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Abstract: Web service discovery (WSD) is the task of matchmaking a set of 
relevant web services. Quality of service (QoS) has recently been applied to 
represent non-functional properties of web services. Therefore, when those 
services provide the same functionality but have different QoS values, how to 
effectively filter out the services that cannot satisfy the QoS constraints and 
rank the remaining services is still an open research issue. In this paper, we 
propose an integrated approach that allows a service requester to specify a 
functionality request, multiple QoS constraints and their preferences, and our 
method discovers a set of the most appropriate ranked services with QoS utility 
aggregation. By conducting empirical experiments on simulated web services, 
we validate the feasibility of our service discovery approach. The running 
example shows that, our approach can find more appropriate services by the 
satisfiability of multiple QoS constraints and the ranking of aggregated QoS. 
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1 Introduction 

Web services are modular, self-descriptive, loosely coupled, and accessible distributed 
software components. After encapsulating the functionality of an application and 
providing accessible interfaces, they can be published over the internet in a web service 
repository, discovered by software agents and composed as new value-added and  
cross-organisational distributed applications. In most cases, web services can be 
advertised, discovered and invoked through XML-based standards and protocols, such as 
the standard web service description language (WSDL) that is used to describe the input 
and output interface of a Web service for its functionality at the syntactical level, the 
simple object access protocol (SOAP) applied to transfer and exchange messages among 
services, and the universal description, discovery and integration (UDDI) that is used to 
register and discover web services. Over the past few years, web services have been 
becoming more and more important in many real applications, as it offers an extremely 
versatile and powerful tool to dynamically create distributed applications on demand. Its 
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applications increase rapidly in many areas, such as electronic commerce, weather 
forecasting, credit check, enterprise application integration, and geographic information 
system. 

Along with the rapid increment of services available on the internet, a large number 
of web services make the service-oriented architecture (SOA) much easier to be 
implemented and facilitate the dynamic creation of distributed applications. Web service 
discovery (WSD) aims at finding a set of the most relevant web services such that each of 
them can satisfy a specified service request. Given a large number of web services, 
however, it is still difficult to find satisfactory services that fulfil the desired 
functionality. Furthermore, quality of service (QoS) as an important metric consists of a 
group of non-functional properties, such as execution price, execution duration, 
availability, probability of success, and reputation (Zeng et al., 2004). These QoS criteria 
have been widely applied to represent non-functional features of a service. Therefore, 
when those services provide the same functionality, they may have different QoS values, 
the study on how to effectively filter out the services that cannot satisfy the QoS 
constraints posed by a user and then rank the remaining services using their QoS values is 
still an open research issue. 

Although various service discovery problems have been intensively studied and 
different approaches have been proposed in the past few years (Dong et al., 2004; Nayak, 
2008; Elgazzar et al., 2010; Yu, 2011; Wu et al., 2012; Patel and Chaudhary, 2009; Xiao 
et al., 2010; Hau et al., 2005; Atkinson et al., 2007; Plebani and Pernici, 2009; Meditskos 
and Bassiliades, 2010; Dietze et al., 2009b; Amorim et al., 2011; Paliwal et al., 2012;  
Al-Masri and Mahmoud, 2009, 2010; Lemos et al., 2012a), there are limitations to be 
resolved and we still face several research challenges. 

1 Most traditional approaches for service discovery mainly take functionality request 
into account (Dong et al., 2004; Nayak, 2008; Elgazzar et al., 2010; Yu, 2011;  
Wu et al., 2012), instead of considering the satisfiability checking of multiple QoS 
constraints on desired services. As a result, although those services can satisfy 
functionality request, some of them may violate QoS constraints desired by service 
requesters. Moreover, without the computation of aggregated QoS of a service, we 
cannot differentiate those services providing the same functionality. Thus, designing 
an automatic service discovery approach that integrates QoS filtering and service 
ranking into functionality matchmaking is desirable. 

2 In terms of efficiency of conventional service discovery approaches (Nayak, 2008; 
Yu, 2011; Wu et al., 2012; Xiao et al., 2010; Hau et al., 2005; Amorim et al., 2011; 
Paliwal et al., 2012; Al-Masri and Mahmoud, 2010), they acquire inputs and outputs 
of each service from a service repository when matching with a service request. 
However, the traditional methods for service matchmaking need to parse 
functionality interfaces of each service, which incurs expensive time cost when a 
user submits a service request. Due to the complexity of dynamically parsing web 
services, completing such service matchmaking can be a time-consuming task, such 
that it is inappropriate for service discovery in a large-scale web service repository. 

