. He serves as
an associate editor on the IEEE Transactions on Knowledge and Data
Engineering, and ACM Transactions on Intelligent Systems and Tech-
nology.

Bofeng Zhang is a full professor in
the School of Computer Engineer-
ing and Science at Shanghai Univer-
sity. He received his Ph.D. degree
from the Northwestern Polytechnic
University (NPU) in 1997, China.
He experienced a Postdoctoral Re-
search at Zhejiang University from
1997 to 1999, China. He worked as
a visiting professor at the University
of Aizu from 2006 to 2007, Japan.
His research interests include per-
sonalized service recommendation,
intelligent human-computer interac-
tion, and data mining. He has pub-

lished more than 120 papers on international journals and confer-
ences. He worked as the program chair for UUMA-11, UUMA-12 and
UUMA-13. He also served as a program committee member for lots of
international conferences.

Ruoyun Huang is currently a soft-
ware engineer at Google, working in
large scale intelligent systems. He
received the Ph.D degree in com-
puter science from Washington Uni-
versity in St. Louis in August, 2011.
His research interests include auto-
mated planning, large scale intelli-
gent systems, Web service composi-
tion, and probabilistic inference. He
has published more than 12 papers
on top journals and conferences, in-
cluding Journal of Artificial Intel-
ligence Research (JAIR-12), Arti-
ficial Intelligence (AIJ-09), AAAI

(2008, 2010, 2012) and ICAPS-09. He won AAAI’10 Outstanding Pa-
per Award. Before his Ph.D study, he also worked in Bearingpoint con-
sulting.

404 G. Zou et al.

You Xu is currently a Ph.D. candi-
date in the department of computer
science and engineering at Wash-
ington University in St. Louis. He
received the B.Sc. degree in math-
ematics from Nanjing University
in 2006, and the M.Sc. degree in
computer science from Washing-
ton University in St. Louis in 2009.
His research interests include large-
scale nonlinear optimization, con-
strained search, and partial order re-
duction for planning, and automated
planning in cloud computing. He
has published 12 papers, including

RTAS-12, RTAS-11, MobiHoc-10, RTSS-10, and IJCAI-09.

Yang Xiang is a professor in the de-
partment of computer science and
technology at Tongji University. He
received the Ph.D. degree in man-
agement science and engineering
from Harbin Institute of Technol-
ogy in 1999, China. His research
interests include data warehousing
and data mining, intelligent decision
support system, service computing
and e-commerce. He has published
more than 100 papers on the inter-
national journals and conferences,
including Expert Systems with Ap-
plications, Science China Informa-

tion Sciences, and Chinese Journal of Electronics. He has published 4
books on intelligent decision support system.

	Towards automated choreography of Web services using planning in large scale service repositories
	Abstract
	Introduction
	A running example
	Problem formulation
	Automated choreography by planning
	SCP translation
	Choreography domain translation
	Choreography problem translation

	Time complexity analysis of SCP translation
	Finding a solution plan
	Constructing choreography dependency graph
	Generating the master choreography plan
	Generating the distributed choreography plans

	System architecture and implementation
	System architecture
	Translating R to MAP

	Experimental evaluation
	Experimental setup and datasets
	SCP translation
	Response time of ﬁnding a solution plan
	Discussion

	Related work
	Conclusions and future work
	Acknowledgements
	References

