

 Int. J. Web Engineering and Technology, Vol. 9, No. 3, 2014 277

 Copyright © 2014 Inderscience Enterprises Ltd.

Towards optimal discovery of web services for
multiple QoS constraints and preferences

Guobing Zou
School of Computer Engineering and Science,
Shanghai University,
Shanghai 200444, China
Email: gbzou@shu.edu.cn

Yanglan Gan*
School of Computer Science and Technology,
Donghua University,
Shanghai 201620, China
Email: ylgan@dhu.edu.cn
*Corresponding author

Sen Niu, Mei Zhao and Bofeng Zhang
School of Computer Engineering and Science,
Shanghai University,
Shanghai 200444, China
Email: nschina@shu.edu.cn
Email: zhaomei@shu.edu.cn
Email: bfzhang@shu.edu.cn

Abstract: Web service discovery (WSD) is the task of matchmaking a set of
relevant web services. Quality of service (QoS) has recently been applied to
represent non-functional properties of web services. Therefore, when those
services provide the same functionality but have different QoS values, how to
effectively filter out the services that cannot satisfy the QoS constraints and
rank the remaining services is still an open research issue. In this paper, we
propose an integrated approach that allows a service requester to specify a
functionality request, multiple QoS constraints and their preferences, and our
method discovers a set of the most appropriate ranked services with QoS utility
aggregation. By conducting empirical experiments on simulated web services,
we validate the feasibility of our service discovery approach. The running
example shows that, our approach can find more appropriate services by the
satisfiability of multiple QoS constraints and the ranking of aggregated QoS.

Keywords: web services; quality of service; QoS; service discovery;
functionality matchmaking; QoS filtering.

Reference to this paper should be made as follows: Zou, G., Gan, Y., Niu, S.,
Zhao, M. and Zhang, B. (2014) ‘Towards optimal discovery of web services for
multiple QoS constraints and preferences’, Int. J. Web Engineering and
Technology, Vol. 9, No. 3, pp.277–299.

 278 G. Zou et al.

Biographical notes: Guobing Zou is an Assistant Professor in the School of
Computer Engineering and Science at Shanghai University, China. He received
his PhD in Computer Science from Tongji University, Shanghai, China, 2012.
He has worked as a Visiting Scholar in the Department of Computer Science
and Engineering at Washington University in St. Louis from 2009 to
2011, USA. His current research interests focus on web service composition,
service discovery and uncertain planning. He has published around 30 papers
on international journals and conferences, including IEEE Transactions on
Services Computing, Applied Intelligence, Knowledge-Based Systems, AAAI
and Soft Computing.

Yanglan Gan is an Assistant Professor in the School of Computer Science and
Technology at Donghua University, Shanghai, China. She received her
PhD in Computer Science from Tongji University in 2012. Her research
interests include bioinformatics, data mining, web services and
information retrieval. She has published more than 15 papers on international
journals and conferences, including Bioinformatics, BMC Bioinformatics,
IEEE/ACM Transactions on Computational Biology and Bioinformatics, and
Knowledge-Based Systems.

Sen Niu is currently a PhD student at Shanghai University from 2013. His
research interests include service composition, service selection, and uncertain
planning and optimisation.

Mei Zhao is currently a Master student at Shanghai University from 2013. Her
research interests include web service selection and uncertain QoS evaluation.

Bofeng Zhang is a Full Professor in the School of Computer Engineering
and Science at Shanghai University. He received his PhD degree from the
Northwestern Polytechnic University (NPU) in 1997, China. He did a
postdoctoral research at Zhejiang University from 1997 to 1999, China. He
worked as a Visiting Professor at the University of Aizu from 2006 to 2007,
Japan. His research interests include personalised service recommendation,
intelligent human-computer interaction and data mining. He has published
more than 120 papers on international journals and conferences.

1 Introduction

Web services are modular, self-descriptive, loosely coupled, and accessible distributed
software components. After encapsulating the functionality of an application and
providing accessible interfaces, they can be published over the internet in a web service
repository, discovered by software agents and composed as new value-added and
cross-organisational distributed applications. In most cases, web services can be
advertised, discovered and invoked through XML-based standards and protocols, such as
the standard web service description language (WSDL) that is used to describe the input
and output interface of a Web service for its functionality at the syntactical level, the
simple object access protocol (SOAP) applied to transfer and exchange messages among
services, and the universal description, discovery and integration (UDDI) that is used to
register and discover web services. Over the past few years, web services have been
becoming more and more important in many real applications, as it offers an extremely
versatile and powerful tool to dynamically create distributed applications on demand. Its

 Towards optimal discovery of web services for multiple QoS 279

applications increase rapidly in many areas, such as electronic commerce, weather
forecasting, credit check, enterprise application integration, and geographic information
system.

Along with the rapid increment of services available on the internet, a large number
of web services make the service-oriented architecture (SOA) much easier to be
implemented and facilitate the dynamic creation of distributed applications. Web service
discovery (WSD) aims at finding a set of the most relevant web services such that each of
them can satisfy a specified service request. Given a large number of web services,
however, it is still difficult to find satisfactory services that fulfil the desired
functionality. Furthermore, quality of service (QoS) as an important metric consists of a
group of non-functional properties, such as execution price, execution duration,
availability, probability of success, and reputation (Zeng et al., 2004). These QoS criteria
have been widely applied to represent non-functional features of a service. Therefore,
when those services provide the same functionality, they may have different QoS values,
the study on how to effectively filter out the services that cannot satisfy the QoS
constraints posed by a user and then rank the remaining services using their QoS values is
still an open research issue.

Although various service discovery problems have been intensively studied and
different approaches have been proposed in the past few years (Dong et al., 2004; Nayak,
2008; Elgazzar et al., 2010; Yu, 2011; Wu et al., 2012; Patel and Chaudhary, 2009; Xiao
et al., 2010; Hau et al., 2005; Atkinson et al., 2007; Plebani and Pernici, 2009; Meditskos
and Bassiliades, 2010; Dietze et al., 2009b; Amorim et al., 2011; Paliwal et al., 2012;
Al-Masri and Mahmoud, 2009, 2010; Lemos et al., 2012a), there are limitations to be
resolved and we still face several research challenges.

1 Most traditional approaches for service discovery mainly take functionality request
into account (Dong et al., 2004; Nayak, 2008; Elgazzar et al., 2010; Yu, 2011;
Wu et al., 2012), instead of considering the satisfiability checking of multiple QoS
constraints on desired services. As a result, although those services can satisfy
functionality request, some of them may violate QoS constraints desired by service
requesters. Moreover, without the computation of aggregated QoS of a service, we
cannot differentiate those services providing the same functionality. Thus, designing
an automatic service discovery approach that integrates QoS filtering and service
ranking into functionality matchmaking is desirable.

2 In terms of efficiency of conventional service discovery approaches (Nayak, 2008;
Yu, 2011; Wu et al., 2012; Xiao et al., 2010; Hau et al., 2005; Amorim et al., 2011;
Paliwal et al., 2012; Al-Masri and Mahmoud, 2010), they acquire inputs and outputs
of each service from a service repository when matching with a service request.
However, the traditional methods for service matchmaking need to parse
functionality interfaces of each service, which incurs expensive time cost when a
user submits a service request. Due to the complexity of dynamically parsing web
services, completing such service matchmaking can be a time-consuming task, such
that it is inappropriate for service discovery in a large-scale web service repository.