3 Semantic Web has been used as a promising approach for automated WSD (Paolucci 
et al., 2002; Hau et al., 2005; Klusch et al., 2006; Atkinson et al., 2007; Plebani and 
Pernici, 2009; Dietze et al., 2009a, 2009b; Meditskos and Bassiliades, 2010; Amorim 
et al., 2011; Paliwal et al., 2012). Most of current approaches for semantic service 
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discovery need the support of semantic descriptions of web services through 
ontology languages, such as OWL-S and WSDL-S. However, these kinds of 
approaches encounter two challenges. First, the vast majority of already existing 
services over the internet have been published using WSDL instead of semantic 
tagged description. Thus, the translation from syntactic services to semantic 
annotated services would be a difficult task for semantic service discovery. Second, 
even though there exist Semantic Web services that can be available by manual 
annotation and deployment for WSD, we still cannot ensure the precision of 
semantic matchmaking between a syntactic functionality request and the inputs and 
outputs of a service. 

To handle above limitations of existing WSD approaches, we propose an integrated 
approach that addresses two major issues related to automated service discovery, 
including service registration persistence, and QoS filtering and service ranking. Due to 
the lack of support from both the availability of Semantic Web services and domain 
ontology on the internet, we still perform syntactic matchmaking instead of semantic 
service matching. With this assumption, our proposed approach provides a service 
requester to specify a functionality request, multiple QoS constraints and their 
preferences on predefined QoS criteria, and our method discovers a set of the most 
appropriate ranked services, each of which can ensure the high QoS by QoS utility 
aggregation, while satisfying those specified functionality request. 

In our proposed approach, the persistence registration of web services is performed 
by parsing functionality interfaces of a service (i.e., inputs and outputs) and putting them 
into a service database. By doing so, the matchmaking performance can be significantly 
improved during service discovery. The reason is that we only need to acquire the 
functionality interfaces and QoS information of web services from database once, instead 
of parsing the inputs and outputs of a service from a service repository whenever a user 
submits a service request. Moreover, for the QoS filtering and service ranking, we first 
discover a set of services using traditional service functionality matchmaking. Then, 
those functionally feasible services are checked against multiple QoS constraints to 
further narrow the appropriate services, such that we can filter out those services that 
cannot satisfy the QoS constraints. Finally, we apply QoS normalisation strategy to the 
refined set of Web services and calculate the aggregated QoS on each of them by a 
weighted sum of QoS values. As a consequence, depending on the comprehensive QoS, 
we employ an off-the-shelf highly efficient sorting algorithm to rank those services and 
respond to the service requester. 

The proposed WSD approach has been developed and implemented as a prototype 
system in Java. Our approach significantly extends the capability of prior-work by 
integrating the checking of global satisfiability on QoS constraints and service ranking in 
terms of aggregated QoS. By conducting empirical experiments on simulated web 
services and their QoS information, we validate the feasibility of our approach. The 
empirical results on running example show that, we can find more appropriate services in 
terms of desired functional capabilities and multiple QoS constraints with preferences. 

The rest of the paper is organised as follows. We review the related work on web 
service discovery in Section 2. We formulate the problem of WSD considering QoS in 
Section 3. We present our approach on QoS-based WSD (Q-WSD) in Section 4, 
including the overall framework of service discovery approach, service functionality 
matchmaking, QoS filtering and service selection, QoS normalisation, weight assignment 
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scheme, and service ranking, respectively. Section 5 presents an empirical evaluation. 
Finally, we conclude the paper and discuss our future work in Section 6. 

2 Related work 

We review existing works that are most relevant to the proposed approach. Based on  
the categorisation of WSD (Rambold et al., 2009), we divide WSD into syntactically 
clustering-based, context-aware, semantic-based, and QoS-aware approaches. 

Clustering web services based on function similarity can greatly boost the accuracy 
and efficiency of web services search engines to retrieve the most relevant services. 
There are a number of approaches proposed in recent years for syntactic-based service 
functionality clustering and discovery (Dong et al., 2004; Nayak, 2008; Elgazzar et al., 
2010; Yu, 2011; Wu et al., 2012; Vijayan and Balasundaram, 2013). Dong et al. (2004) 
proposed a service search engine called Woogle which computes the similarity between 
Web services by employing the structures of web services in WSDL. Taking service 
request into consideration, Nayak (2008) applied collaborative filtering clustering to 
recommend web services for a target user by search terms that similar users had used in 
similar queries. Instead of clustering user queries, Elgazzar et al. (2010) proposed a 
WSDL service clustering technique to bootstrap the discovery of web services. They 
mine WSDL documents and cluster them into functionally similar web service groups. 
Specifically, they selected five key features from WSDL descriptions as the features  
(i.e., content, types, messages, ports, and name of the web service) and then the quality 
threshold (QT) clustering algorithm was applied to cluster web services. Moreover, to 
handle the limitations of conventional clustering techniques applied in WSDL, Yu (2011) 
proposed a framework that applies non-negative matrix factorisation (NMF) to the 
WSDL corpus for service community discovery. The NMF-based community discovery 
is also augmented via semantic extensions of the WSDL descriptions outside the WSDL 
corpus. NMF demonstrated its effectiveness in clustering high-dimensional sparse data. 
For further improvement of the clustering performance of service discovery, Wu et al. 
(2012) proposed a novel clustering algorithm that groups web services by utilising both 
WSDL documents and tags. Particularly, they employed a hybrid web service tag 
recommendation strategy WSTRec to attack the problems of uneven tag distribution and 
noisy tags. In addition, other traditional clustering algorithms have been applied for 
service discovery, such as Vijayan and Balasundaram (2013) where they explored the 
resemblance among web services to generate clusters by K-means clustering algorithm 
using WSDL document features. 

Context awareness has increasingly been considered for improving the QoS discovery 
results. It plays an important role in WSD. Context-aware service discovery mechanism 
requires a formal language to represent context operations and conditions. Patel and 
Chaudhary (2009) proposed a service discovery algorithm based on rule engine which 
acquires the contextual information and makes query of user information much richer for 
more precise service discovery. As context changes dynamically occur when developing 
real web applications, Cubo et al. (2010) proposed a model based on transition systems 
and extended with value passing, context information and conditions to control and 
evaluate the execution of the protocols. Especially, while capturing the user context 
information, the protocol compatibility is checked based on the deadlock-freeness. 
Different from existing approaches which depend on context models to know the 
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relations among context types and values, Xiao et al. (2010) employed multiple 
ontologies to automatically capture the relations among different context values. As a 
result, they mine potentially desired services. 

The descriptive capacity of WSDL services has limited the effectiveness of current 
service discovery approaches. Some recent efforts have made to extend semantics of 
WSDL files to improve the effectiveness of service discovery (Paolucci et al., 2002; Hau 
et al., 2005; Klusch et al., 2006; Atkinson et al., 2007; Plebani and Pernici, 2009; Dietze 
et al., 2009a, 2009b; Meditskos and Bassiliades, 2010; Amorim et al., 2011; Paliwal  
et al., 2012). The semantic-based approaches adopt service description languages, such as 
OWL-S, DAML-S, and WSMO, to describe semantic functionality of web services and 
develop similarity-based matchmaking algorithms to retrieve desired services. At the 
beginning of semantic WSD exploration, Paolucci et al. (2002) proposed a semantic 
matching algorithm based on DAML-S and the matching degree between an advertised 
service and a service request can be divided into one of the four results, including exact, 
plug in, subsume, and fail. Based on this fundamental work, various semantic service 
discovery algorithms have been proposed. Hau et al. (2005) proposed a metric for 
measuring the similarity of semantic services annotated with OWL ontology, where 
similarity between an annotated service and a request is calculated by defining the 
intrinsic information value of a service description based on the ‘inferencibility’ of  
each OWL Lite constructs. Klusch et al. (2006) presented a hybrid OWL-S service 
matchmaker called OWLS-MX, which exploits means of both crisp logic-based and  
IR-based similarity matching. Based on different kinds of semantic similarity 
matchmaking (Ganesan et al., 2003), researchers paid more attention to the matching 
algorithms (Atkinson et al., 2007; Plebani and Pernici, 2009; Meditskos and Bassiliades, 
2010) by similarity calculation between advertised services and a request for WSD. 