3 Semantic Web has been used as a promising approach for automated WSD (Paolucci
et al., 2002; Hau et al., 2005; Klusch et al., 2006; Atkinson et al., 2007; Plebani and
Pernici, 2009; Dietze et al., 2009a, 2009b; Meditskos and Bassiliades, 2010; Amorim
et al., 2011; Paliwal et al., 2012). Most of current approaches for semantic service

 280 G. Zou et al.

discovery need the support of semantic descriptions of web services through
ontology languages, such as OWL-S and WSDL-S. However, these kinds of
approaches encounter two challenges. First, the vast majority of already existing
services over the internet have been published using WSDL instead of semantic
tagged description. Thus, the translation from syntactic services to semantic
annotated services would be a difficult task for semantic service discovery. Second,
even though there exist Semantic Web services that can be available by manual
annotation and deployment for WSD, we still cannot ensure the precision of
semantic matchmaking between a syntactic functionality request and the inputs and
outputs of a service.

To handle above limitations of existing WSD approaches, we propose an integrated
approach that addresses two major issues related to automated service discovery,
including service registration persistence, and QoS filtering and service ranking. Due to
the lack of support from both the availability of Semantic Web services and domain
ontology on the internet, we still perform syntactic matchmaking instead of semantic
service matching. With this assumption, our proposed approach provides a service
requester to specify a functionality request, multiple QoS constraints and their
preferences on predefined QoS criteria, and our method discovers a set of the most
appropriate ranked services, each of which can ensure the high QoS by QoS utility
aggregation, while satisfying those specified functionality request.

In our proposed approach, the persistence registration of web services is performed
by parsing functionality interfaces of a service (i.e., inputs and outputs) and putting them
into a service database. By doing so, the matchmaking performance can be significantly
improved during service discovery. The reason is that we only need to acquire the
functionality interfaces and QoS information of web services from database once, instead
of parsing the inputs and outputs of a service from a service repository whenever a user
submits a service request. Moreover, for the QoS filtering and service ranking, we first
discover a set of services using traditional service functionality matchmaking. Then,
those functionally feasible services are checked against multiple QoS constraints to
further narrow the appropriate services, such that we can filter out those services that
cannot satisfy the QoS constraints. Finally, we apply QoS normalisation strategy to the
refined set of Web services and calculate the aggregated QoS on each of them by a
weighted sum of QoS values. As a consequence, depending on the comprehensive QoS,
we employ an off-the-shelf highly efficient sorting algorithm to rank those services and
respond to the service requester.

The proposed WSD approach has been developed and implemented as a prototype
system in Java. Our approach significantly extends the capability of prior-work by
integrating the checking of global satisfiability on QoS constraints and service ranking in
terms of aggregated QoS. By conducting empirical experiments on simulated web
services and their QoS information, we validate the feasibility of our approach. The
empirical results on running example show that, we can find more appropriate services in
terms of desired functional capabilities and multiple QoS constraints with preferences.

The rest of the paper is organised as follows. We review the related work on web
service discovery in Section 2. We formulate the problem of WSD considering QoS in
Section 3. We present our approach on QoS-based WSD (Q-WSD) in Section 4,
including the overall framework of service discovery approach, service functionality
matchmaking, QoS filtering and service selection, QoS normalisation, weight assignment

 Towards optimal discovery of web services for multiple QoS 281

scheme, and service ranking, respectively. Section 5 presents an empirical evaluation.
Finally, we conclude the paper and discuss our future work in Section 6.

2 Related work

We review existing works that are most relevant to the proposed approach. Based on
the categorisation of WSD (Rambold et al., 2009), we divide WSD into syntactically
clustering-based, context-aware, semantic-based, and QoS-aware approaches.

Clustering web services based on function similarity can greatly boost the accuracy
and efficiency of web services search engines to retrieve the most relevant services.
There are a number of approaches proposed in recent years for syntactic-based service
functionality clustering and discovery (Dong et al., 2004; Nayak, 2008; Elgazzar et al.,
2010; Yu, 2011; Wu et al., 2012; Vijayan and Balasundaram, 2013). Dong et al. (2004)
proposed a service search engine called Woogle which computes the similarity between
Web services by employing the structures of web services in WSDL. Taking service
request into consideration, Nayak (2008) applied collaborative filtering clustering to
recommend web services for a target user by search terms that similar users had used in
similar queries. Instead of clustering user queries, Elgazzar et al. (2010) proposed a
WSDL service clustering technique to bootstrap the discovery of web services. They
mine WSDL documents and cluster them into functionally similar web service groups.
Specifically, they selected five key features from WSDL descriptions as the features
(i.e., content, types, messages, ports, and name of the web service) and then the quality
threshold (QT) clustering algorithm was applied to cluster web services. Moreover, to
handle the limitations of conventional clustering techniques applied in WSDL, Yu (2011)
proposed a framework that applies non-negative matrix factorisation (NMF) to the
WSDL corpus for service community discovery. The NMF-based community discovery
is also augmented via semantic extensions of the WSDL descriptions outside the WSDL
corpus. NMF demonstrated its effectiveness in clustering high-dimensional sparse data.
For further improvement of the clustering performance of service discovery, Wu et al.
(2012) proposed a novel clustering algorithm that groups web services by utilising both
WSDL documents and tags. Particularly, they employed a hybrid web service tag
recommendation strategy WSTRec to attack the problems of uneven tag distribution and
noisy tags. In addition, other traditional clustering algorithms have been applied for
service discovery, such as Vijayan and Balasundaram (2013) where they explored the
resemblance among web services to generate clusters by K-means clustering algorithm
using WSDL document features.

Context awareness has increasingly been considered for improving the QoS discovery
results. It plays an important role in WSD. Context-aware service discovery mechanism
requires a formal language to represent context operations and conditions. Patel and
Chaudhary (2009) proposed a service discovery algorithm based on rule engine which
acquires the contextual information and makes query of user information much richer for
more precise service discovery. As context changes dynamically occur when developing
real web applications, Cubo et al. (2010) proposed a model based on transition systems
and extended with value passing, context information and conditions to control and
evaluate the execution of the protocols. Especially, while capturing the user context
information, the protocol compatibility is checked based on the deadlock-freeness.
Different from existing approaches which depend on context models to know the

 282 G. Zou et al.

relations among context types and values, Xiao et al. (2010) employed multiple
ontologies to automatically capture the relations among different context values. As a
result, they mine potentially desired services.

The descriptive capacity of WSDL services has limited the effectiveness of current
service discovery approaches. Some recent efforts have made to extend semantics of
WSDL files to improve the effectiveness of service discovery (Paolucci et al., 2002; Hau
et al., 2005; Klusch et al., 2006; Atkinson et al., 2007; Plebani and Pernici, 2009; Dietze
et al., 2009a, 2009b; Meditskos and Bassiliades, 2010; Amorim et al., 2011; Paliwal
et al., 2012). The semantic-based approaches adopt service description languages, such as
OWL-S, DAML-S, and WSMO, to describe semantic functionality of web services and
develop similarity-based matchmaking algorithms to retrieve desired services. At the
beginning of semantic WSD exploration, Paolucci et al. (2002) proposed a semantic
matching algorithm based on DAML-S and the matching degree between an advertised
service and a service request can be divided into one of the four results, including exact,
plug in, subsume, and fail. Based on this fundamental work, various semantic service
discovery algorithms have been proposed. Hau et al. (2005) proposed a metric for
measuring the similarity of semantic services annotated with OWL ontology, where
similarity between an annotated service and a request is calculated by defining the
intrinsic information value of a service description based on the ‘inferencibility’ of
each OWL Lite constructs. Klusch et al. (2006) presented a hybrid OWL-S service
matchmaker called OWLS-MX, which exploits means of both crisp logic-based and
IR-based similarity matching. Based on different kinds of semantic similarity
matchmaking (Ganesan et al., 2003), researchers paid more attention to the matching
algorithms (Atkinson et al., 2007; Plebani and Pernici, 2009; Meditskos and Bassiliades,
2010) by similarity calculation between advertised services and a request for WSD.