QoS-aware dynamic discovery of web services has been recently becoming a hot 
research issue based on the service functionalities and non-functional properties.  
Al-Masri and Mahmoud (2009) associated QoS with web services that provides clients 
with ways to improve the discovery process, helps identify client goals when performing 
queries. Furthermore, based on the idea in Al-Masri and Mahmoud (2009, 2010) 
introduced a web service broker (WSB) that not only collects the web services 
disseminated throughout the web, but also enables clients to articulate service queries 
tailored to their needs. WSB is capable of ranking services according to QoS parameters. 
Lemos et al. (2012a) extended service matching algorithms based on the process model 
(PM) specification by making them sensitive to service requester preferences concerning 
service quality. As a result, PM can be augmented to represent service functionality and 
non-functional factors. Thus, the service discovery can been seen as a matching process 
between the user query PM and a target PM where quality preferences are taken into 
account at different stages. Borrowing the framework of Lemos et al. (2012a, 2012b) 
implemented a flexible tool called S-MatchMaker, capable of coupling different 
approaches for personalising service discovery based on structural and quality aspects. 

During semantic service discovery, both the providers and requesters have to describe 
the services in terms of ontological concepts to avoid semantic heterogeneity. The 
requester may not be able to frame service request correctly because of strict semantic 
rules to specify service functionality. Moreover, Xu et al. (2011) demonstrated that the 
domain ontology for each area does not exist and the construction of domain ontology is 
still difficult. As explained above, we mainly focus on automatically discovering  
non-Semantic Web services using logic-based functionality matchmaking with QoS 
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filtering and ranking. Unlike the most existing QoS-based service discovery, we parse the 
functionalities of web services and their QoS values into a service database offline and 
also provide a lot of techniques for QoS filtering and service ranking, including 
satisfiability checking of multiple QoS constraints, the strategy of QoS normalisation, 
QoS weight assignment scheme, and aggregated QoS calculation of services. We do not 
need to read WSDL files when a user submits a service request, since their functionalities 
and QoS can be efficiently retrieved from service database. Thus, our proposed approach 
can provide the most appropriate web services from the view of functionality and high 
quality with aggregated QoS. 

3 Q-WSD formulation 

This section focuses on the understanding of Q-WSD problem which is fed into  
the service functionality matchmaking, QoS filtering and service ranking. They are 
comprised of the procedures of dynamic discovery of web services. 

Before the definition of QoS-based service discovery problem, we give preliminary 
background by a set of formal definitions, and then clearly demonstrate what a service 
discovery problem and its solution are. 

Definition 3.1 (web service): A service s is defined as a three-tuple (I, O, Q), where  
I = {I1, I2, ··· } is a set of input parameters, O = {O1, O2, ··· } is a set of output parameters, 
and Q = {Q1, Q2, ··· } is a set of QoS values that represent the non-functional features of 
s. We use s.I, s.O, and s.Q to denote I, O, and Q of s, respectively. 

Each service plays a role that can perform a specified task. A web service repository is a 
set of disjoint services. It is defined as follows. 

Definition 3.2 (web service repository): A service repository S = {s1, s2, ··· } is a set of 
web services. Where, each s ∈ S is a web service. 

Given a service s = (I, O, Q), its multiple QoS values Q correspond to a set of QoS 
criteria defined as below. 

Definition 3.3 (QoS criteria set): A QoS property q represents a dimension of  
non-functional criteria in a web service s. QoS property set, qos = {q1, q2,···,qn}, are a set 
of QoS criteria. For ∀qi ∈ qos(1 ≤ i ≤ n), it corresponds to a QoS value Qi ∈ s.Q, where s 
is a web service. 

QoS criteria can be divided into two categories: positive and negative. Positive QoS 
criteria denote better quality with higher values, while negative ones correspond to lower 
quality with higher values. 

Based on widely used QoS criteria (Zeng et al., 2004), we apply a QoS property set 
qos = {q1, q2,···,qn} to model and specify the QoS values of each service s. More 
specifically, we employ qos = {execution time, execution price, availability, probability 
of success, reputation} as references of QoS criteria for service providers to offer QoS 
values for a service. As mentioned above from the classification of QoS criteria, 
execution time and execution price belong to negative QoS properties, while availability, 
probability of success, and reputation are positive ones. 
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Definition 3.4 (service requester preferences): Given a set of QoS criteria qos =  
{q1, q2,···,qn}, service requester preferences, denoted as W = {w1, w2,···,wn}, are a set of 
corresponding QoS weights. For each qi (1 ≤ i ≤ n), a user (or an agent) can assign a QoS 
weight wi (1 ≤ i ≤ n) to represent the preference degree on the criterion, while all the 

weights must satisfy 
1

1
n

ii
w

=
=∑  and 0 ≤ wi ≤ 1. 

In addition to service requester preferences attached on a set of given QoS properties  
qos = {q1, q2,···,qn}, a user poses multiple QoS constraints on each criterion to enhance 
the satisfiability of non-functional features. 

Definition 3.5 (QoS constraints): Given a set of QoS criteria qos = {q1, q2,···,qn},  
C = {c1, c2,···,cn} is denoted as a set of QoS constraints, where each ci ∈ C is a constraint 
on qi ∈ qos(1 ≤ i ≤ n). 

Depending on the QoS features, for a positive QoS property qi ∈ qos(1 ≤ i ≤ n), we have 
ci = (qi, ≥, vi) as a QoS constraint, where vi is the lower bound of qi. Symmetrically, for a 
negative QoS property qj ∈ qos(1 ≤ j ≤ n), we have cj = (qj, ≤, vj) as a QoS constraint, 
where vj is the upper bound of qj. 

Definition 3.6 (service functionality request): A functionality request, denoted as  
r = (Ir, Or), where 1 2{ , , }r r rI I I=  is a set of input parameters provided by an end user as 
initial conditions, and 1 2{ , , }r r rO O O=  is a set of output parameters desirable to be 
returned to the user. 

Given a set of available disjoint services distributed in a web service repository, a 
functionality request, a set of global QoS constraints and multiple service requester 
preferences associated with corresponding QoS criteria, we define a Q-WSD problem as 
below. 

Definition 3.7 (Q-WSD): A QoS-based service discovery problem is defined as a  
five-tuple, denoted as Q-WSD = (S, C, W, Ir, Or), where 

1 S = {s1, s2,···} is a web service repository 

2 C = {c1, c2,···,cn} is a set of global QoS constraints on the specified QoS criteria 

3 W = {w1, w2,···,wn} corresponds to multiple service requester preferences on the QoS 
criteria 

4 Ir = 1 2{ , , }r rI I  is an initially functional condition with a set of input parameters 

5 Or = 1 2{ , , }r rO O  is a goal specification with a set of desirable output parameters. 

For a given Q-WSD = (S, C, W, Ir, Or), one of the feasible solution to the problem is 
denoted as sf ∈ S, such that the functionality request r = (Ir, Or) can be totally satisfied  
by sf.I and sf.O, respectively. Assume that a subset of web services 1 2{ , , , },f f ff

hS s s s=  
Sf ⊆ S, are discovered as functionally feasible solutions to the given problem. After 
further QoS filtering and selection on a set of QoS constraints C = {c1, c2,···,cn}, we 
shrink the functionally feasible web services 1 2{ , , , }f f ff

hS s s s=  to a smaller group  
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of services 1 2{ , , , },q q qq
mS s s s=  where m ≤ h and the QoS values of each service .q

is Q  
(1 ≤ i ≤ m) can satisfy C = {c1, c2,···,cn}. 

Based on the process of functionality matchmaking and QoS filtering, we finally rank 
all of the services in Sq by their aggregated QoS, among which an optimal solution,  
s* ∈ Sq, is not only functionally feasible, but also ranked as the best one with the highest 
QoS. We elaborate how to generate solutions to a Q-WSD problem, and rank all of the 
services with their comprehensive QoS values after functionality matchmaking and QoS 
filtering in the subsequent sections. 

4 QoS-based automatic service discovery 

We first give the overall framework of QoS-aware WSD. Then, we present service 
functionality matchmaking, which is followed by QoS filtering and selection, QoS 
normalisation, QoS weight assignment scheme, and service ranking. 

4.1 Framework of the Q-WSD approach 

We develop a comprehensive approach to effectively solve Q-WSD problem. Figure 1 
illustrates an overview of our approach. Apart from those components for performing 
service discovery tasks, there are additional two service roles: service provider and 
service requester. Service providers publish web services to a service repository, while 
service requesters consume those published web services. 

Our approach has six steps. 

1 Service providers publish their services including both functionality and QoS 
information. 

2 Parse web services in the service repository and store their functionality and QoS 
into a service database. 

3 A service requester submits a discovery request which consists of a functionality 
request, multiple QoS constraints, and their associated service requester preferences 
on the specified QoS criteria. 

4 Perform functionality logic service matchmaking to discover a set of functionally 
feasible web services, each of which satisfies the functionality request. 

5 Depending on the QoS constraints, we filter out those services that cannot fulfil the 
QoS constraints and only remain the functionally feasible and QoS satisfiable 
services. 

6 Normalise the QoS values of each service that can satisfy both the functionality 
request and the specified QoS constraints. Finally, we calculate the aggregated QoS 
of each service and rank them by comprehensive QoS. 