QoS-aware dynamic discovery of web services has been recently becoming a hot
research issue based on the service functionalities and non-functional properties.
Al-Masri and Mahmoud (2009) associated QoS with web services that provides clients
with ways to improve the discovery process, helps identify client goals when performing
queries. Furthermore, based on the idea in Al-Masri and Mahmoud (2009, 2010)
introduced a web service broker (WSB) that not only collects the web services
disseminated throughout the web, but also enables clients to articulate service queries
tailored to their needs. WSB is capable of ranking services according to QoS parameters.
Lemos et al. (2012a) extended service matching algorithms based on the process model
(PM) specification by making them sensitive to service requester preferences concerning
service quality. As a result, PM can be augmented to represent service functionality and
non-functional factors. Thus, the service discovery can been seen as a matching process
between the user query PM and a target PM where quality preferences are taken into
account at different stages. Borrowing the framework of Lemos et al. (2012a, 2012b)
implemented a flexible tool called S-MatchMaker, capable of coupling different
approaches for personalising service discovery based on structural and quality aspects.

During semantic service discovery, both the providers and requesters have to describe
the services in terms of ontological concepts to avoid semantic heterogeneity. The
requester may not be able to frame service request correctly because of strict semantic
rules to specify service functionality. Moreover, Xu et al. (2011) demonstrated that the
domain ontology for each area does not exist and the construction of domain ontology is
still difficult. As explained above, we mainly focus on automatically discovering
non-Semantic Web services using logic-based functionality matchmaking with QoS

 Towards optimal discovery of web services for multiple QoS 283

filtering and ranking. Unlike the most existing QoS-based service discovery, we parse the
functionalities of web services and their QoS values into a service database offline and
also provide a lot of techniques for QoS filtering and service ranking, including
satisfiability checking of multiple QoS constraints, the strategy of QoS normalisation,
QoS weight assignment scheme, and aggregated QoS calculation of services. We do not
need to read WSDL files when a user submits a service request, since their functionalities
and QoS can be efficiently retrieved from service database. Thus, our proposed approach
can provide the most appropriate web services from the view of functionality and high
quality with aggregated QoS.

3 Q-WSD formulation

This section focuses on the understanding of Q-WSD problem which is fed into
the service functionality matchmaking, QoS filtering and service ranking. They are
comprised of the procedures of dynamic discovery of web services.

Before the definition of QoS-based service discovery problem, we give preliminary
background by a set of formal definitions, and then clearly demonstrate what a service
discovery problem and its solution are.

Definition 3.1 (web service): A service s is defined as a three-tuple (I, O, Q), where
I = {I1, I2, ··· } is a set of input parameters, O = {O1, O2, ··· } is a set of output parameters,
and Q = {Q1, Q2, ··· } is a set of QoS values that represent the non-functional features of
s. We use s.I, s.O, and s.Q to denote I, O, and Q of s, respectively.

Each service plays a role that can perform a specified task. A web service repository is a
set of disjoint services. It is defined as follows.

Definition 3.2 (web service repository): A service repository S = {s1, s2, ··· } is a set of
web services. Where, each s ∈ S is a web service.

Given a service s = (I, O, Q), its multiple QoS values Q correspond to a set of QoS
criteria defined as below.

Definition 3.3 (QoS criteria set): A QoS property q represents a dimension of
non-functional criteria in a web service s. QoS property set, qos = {q1, q2,···,qn}, are a set
of QoS criteria. For ∀qi ∈ qos(1 ≤ i ≤ n), it corresponds to a QoS value Qi ∈ s.Q, where s
is a web service.

QoS criteria can be divided into two categories: positive and negative. Positive QoS
criteria denote better quality with higher values, while negative ones correspond to lower
quality with higher values.

Based on widely used QoS criteria (Zeng et al., 2004), we apply a QoS property set
qos = {q1, q2,···,qn} to model and specify the QoS values of each service s. More
specifically, we employ qos = {execution time, execution price, availability, probability
of success, reputation} as references of QoS criteria for service providers to offer QoS
values for a service. As mentioned above from the classification of QoS criteria,
execution time and execution price belong to negative QoS properties, while availability,
probability of success, and reputation are positive ones.

 284 G. Zou et al.

Definition 3.4 (service requester preferences): Given a set of QoS criteria qos =
{q1, q2,···,qn}, service requester preferences, denoted as W = {w1, w2,···,wn}, are a set of
corresponding QoS weights. For each qi (1 ≤ i ≤ n), a user (or an agent) can assign a QoS
weight wi (1 ≤ i ≤ n) to represent the preference degree on the criterion, while all the

weights must satisfy
1

1
n

ii
w

=
=∑ and 0 ≤ wi ≤ 1.

In addition to service requester preferences attached on a set of given QoS properties
qos = {q1, q2,···,qn}, a user poses multiple QoS constraints on each criterion to enhance
the satisfiability of non-functional features.

Definition 3.5 (QoS constraints): Given a set of QoS criteria qos = {q1, q2,···,qn},
C = {c1, c2,···,cn} is denoted as a set of QoS constraints, where each ci ∈ C is a constraint
on qi ∈ qos(1 ≤ i ≤ n).

Depending on the QoS features, for a positive QoS property qi ∈ qos(1 ≤ i ≤ n), we have
ci = (qi, ≥, vi) as a QoS constraint, where vi is the lower bound of qi. Symmetrically, for a
negative QoS property qj ∈ qos(1 ≤ j ≤ n), we have cj = (qj, ≤, vj) as a QoS constraint,
where vj is the upper bound of qj.

Definition 3.6 (service functionality request): A functionality request, denoted as
r = (Ir, Or), where 1 2{ , , }r r rI I I= is a set of input parameters provided by an end user as
initial conditions, and 1 2{ , , }r r rO O O= is a set of output parameters desirable to be
returned to the user.

Given a set of available disjoint services distributed in a web service repository, a
functionality request, a set of global QoS constraints and multiple service requester
preferences associated with corresponding QoS criteria, we define a Q-WSD problem as
below.