From the overview of the approach, we find that the QoS-based service discovery 
includes two phases: service registration and service discovery. Given a service request, 
we mainly focus on how to effectively find a set of ranked services by the satisfiability of 
their functionality and QoS constraints. Thus, we omit the explanation of the service 
registration process in this work and elaborate the service discovery. 
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Figure 1 Overview of the approach for QoS-based automatic service discovery (see online 
version for colours) 

 

4.2 Service functionality matchmaking 

Given a set of available web services S = {s1, s2,···} and a service functionality request  
r = (Ir, Or), the service functionality matchmaking is responsible for finding a subset  
of services 1 2{ , , , }f f ff

hS s s s=  from S, such that each of discovered service f f
is S∈   

(1 ≤ i ≤ h) can satisfy the request r = (Ir, Or). That is, the input parameters f
is  (1 ≤ i ≤ h) 

can be provided by the input parameters Ir of request r. Conversely, the output parameters 
Or of request r must be achieved from the output parameters of .f

is  
The satisfiability relationship of input and output parameters between a functionally 

feasible service f
is  and a functionality request r = (Ir, Or) is derived as: 

.f
ris I I⊆  (1) 

.f
r iO s O⊆  (2) 

Based on above relationship analysis, given a set of services S = {s1, s2,···} and a 
functionality request r = (Ir, Or), Algorithm 1 shows the process of service functionality 
matchmaking. 

 
 



   

 

   

   
 

   

   

 

   

    Towards optimal discovery of web services for multiple QoS 287    
 

    
 
 

   

   
 

   

   

 

   

       
 

Algorithm 1: Service Functionality Matchmaking 
Input: a set of web services S = {s1, s2,···}; 

a functionality request r = (Ir, Or); 

Output: functionally feasible services 1 2{ , , , };f f ff
hS s s s=  

1 Sf ← Ø; 

2 foreach si ∈ S do 
3   included ← true; 
4   foreach Ij ∈ si.I do 
5     if Ij ∉ Ir then 
6      included ← false; break; 

7   if included then 

8     foreach k
r rO O∈  do 

9      if .k i
rO s O∉  then 

10        included ← false; break; 

11   if included then 
12     Sf ← Sf ∪ {si}; 

      
13 return Sf; 

During the service functionality matchmaking, Algorithm 1 loops each si ∈ S to check 
out whether it is functionally satisfied by the given request (lines 2–12). For a service  
si ∈ S, it first matches each input parameter Ij ∈ si.I with the inputs of request Ir, if all the 
input parameters si.I are subsumed by Ir, the algorithm continues the validation for the 
output parameters of si, otherwise si is excluded as one of the feasible candidate services 
(lines 4–6). In the second phase, it validates each output parameter k

r rO O∈  in the 
service request with the output parameters of service si.O. If all the outputs in Or can be 
provided by the outputs of si (lines 7–10), the service si is added as a functionally feasible 
service in Sf (lines 11–12). 

After matching input and output parameters of each service with a given service 
request, the algorithm returns a subset of feasible services 1 2{ , , , },f f ff

hS s s s=  each of 
which satisfies the equations (1) and (2). 

For the computational complexity of service functionality matchmaking, let Q-WSD 
= (S, C, W, Ir, Or) be a Q-WSD problem, where S = {s1, s2,···,sN} is a service repository 
with N services, C = {c1, c2,···,cn} is a set of QoS constraints, W = {w1, w2,…,wn} is a set 
of QoS weights, and 1 2{ , , }r r rI I I=  is a set of input parameters provided as initial 
conditions, and 1 2{ , , }r r rO O O=  is a set of output parameters as desired goal 
specifications. For each s ∈ S, we denote the number of input and output parameters  
as | . |I

sP s I=  and | . |,O
sP s O=  respectively. Suppose that P = maxs∈S{ | s.I | + | s.O | } is 

used to denote the maximum number of input and output parameters among all the 
services in S. Here, a service request r has the same assumption on its input and output 
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parameters. In the phase of service functionality matchmaking, it costs the time to 
compare the inputs and outputs between a request and each service in S, so we denote it 
as 

( )
.| | | |

1 1 1 1

2 2 3 (2 3) 2 ( 3)
ki rs I OS S

i j k i

TF O O P O N P
= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟= + + = + = ∗ +⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑  (3) 

4.3 QoS filtering and service selection 

After the service functionality matchmaking, a subset of functionally feasible services 

1 2{ , , , }f f ff
hS s s s=  can be found from a given service repository S. Each feasible 

service in Sf provides the same functionality desired by a service requester without any 
discrimination. However, apart from service functionality, one observation is that service 
providers also offer their services with multiple non-functional QoS values. Therefore, it 
is mandatory to further filter out web services from 1 2{ , , , }f f ff

hS s s s=  in order to 
ensure that all of the selected services can also satisfy multiple QoS constraints. 

As mentioned in Section 3, five QoS criteria qos ={execution time, execution price, 
availability, probability of success, reputation} are applied for service providers to 
publish QoS values. Accordingly, we use s.Q ={qtime(s), qprice(s), qavail(s), qsucc(s), qrep(s)} 
to denote the QoS values of a service s on each criterion. Here, 

1 qtime(s) is the execution time of service s, which measures the expected duration 
between the moment when a service request is sent and the moment when the result 
is returned to a user. 

2 qprice(s) refers to the execution cost of s, which service requesters have to pay for the 
invocation of s. 

3 qavail(s) is the QoS value of availability of s, which measures the accessibility of the 
service in a specified time interval. 

4 qsucc(s) represents the QoS value of the probability of success of s, which computes 
the probability that s can be successfully executed within a given number of 
invocations. 

5 qrep(s) is the QoS value of reputation of s, which calculates its trustworthiness by the 
average of a group of feedback from users. 

Given QoS values of a service s.Q = {qtime(s), qprice(s), qavail(s), qsucc(s), qrep(s)}, we 
compare them with five QoS constraints C = {c1, c2, c3, c4, c5} submitted by a user, where 
c1 = (execution time, ≤, vtime), c2 = (execution price, ≤, vprice), c3 = (availability, ≥, vavail),  
c4 = (probability of success, ≥, vsucc), and c5 = (reputation, ≥, vrep). The QoS filtering on a 
service s is performed by five inequalities as below. 

1( ) .time timeq s c v≤  (4) 

2( ) .price priceq s c v≤  (5) 

3( ) .avail availq s c v≥  (6) 
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4( ) .succ succq s c v≥  (7) 

5( ) .rep repq s c v≥  (8) 

From the above five inequalities (4)–(8), we filter out those services from 

1 2{ , , , }f f ff
hS s s s=  where their QoS values cannot be satisfied by multiple QoS 

constraints. Thus, a subset of services 1 2{ , , , }q q qq
mS s s s=  are selected from Sf. Each 

service q q
is S∈  (1 ≤ i ≤ m) not only represents a feasible solution to a functionality 

request, but also satisfies all the QoS constraints. 
For the time complexity, during the QoS filtering we check the QoS values of each 

service to find out those services that can satisfy the QoS constraints, so the time spent on 
the QoS filtering is TQ = O(h ∗ n), where h and n are the number of services discovered 
by a functionality request and QoS criteria. 

After the QoS filtering and service selection, for each service ,q q
is S∈  it both 

satisfies functionality request and QoS constraints. Furthermore, all these satisfiable 
services should be returned to a requester with service ranking by the calculation of their 
aggregated QoS. 

4.4 QoS normalisation and utility aggregation 

Given a number of QoS criteria qos = {q1, q2,···,qn}, we model each service in  

1 2{ , , , }q q qq
mS s s s=  as a row with n QoS values in a QoS value matrix (QoSq)m∗n, which 

can be represented as 

11 12 1

21 22 2

1 2

n

nq

m m mn

v v v
v v v

QoS

v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (9) 

where vij is the QoS value on the QoS criterion qj in the service ,q
is  and we have  

1 ≤ i ≤ m, 1 ≤ j ≤ n. 
When calculating aggregated QoS of a service ,q q

is S∈  we adopted a weighted sum 
of values on the five specified QoS criteria. Since they have different ranges, we cannot 
avoid frequent case, where several high QoS values on some QoS criteria in a service 
reduce the discrimination of those low QoS values on other several QoS criteria in the 
same service. Thus, we need to normalise the QoS values to the range of [0, 1] before 
calculating them in weighted QoS sum. Depending on the features of QoS criteria, QoS 
normalisation strategy for a service is classified for positive QoS criteria and negative 
ones. 