Definition 3.7 (Q-WSD): A QoS-based service discovery problem is defined as a
five-tuple, denoted as Q-WSD = (S, C, W, Ir, Or), where

1 S = {s1, s2,···} is a web service repository

2 C = {c1, c2,···,cn} is a set of global QoS constraints on the specified QoS criteria

3 W = {w1, w2,···,wn} corresponds to multiple service requester preferences on the QoS
criteria

4 Ir = 1 2{ , , }r rI I is an initially functional condition with a set of input parameters

5 Or = 1 2{ , , }r rO O is a goal specification with a set of desirable output parameters.

For a given Q-WSD = (S, C, W, Ir, Or), one of the feasible solution to the problem is
denoted as sf ∈ S, such that the functionality request r = (Ir, Or) can be totally satisfied
by sf.I and sf.O, respectively. Assume that a subset of web services 1 2{ , , , },f f ff

hS s s s=
Sf ⊆ S, are discovered as functionally feasible solutions to the given problem. After
further QoS filtering and selection on a set of QoS constraints C = {c1, c2,···,cn}, we
shrink the functionally feasible web services 1 2{ , , , }f f ff

hS s s s= to a smaller group

 Towards optimal discovery of web services for multiple QoS 285

of services 1 2{ , , , },q q qq
mS s s s= where m ≤ h and the QoS values of each service .q

is Q
(1 ≤ i ≤ m) can satisfy C = {c1, c2,···,cn}.

Based on the process of functionality matchmaking and QoS filtering, we finally rank
all of the services in Sq by their aggregated QoS, among which an optimal solution,
s* ∈ Sq, is not only functionally feasible, but also ranked as the best one with the highest
QoS. We elaborate how to generate solutions to a Q-WSD problem, and rank all of the
services with their comprehensive QoS values after functionality matchmaking and QoS
filtering in the subsequent sections.

4 QoS-based automatic service discovery

We first give the overall framework of QoS-aware WSD. Then, we present service
functionality matchmaking, which is followed by QoS filtering and selection, QoS
normalisation, QoS weight assignment scheme, and service ranking.

4.1 Framework of the Q-WSD approach

We develop a comprehensive approach to effectively solve Q-WSD problem. Figure 1
illustrates an overview of our approach. Apart from those components for performing
service discovery tasks, there are additional two service roles: service provider and
service requester. Service providers publish web services to a service repository, while
service requesters consume those published web services.

Our approach has six steps.

1 Service providers publish their services including both functionality and QoS
information.

2 Parse web services in the service repository and store their functionality and QoS
into a service database.

3 A service requester submits a discovery request which consists of a functionality
request, multiple QoS constraints, and their associated service requester preferences
on the specified QoS criteria.

4 Perform functionality logic service matchmaking to discover a set of functionally
feasible web services, each of which satisfies the functionality request.

5 Depending on the QoS constraints, we filter out those services that cannot fulfil the
QoS constraints and only remain the functionally feasible and QoS satisfiable
services.

6 Normalise the QoS values of each service that can satisfy both the functionality
request and the specified QoS constraints. Finally, we calculate the aggregated QoS
of each service and rank them by comprehensive QoS.

From the overview of the approach, we find that the QoS-based service discovery
includes two phases: service registration and service discovery. Given a service request,
we mainly focus on how to effectively find a set of ranked services by the satisfiability of
their functionality and QoS constraints. Thus, we omit the explanation of the service
registration process in this work and elaborate the service discovery.

 286 G. Zou et al.

Figure 1 Overview of the approach for QoS-based automatic service discovery (see online
version for colours)

4.2 Service functionality matchmaking

Given a set of available web services S = {s1, s2,···} and a service functionality request
r = (Ir, Or), the service functionality matchmaking is responsible for finding a subset
of services 1 2{ , , , }f f ff

hS s s s= from S, such that each of discovered service f f
is S∈

(1 ≤ i ≤ h) can satisfy the request r = (Ir, Or). That is, the input parameters f
is (1 ≤ i ≤ h)

can be provided by the input parameters Ir of request r. Conversely, the output parameters
Or of request r must be achieved from the output parameters of .f

is
The satisfiability relationship of input and output parameters between a functionally

feasible service f
is and a functionality request r = (Ir, Or) is derived as:

.f
ris I I⊆ (1)

.f
r iO s O⊆ (2)

Based on above relationship analysis, given a set of services S = {s1, s2,···} and a
functionality request r = (Ir, Or), Algorithm 1 shows the process of service functionality
matchmaking.

 Towards optimal discovery of web services for multiple QoS 287

Algorithm 1: Service Functionality Matchmaking
Input: a set of web services S = {s1, s2,···};

a functionality request r = (Ir, Or);

Output: functionally feasible services 1 2{ , , , };f f ff
hS s s s=

1 Sf ← Ø;

2 foreach si ∈ S do
3 included ← true;
4 foreach Ij ∈ si.I do
5 if Ij ∉ Ir then
6 included ← false; break;

7 if included then

8 foreach k
r rO O∈ do

9 if .k i
rO s O∉ then

10 included ← false; break;

11 if included then
12 Sf ← Sf ∪ {si};

13 return Sf;

During the service functionality matchmaking, Algorithm 1 loops each si ∈ S to check
out whether it is functionally satisfied by the given request (lines 2–12). For a service
si ∈ S, it first matches each input parameter Ij ∈ si.I with the inputs of request Ir, if all the
input parameters si.I are subsumed by Ir, the algorithm continues the validation for the
output parameters of si, otherwise si is excluded as one of the feasible candidate services
(lines 4–6). In the second phase, it validates each output parameter k

r rO O∈ in the
service request with the output parameters of service si.O. If all the outputs in Or can be
provided by the outputs of si (lines 7–10), the service si is added as a functionally feasible
service in Sf (lines 11–12).

After matching input and output parameters of each service with a given service
request, the algorithm returns a subset of feasible services 1 2{ , , , },f f ff

hS s s s= each of
which satisfies the equations (1) and (2).

For the computational complexity of service functionality matchmaking, let Q-WSD
= (S, C, W, Ir, Or) be a Q-WSD problem, where S = {s1, s2,···,sN} is a service repository
with N services, C = {c1, c2,···,cn} is a set of QoS constraints, W = {w1, w2,…,wn} is a set
of QoS weights, and 1 2{ , , }r r rI I I= is a set of input parameters provided as initial
conditions, and 1 2{ , , }r r rO O O= is a set of output parameters as desired goal
specifications. For each s ∈ S, we denote the number of input and output parameters
as | . |I

sP s I= and | . |,O
sP s O= respectively. Suppose that P = maxs∈S{ | s.I | + | s.O | } is

used to denote the maximum number of input and output parameters among all the
services in S. Here, a service request r has the same assumption on its input and output

 288 G. Zou et al.

parameters. In the phase of service functionality matchmaking, it costs the time to
compare the inputs and outputs between a request and each service in S, so we denote it
as

()
.| | | |

1 1 1 1

2 2 3 (2 3) 2 (3)
ki rs I OS S

i j k i

TF O O P O N P
= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟= + + = + = ∗ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ (3)

4.3 QoS filtering and service selection

After the service functionality matchmaking, a subset of functionally feasible services

1 2{ , , , }f f ff
hS s s s= can be found from a given service repository S. Each feasible

service in Sf provides the same functionality desired by a service requester without any
discrimination. However, apart from service functionality, one observation is that service
providers also offer their services with multiple non-functional QoS values. Therefore, it
is mandatory to further filter out web services from 1 2{ , , , }f f ff

hS s s s= in order to
ensure that all of the selected services can also satisfy multiple QoS constraints.

As mentioned in Section 3, five QoS criteria qos ={execution time, execution price,
availability, probability of success, reputation} are applied for service providers to
publish QoS values. Accordingly, we use s.Q ={qtime(s), qprice(s), qavail(s), qsucc(s), qrep(s)}
to denote the QoS values of a service s on each criterion. Here,

1 qtime(s) is the execution time of service s, which measures the expected duration
between the moment when a service request is sent and the moment when the result
is returned to a user.

2 qprice(s) refers to the execution cost of s, which service requesters have to pay for the
invocation of s.

3 qavail(s) is the QoS value of availability of s, which measures the accessibility of the
service in a specified time interval.

4 qsucc(s) represents the QoS value of the probability of success of s, which computes
the probability that s can be successfully executed within a given number of
invocations.

5 qrep(s) is the QoS value of reputation of s, which calculates its trustworthiness by the
average of a group of feedback from users.

Given QoS values of a service s.Q = {qtime(s), qprice(s), qavail(s), qsucc(s), qrep(s)}, we
compare them with five QoS constraints C = {c1, c2, c3, c4, c5} submitted by a user, where
c1 = (execution time, ≤, vtime), c2 = (execution price, ≤, vprice), c3 = (availability, ≥, vavail),
c4 = (probability of success, ≥, vsucc), and c5 = (reputation, ≥, vrep). The QoS filtering on a
service s is performed by five inequalities as below.

1() .time timeq s c v≤ (4)

2() .price priceq s c v≤ (5)

3() .avail availq s c v≥ (6)

 Towards optimal discovery of web services for multiple QoS 289

4() .succ succq s c v≥ (7)

5() .rep repq s c v≥ (8)

From the above five inequalities (4)–(8), we filter out those services from

1 2{ , , , }f f ff
hS s s s= where their QoS values cannot be satisfied by multiple QoS

constraints. Thus, a subset of services 1 2{ , , , }q q qq
mS s s s= are selected from Sf. Each

service q q
is S∈ (1 ≤ i ≤ m) not only represents a feasible solution to a functionality

request, but also satisfies all the QoS constraints.
For the time complexity, during the QoS filtering we check the QoS values of each

service to find out those services that can satisfy the QoS constraints, so the time spent on
the QoS filtering is TQ = O(h ∗ n), where h and n are the number of services discovered
by a functionality request and QoS criteria.

After the QoS filtering and service selection, for each service ,q q
is S∈ it both

satisfies functionality request and QoS constraints. Furthermore, all these satisfiable
services should be returned to a requester with service ranking by the calculation of their
aggregated QoS.

4.4 QoS normalisation and utility aggregation

Given a number of QoS criteria qos = {q1, q2,···,qn}, we model each service in

1 2{ , , , }q q qq
mS s s s= as a row with n QoS values in a QoS value matrix (QoSq)m∗n, which

can be represented as

11 12 1

21 22 2

1 2

n

nq

m m mn

v v v
v v v

QoS

v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (9)

where vij is the QoS value on the QoS criterion qj in the service ,q
is and we have

1 ≤ i ≤ m, 1 ≤ j ≤ n.
When calculating aggregated QoS of a service ,q q

is S∈ we adopted a weighted sum
of values on the five specified QoS criteria. Since they have different ranges, we cannot
avoid frequent case, where several high QoS values on some QoS criteria in a service
reduce the discrimination of those low QoS values on other several QoS criteria in the
same service. Thus, we need to normalise the QoS values to the range of [0, 1] before
calculating them in weighted QoS sum. Depending on the features of QoS criteria, QoS
normalisation strategy for a service is classified for positive QoS criteria and negative
ones.

For positive QoS criteria, such as availability, probability of success, and reputation,
they are denoted better quality by higher QoS values. Given a service ,q q

is S∈ for a
positive QoS criterion which is indexed in the jth column in QoSq, the normalised QoS
value of vij is calculated by the strategy as

 290 G. Zou et al.

min
, if max min

max min
1, otherwise

ij j
j j

j jij

v
v

−⎧ ≠⎪′ −= ⎨
⎪
⎩

 (10)

where vij is the QoS value on the QoS criterion qj in ,q
is maxj and minj are respectively

the maximum and minimum QoS values on the jth QoS criterion qj among all the m
services in QoSq. ijv′ is the normalised QoS value.

For negative QoS criteria, such as execution time and execution price, they are
denoted lower quality by higher values. Symmetrically, given a service ,q q

is S∈ for a
negative QoS criterion which is located in the jth column in QoSq, the normalised QoS
value of vij is calculated as

max
, if max min

max min
1, otherwise

j ij
j j

j jij

v
v

−⎧ ≠⎪′ −= ⎨
⎪
⎩

 (11)

After QoS normalisation, we transfer the original QoS matrix QoSq into a normalised one
,q

NQoS where each element ijv′ keeps in the range of [0, 1]. The normalised QoS matrix
is represented as

11 12 1

21 22 2

1 2

n

nq
N

m m mn

v v v
v v v

QoS

v v v

′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′⎢ ⎥=
⎢ ⎥
⎢ ⎥′ ′ ′⎣ ⎦

 (12)

After the conversion from QoSq to its normalised QoS matrix ,q
NQoS the aggregated QoS

of a service is calculated using a weighted sum of QoS values from a row in .q
NQoS

()
1

n
q

j iji
j

QoS s w v
=

′= ∗∑ (13)

where ()q
iQoS s is the aggregated QoS of a service ,q q

is S∈ wj is the service requester
preference weight on the QoS criterion qj, and ijv′ is the normalised QoS value of the

service q
is on the jth QoS criterion qj in .q

NQoS
For the time complexity of QoS normalisation, we take the most efficient algorithm to

find out the maximum and minimum QoS values for each criterion, i.e., we take the time
complexity O(3m / 2) for searching the maximum and minimum QoS values on each
criterion, where m is the number of services selected by QoS filtering. As a result, the
complexity of QoS normalisation is TN = O((3m / 2 + m) ∗ n) = O(5m ∗ n / 2).

When calculating the aggregated QoS for a web service, one of the QoS weight
assignment scheme on QoS criteria is given by an end user. In many cases, service
requesters cannot decide how much service requester preferences on QoS criteria they
should assign for service ranking. We discuss three QoS weight assignment scheme in the
following.

 Towards optimal discovery of web services for multiple QoS 291

4.5 QoS weight assignment

For ranking all the services in 1 2{ , , , },q q qq
mS s s s= the aggregated QoS of each service

must be calculated with the weight preferences on QoS criteria. To adapt to the QoS
weight assignment, three weight assignment scheme are as below for different application
scenarios, including objective weight assignment by the calculation of aggregated QoS of
services, subjective weight assignment by users, and comprehensive weight assignment.

4.5.1 Objective weight assignment

By using normalised QoS values in ,q
NQoS we derive the QoS weight for each QoS

criterion. For a criterion qj ∈ qos, we get a vector of QoS values 1 2(, , ,),j j mjv v v′ ′ ′ and
then calculate the ratio of each QoS value ijv′ in the vector as:

1

ij
ij m

kj
k

v
p

v
=

′
=

′∑
 (14)

where ijv′ is the QoS value on the ijth position in .q
NQoS m represents the total number of

services in Sq. By doing so, the information entropy of the jth QoS criterion is calculated
by each pij (1 ≤ i ≤ m) as follows.

1

1

(ln) ln
m

j ij ij
i

E m p p−

=

= − ∗ ∗∑ (15)

where Ej(1 ≤ j ≤ n) is the information entropy of the jth QoS criterion, which denotes
better with lower value. For the QoS weight assignment, we consider all of them on each
QoS criterion. That is, the objective QoS weight is assigned as follows.

1

1 j
j n

k
k

E
w

n E
=

−
=

−∑
 (16)

where n is the total number of QoS criteria. The QoS weight attached on a QoS criterion
holds a relative proportion by comparing its information entropy with the summation on
all the QoS criteria.

4.5.2 Subjective weight assignment

In comparison with objective assignment of QoS weights, the subjective weight
assignment refers to the direct specification on n QoS weights by a service requester. The
specified weights must satisfy

1

1
n

j
j

w
=

=∑ (17)

 292 G. Zou et al.

where each wj represents the service requester preference on the QoS criterion qj, and
0 ≤ wj ≤ 1.

4.5.3 Comprehensive weight assignment

In conjunction with objective and subjective QoS weight assignment, we combine them
as the comprehensive preference to assign a QoS weight on a QoS criterion. That is, we
assign the QoS weight wj by two QoS weights.

o s
j j jw w w= ∗ + ∗α β (18)

where o
jw and s

jw are respectively the QoS weights obtained by objective and subjective
assignment on the QoS criterion qj. Especially, α and β represent proportional values on
these two weights when merging them into a comprehensive QoS weight. For
proportional value α, we calculate it by

1 1

1 1 1 1

m n
o

ijj
i j

m n m n
o s

ij ijj j
i j i j

w v

w v w v

= =

= = = =

′∗

=
′ ′∗ + ∗

∑∑

∑∑ ∑∑
α (19)

The proportional value α is determined by the proportion between the sum of the
aggregated QoS of each service in Sq by objective weight assignment and the sum of the
aggregated QoS of each service in Sq by objective and subjective weight assignments.
Symmetrically, for the proportional valueβ, it is determined by

1 1

1 1 1 1

m n
s

ijj
i j

m n m n
o s

ij ijj j
i j i j

w v

w v w v

= =

= = = =

′∗

=
′ ′∗ + ∗

∑∑

∑∑ ∑∑
β (20)

With the two parameters α and β, for a QoS criterion qj, we comprehensively assign its
QoS weight wj by the given o

jw and .s
jw

Considering the worst case, we use the comprehensive QoS weight assignment
scheme as an example to analyse the time complexity. It includes the case of objective
QoS weight assignment, which costs the time of computing QoS value ratio, information
entropy, and the weight of each QoS criterion. Thus, it is denoted as WT ′ = O((m + m) ∗ n
+ m ∗ n + n) = O(3mn + n). As a result, the time complexity of comprehensive weight
assignment is TW = WT ′ + O(2 ∗ m ∗ n + 2 ∗ n) = O(5mn + 3n).

4.6 QoS-based service discovery algorithm

Based on above service functionality matchmaking, QoS filtering and selection, QoS
normalisation and weight assignment, we describe the overall QoS-based service
discovery approach in the Algorithm 2. The algorithm takes a Q-WSD = (S, C, W, Ir, Or)

 Towards optimal discovery of web services for multiple QoS 293

as input, and outputs a set of ranked services 1 2{ , , , },r r r r
mS s s s= each of which can

both satisfy service functionality request and multiple QoS constraints.

Algorithm 2: Q-WSD
Input: a QoS-based service discovery problem, Q-WSD=(S, C, W, Ir, Or);

Output: a set of ranked services 1 2{ , , , };r r r r
mS s s s=

1 Sf ← Ø; Sq ← Ø; Sr ← Ø;

2 QoSq ← Ø; ;q
NQoS ← Ø

3 Invoke Algorithm 1 (S, Ir, Or);

4 Match 1 2{ , , , };f f ff
hS s s s=

5 QoS filtering with C = {c1, c2,···,cn} on Sf;

6 Select 1 2{ , , , };q q qq
mS s s s=

7 Generate m ∗ n QoS matrix QoSq;
8 QoS normalization on QoSq;

9 Convert QoSq into ;q
NQoS

10 Specify a QoS weight assignment scheme;
11 Get W = {w1, w2,···,wn};

12 Calculate
1

() ;
nq

j iji
j

QoS s w v
=

′= ∗∑

13 Rank services in Sq by ();q
iQoS s

14 Get 1 2{ , , , };r r r r
mS s s s=

15 return Sr;

Algorithm 2 first invokes Algorithm 1 to find those services 1 2{ , , , },f f ff
hS s s s= each

of which can satisfy functionality request (lines 3–4). Then, we filter out those services
that violate the QoS constraints C = {c1, c2,···,cn} from Sf, thus a subset of services remain
and store in 1 2{ , , , }q q qq

mS s s s= where each of them can also satisfy the specified
multiple QoS constraints (lines 5–6). By using the selected services in Sq, the third step
generates an m ∗ n QoS matrix QoSq, and it is converted into a normalised one q

NQoS
by QoS normalisation strategy (lines 7–9). After that, with the designation of a
QoS weight assignment, we get n weight preferences W = {w1, w2,…,wn} on QoS
criteria (lines 10–11). Finally, we calculate aggregated QoS of each web service in

1 2{ , , , },q q qq
mS s s s= and rank them as a set of sorted services in a descending order

1 2{ , , , }r r r r
mS s s s= (lines 12–14).

For the calculation of aggregated QoS of each service, we take a weighted
sum of normalised QoS values with the assigned weights. So it is denoted as

1 1
(1) ().

m n
QoS i j

T O O m n
= =

= = ∗∑ ∑ To rank the selected services by QoS filtering, heap

sorting algorithm with priority queue is applied to rank services by their aggregated QoS,

 294 G. Zou et al.

so the complexity is TR = O(m ∗ log2m), where m is the number of services selected by
QoS filtering and service selection.

4.7 Analysis of computational complexity

Under the assumption of parameters that we have applied for previous analyses of time
complexity, the computational complexity of Q-WSD is determined by six parts: service
functionality matchmaking, QoS filtering, QoS normalisation, QoS weight assignment,
aggregated QoS calculation, and service ranking.

With the combination of all the time complexity analyses above, the total complexity
of the approach is T = TF + TQ + TN + TW + TQoS + TR = O(2N ∗ (P + 3) + h ∗ n + 5m ∗
n / 2 + 5m ∗ n + 3n + m ∗ n + mlog2m). Since in a large-scale service repository, we have
the inequalities: N >> P, N >> n, N > h, h > m, and m > n. As a result, the time
complexity is T = O(2P ∗ N + h ∗ n + 17m ∗ n / 2 + m ∗ log2m) = O(P ∗ N + h ∗ n + m ∗ n
+ m ∗ log2m) = O(P ∗ N + h ∗ n + m ∗ log2m).
Table 1 Input and output parameters of each web service s

Service s.I s.O

1 s1 {I1, I2, I3} {O1, O2, O5, O6}
2 s2 {I1, I4} {O2, O3, O4}
3 s3 {I1, I3, I5} {O1, O2, O3, O5}
4 s4 {I1, I3, I5, I8} {O2, O5, O7, O8, O9}
5 s5 {I1, I3} {O2, O5}
6 s6 {I2, I5, I8} {O3, O5, O6}
7 s7 {I3, I7, I9} {O7, O9}
8 s8 {I1, I3, I6, I7} {O2, O4, O5}
9 s9 {I1, I2, I3} {O2, O5}

Note: Column ‘s.I’ denotes the input parameters of s, and ‘s.O’ denotes the output
parameters of s.

From the complexity analysis, we find that the computational complexity of a Q-WSD
problem is dominated by the linear time of the total number of services in a service
repository, the number of functionally feasible services, and the time of ranking services.
Thus, for a large-scale service repository, the approach is almost a linear algorithm with
the number of services. Thus, it can be efficiently performed in a polynomial time.

5 Empirical evaluation

In this section, we present an initial simulated Q-WSD problem to validate the feasibility
of our approach. The empirical running example scenario includes service functionality
match-making, QoS filtering and service selection, QoS normalisation, QoS weight
assignment, and service ranking.

 Towards optimal discovery of web services for multiple QoS 295

5.1 Empirical Q-WSD problem

Given a Q-WSD problem Q-WSD = (S, C, W, Ir, Or), suppose that it has nine services,
S = {s1, s2,…,s9}, and each of service has a set of input and output parameters, as shown
in Table 1. For the QoS of a service, assume that its provider offers five QoS values by a
set of specified QoS criteria, as illustrated in Table 2. Suppose that a requester submits a
set of QoS constraints C = {(time, ≤, 35), (price, ≤, 28), (avail, ≥, 0.85), (success, ≥,
0.87), (reputation, ≥, 3.6)} on the five QoS criteria. Accordingly, the service requester
also specifies a set of preferences W = {0.1, 0.5, 0.1, 0.2, 0.1}, and submits a service
functionality request r = (Ir, Or) that includes two initial input parameters Ir = {I1, I3} and
two desired output parameters Or = {O2, O5}.

The Q-WSD problem described above will be taken into account throughout the
empirical evaluation. By doing so, we validate the feasibility of the approach for
QoS-based automatic discovery of web services.
Table 2 Multiple QoS values of each web service in Sf = {s1, s3, s4, s5, s8, s9}

Service Time Price Avail Success Reputation

1 s1 15 9 0.85 0.97 4.2
2 s3 20 16 0.79 0.89 3.6
3 s4 13 25 0.95 0.90 4.5
4 s5 9 34 0.88 0.86 3.7
5 s8 28 14 0.96 0.87 4.8
6 s9 32 7 0.80 0.93 3.9

Notes: For a web service, five QoS values are assigned on the specified QoS criteria.
Column ‘time’, ‘price’, ‘avail’, ‘success’, ‘reputation’ represent execution time,
execution price, availability, probability of success, and reputation.

5.2 Functionality matchmaking and QoS filtering

During the service functionality matchmaking, we consider the Q-WSD problem in
Section 5.1, where we only take its functionality request r = (Ir, Or) as an example. The
input and output parameters are Ir = {I1, I3} and Or = {O2, O5}, respectively. After service
functionality matchmaking, Algorithm 1 discovers six functionally feasible web services
Sf = {s1, s3, s4, s5, s8, s9}, each of which satisfies the functionality request r.

For the QoS filtering and service selection, we still take the specified multiple QoS
constraints that are shown in Section 5.1. There are five QoS constraints on the
predefined QoS criteria, C = {(time, ≤, 35), (price, ≤, 28), (avail, ≥, 0.85), (success, ≥,
0.87), (reputation, ≥, 3.6)}. After QoS filtering and service selection, we further filter out
those services that cannot satisfy the QoS constraints C from six functionally feasible
services Sf = {s1, s3, s4, s5, s8, s9}. By doing so, s5 does not satisfy C. Thus, we shrink Sf
and only remain a subset of QoS satisfiable services Sq = {s1, s3, s4, s8, s9}.

Note that throughout the empirical experiments, we select the parameters in terms of
the QoS values of the simulated services. In real-world WSD application scenarios,
however, the service requesters need to decide the setting of different parameters from
the view of their real requirements, including the preferences on QoS criteria and
multiple QoS constraints.

 296 G. Zou et al.

5.3 QoS normalisation and weight assignment

For the QoS normalisation, we reconsider the QoS-based service discovery problem
Q-WSD = (S, C, W, Ir, Or), as shown in Section 5.1. After service matchmaking, QoS
filtering and service selection, a subset of QoS satisfiable services Sq = {s1, s3, s4, s8, s9}
remain for QoS normalisation. So we set up an original QoS matrix and normalise their
QoS values. By using the QoS normalisation strategy in the equations (10) and (11), the
normalised QoS values of each service in Sq are shown in Table 3.

In the QoS weights assignment, we first use QoS weights W = {0.1, 0.5, 0.1, 0.2, 0.1}
specified in Section 5.1 as the subjective QoS assignment scheme. For the objective QoS
weight assignment, we calculate each QoS weight by the equations (14)–(16) based on
the normalised QoS matrix derived from Table 3. Finally, we combine the QoS weights
from objective and subjective assignment scheme, so that comprehensive QoS weights
can be calculated by using the equations (18)–(20). Table 4 shows QoS weights on five
QoS criteria amongst three weight assignment scheme.
Table 3 The normalised QoS values of each service in Sq

Service Time Price Avail Success Reputation

1 s1 0.895 0.889 0.353 1 0.50
2 s3 0.632 0.50 0 0.20 0
3 s4 1 0 0.941 0.30 0.750
4 s8 0.211 0.611 1 0 1
5 s9 0 1 0.059 0.60 0.250

Note: The original QoS values of the corresponding web service are shown in Table 2.

Table 4 The QoS weights on the specified QoS criteria by objective, subjective and
comprehensive QoS weight assignment scheme

Scheme Time Price Avail Success Reputation

Objective 0.1860 0.1423 0.2747 0.2167 0.1803
Subjective 0.1 0.5 0.1 0.2 0.1
Comprehensive 0.1414 0.3278 0.1841 0.208 0.1387

Notes: The QoS weights are specified by the service requesters in subjective assignment
way, while they are calculated in objective assignment way by the aggregated
QoS of services shown in Table 3. The QoS weights of comprehensive assignment
way are calculated together by subjective and objective assignment scheme.

5.4 Service ranking and empirical analysis

Based on QoS weights of three assignment scheme generated in Section 5.3, we calculate
the aggregated QoS of each service in Sq = {s1, s3, s4, s8, s9} discovered and filtered in
Section 5.2, by using the QoS aggregation utility function in equation (13). The
normalised QoS values of each service is shown in Table 3. The aggregated QoS of each
service is shown in Table 5. On the basis of these results on the aggregated QoS of web
services, we apply an efficient sorting algorithm (heap sort algorithm) to rank these
services.

 Towards optimal discovery of web services for multiple QoS 297

Table 5 The aggregated QoS of each service in Sq by three different QoS weight scheme

Service Objective Subjective Comprehensive

1 s1 0.6968 0.8193 0.7603
2 s3 0.2320 0.3532 0.2949
3 s4 0.6447 0.3291 0.4811
4 s8 0.5812 0.5266 0.5529
5 s9 0.3336 0.6509 0.4981

Note: The normalised QoS values of each service are shown in Table 3.

From the aggregated QoS of each service shown in Table 5, we rank the services from
the perspective of three weight assignment scheme. In terms of objective QoS weight
assignment, the services are ranked as {s1, s4, s8, s9, s3}. On the contrary, they are ranked
as {s1, s9, s8, s3, s4} in the subjective QoS weight assignment. Finally, in conjunction with
the above two schemes, these services are ranked as {s1, s8, s9, s4, s3}.

6 Conclusions and future work

Automatic and effective WSD can simplify the implementation of business processes in
SOA. This paper presents an integrated QoS-based approach for automatic discovery of
web services under multiple QoS constraints and service requester preferences, and
proposes a number of novel techniques, including functionality matchmaking, QoS
filtering, QoS normalisation, QoS weight assignment, and service ranking.

The method first performs the service persistence registration by parsing input and
output interfaces of web services. Then, the method discovers functionally feasible
services by service functionality matchmaking. A subset of those services are further
filtered out with QoS filtering and service selection by the satisfiability of multiple QoS
constraints. Subsequently, the method normalises the QoS values of all the QoS
satisfiable services by normalisation strategy, and calculates the aggregated QoS of each
service with utility function. Finally, the methods ranks and compares these services from
three provided QoS weight assignment scheme with an efficient off-the-shelf sorting
algorithm. We conduct empirical experiments on simulated web services. The
experimental results validate the feasibility of our Q-WSD approach.

Our future work includes three directions. The first one is the extension of our current
approach to support service functionality matchmaking in semantic level, which plans to
integrate semantic descriptions into input and output interfaces with existing domain
ontologies. The second one is to take the dynamics of multiple QoS values of services
into account in real applications and plans to analyse the nature of dynamically changing
QoS by uncertain evaluation strategies. The third direction we plan to investigate is to
conduct more experimental experiments to further validate the effectiveness and
efficiency of our approach in large-scale and real-world service repositories.

 298 G. Zou et al.

Acknowledgements

This work was supported by the National Natural Science Foundation of China
(61303096, 61300100), Shanghai Natural Science Foundation (13ZR1454600,
13ZR1451000), an Innovation Program of Shanghai Municipal Education Commission
(14YZ017), and a Specialized Research Fund for the Doctoral Program of Higher
Education (20133108120029).

We also would like to appreciate all the four anonymous reviewers for their insightful
suggestions and comments that can greatly improve the quality of our manuscript.

References
Al-Masri, E. and Mahmoud, Q.H. (2009) ‘Web service discovery and client goals’, Computer,

Vol. 42, No. 1, pp.104–107.
Al-Masri, E. and Mahmoud, Q.H. (2010) ‘WSB: a broker-centric framework for quality-driven web

service discovery’, Software: Practice and Experience, Vol. 40, No. 10, pp.917–941.
Amorim, R., Claro, D.B., Lopes, D., Albers, P. and Andrade, A. (2011) ‘Improving web service

discovery by a functional and structural approach’, Proceedings of the IEEE International
Conference on Web Services (ICWS).

Atkinson, C., Bostan, P., Hummel, O. and Stoll, D. (2007) ‘A practical approach to web service
discovery and retrieval’, Proceedings of the IEEE International Conference on Web Services
(ICWS).

Cubo, J., Canal, C. and Pimentel, E. (2010) ‘Context-aware service discovery and adaptation based
on semantic matchmaking’, Proceedings of the International Conference on Internet and Web
Applications and Services (ICIW).

Dietze, S., Benn, N., Domingue, J., Conconi, A. and Cattaneo, F. (2009a) ‘Two-fold service
matchmaking-applying ontology mapping for Semantic Web service discovery’, Proceedings
of the Asian Semantic Web Conference (ASWC).

Dietze, S., Gugliotta, A. and Domingue, J. (2009b) ‘Exploiting metrics for similarity-based
Semantic Web service discovery’, Proceedings of the IEEE International Conference on Web
Services (ICWS).

Dong, X., Halevy, A., Madhavan, J., Nemes, E. and Zhang, J. (2004) ‘Similarity search for web
services’, Proceedings of the International Conference on Very Large Data Bases (VLDB).

Elgazzar, K., Hassan, A.E. and Martin, P. (2010) ‘Clustering WSDL documents to bootstrap
the discovery of web services’, Proceedings of the IEEE International Conference on Web
Services (ICWS).

Ganesan, P., Garcia-Molina, H. and Widom, J. (2003) ‘Exploiting hierarchical domain structure to
compute similarity’, ACM Transactions on Information Systems (TOIS), Vol. 21, No. 1,
pp.64–93.

Hau, J., Lee, W. and Darlington, J. (2005) ‘A semantic similarity measure for Semantic Web
services’, Proceedings of the International World Wide Web Conference (WWW).

Klusch, M., Fries, B. and Sycara, K. (2006) ‘Automated Semantic Web service discovery with
OWLS-MX’, Proceedings of the International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS).

Lemos, F., Gater, A., Grigori, D. and Bouzeghoub, M. (2012a) ‘A framework for service discovery
based on structural similarity and quality satisfaction’, Proceedings of the International
Conference on Web Engineering (ICWE).

Lemos, F., Grigori, D. and Bouzeghoub, M. (2012b) ‘Adding non-functional preferences to service
discovery’, Proceedings of the International Conference on Web Engineering (ICWE).

 Towards optimal discovery of web services for multiple QoS 299

Meditskos, G. and Bassiliades, N. (2010) ‘Structural and role-oriented Web service discovery with
taxonomies in OWL-S’, IEEE Transactions on Knowledge and Data Engineering (TKDE),
Vol. 22, No. 2, pp.278–290.

Nayak, R. (2008) ‘Data mining in web services discovery and monitoring’, International Journal of
Web Services Research (IJWSR), Vol. 5, No. 1, pp.63–81.

Paliwal, A.V., Shafiq, B., Vaidya, J., Xiong, H. and Adam, N. (2012) ‘Semantics-based automated
service discovery’, IEEE Transactions on Services Computing (TSC), Vol. 5, No. 2,
pp.260–275.

Paolucci, M., Kawamura, T., Payne, T.R. and Sycara, K. (2002) ‘Semantic matching of web
services capabilities’, Proceedings of the International Semantic Web Conference (ISWC).

Patel, P. and Chaudhary, S. (2009) ‘Context aware semantic service discovery’, Proceedings of the
World Conference on Services (SERVICES).

Plebani, P. and Pernici, B. (2009) ‘Urbe: web service retrieval based on similarity evaluation’,
IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 21, No. 11,
pp.1629–1642.

Rambold, M., Kasinger, H., Lautenbacher, F. and Bauer, B. (2009) ‘Towards autonomic service
discovery – a survey and comparison’, Proceedings of the IEEE International Conference on
Services Computing (SCC).

Vijayan, A.S. and Balasundaram, S. (2013) ‘Effective web service discovery using K-means
clustering’, Proceedings of the International Conference on Distributed Computing and
Internet Technology (ICDCIT).

Wu, J., Chen, L., Zheng, Z., Lyu, M.R. and Wu, Z. (2012) ‘Clustering web services to facilitate
service discovery’, Knowledge and Information Systems (KAIS), pp.1–23.

Xiao, H., Zou, Y., Ng, J. and Nigul, L. (2010) ‘An approach for context-aware service discovery
and recommendation’, Proceedings of the IEEE International Conference on Web Services
(ICWS).

Xu, L., Xu, B., Chen, L. and Yang, H. (2011) ‘Web service discovery based on user requirements’,
Proceedings of the IEEE International Conference on High Performance Computing and
Communications (HPCC).

Yu, Q. (2011) ‘Place semantics into context: service community discovery from the WSDL
corpus’, Proceedings of the International Conference on Service Oriented Computing
(ICSOC).

Zeng, L., Benatallah, B., Ngu, A.H., Dumas, M., Kalagnanam, J. and Chang, H. (2004) ‘QoS-aware
middleware for web services composition’, IEEE Transactions on Software Engineering
(TSE), Vol. 30, No. 5, pp.311–327.