For positive QoS criteria, such as availability, probability of success, and reputation, 
they are denoted better quality by higher QoS values. Given a service ,q q

is S∈  for a 
positive QoS criterion which is indexed in the jth column in QoSq, the normalised QoS 
value of vij is calculated by the strategy as 
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min
, if max min

max min
1, otherwise

ij j
j j

j jij

v
v

−⎧ ≠⎪′ −= ⎨
⎪
⎩

 (10) 

where vij is the QoS value on the QoS criterion qj in ,q
is  maxj and minj are respectively 

the maximum and minimum QoS values on the jth QoS criterion qj among all the m 
services in QoSq. ijv′  is the normalised QoS value. 

For negative QoS criteria, such as execution time and execution price, they are 
denoted lower quality by higher values. Symmetrically, given a service ,q q

is S∈  for a 
negative QoS criterion which is located in the jth column in QoSq, the normalised QoS 
value of vij is calculated as 

max
, if max min

max min
1, otherwise

j ij
j j

j jij

v
v

−⎧ ≠⎪′ −= ⎨
⎪
⎩

 (11) 

After QoS normalisation, we transfer the original QoS matrix QoSq into a normalised one 
,q

NQoS  where each element ijv′  keeps in the range of [0, 1]. The normalised QoS matrix 
is represented as 

11 12 1

21 22 2

1 2

n

nq
N

m m mn

v v v
v v v

QoS

v v v

′ ′ ′⎡ ⎤
⎢ ⎥′ ′ ′⎢ ⎥=
⎢ ⎥
⎢ ⎥′ ′ ′⎣ ⎦

 (12) 

After the conversion from QoSq to its normalised QoS matrix ,q
NQoS  the aggregated QoS 

of a service is calculated using a weighted sum of QoS values from a row in .q
NQoS  

( )
1

n
q

j iji
j

QoS s w v
=

′= ∗∑   (13) 

where ( )q
iQoS s  is the aggregated QoS of a service ,q q

is S∈  wj is the service requester 
preference weight on the QoS criterion qj, and ijv′  is the normalised QoS value of the 

service q
is  on the jth QoS criterion qj in .q

NQoS  
For the time complexity of QoS normalisation, we take the most efficient algorithm to 

find out the maximum and minimum QoS values for each criterion, i.e., we take the time 
complexity O(3m / 2) for searching the maximum and minimum QoS values on each 
criterion, where m is the number of services selected by QoS filtering. As a result, the 
complexity of QoS normalisation is TN = O((3m / 2 + m) ∗ n) = O(5m ∗ n / 2). 

When calculating the aggregated QoS for a web service, one of the QoS weight 
assignment scheme on QoS criteria is given by an end user. In many cases, service 
requesters cannot decide how much service requester preferences on QoS criteria they 
should assign for service ranking. We discuss three QoS weight assignment scheme in the 
following. 
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4.5 QoS weight assignment 

For ranking all the services in 1 2{ , , , },q q qq
mS s s s=  the aggregated QoS of each service 

must be calculated with the weight preferences on QoS criteria. To adapt to the QoS 
weight assignment, three weight assignment scheme are as below for different application 
scenarios, including objective weight assignment by the calculation of aggregated QoS of 
services, subjective weight assignment by users, and comprehensive weight assignment. 

4.5.1 Objective weight assignment 

By using normalised QoS values in ,q
NQoS  we derive the QoS weight for each QoS 

criterion. For a criterion qj ∈ qos, we get a vector of QoS values 1 2( , , , ),j j mjv v v′ ′ ′  and 
then calculate the ratio of each QoS value ijv′  in the vector as: 

1

ij
ij m

kj
k

v
p

v
=

′
=

′∑
 (14) 

where ijv′  is the QoS value on the ijth position in .q
NQoS  m represents the total number of 

services in Sq. By doing so, the information entropy of the jth QoS criterion is calculated 
by each pij (1 ≤ i ≤ m) as follows. 

1

1

(ln ) ln
m

j ij ij
i

E m p p−

=

= − ∗ ∗∑  (15) 

where Ej(1 ≤ j ≤ n) is the information entropy of the jth QoS criterion, which denotes 
better with lower value. For the QoS weight assignment, we consider all of them on each 
QoS criterion. That is, the objective QoS weight is assigned as follows. 

1

1 j
j n

k
k

E
w

n E
=

−
=

−∑
 (16) 

where n is the total number of QoS criteria. The QoS weight attached on a QoS criterion 
holds a relative proportion by comparing its information entropy with the summation on 
all the QoS criteria. 

4.5.2 Subjective weight assignment 

In comparison with objective assignment of QoS weights, the subjective weight 
assignment refers to the direct specification on n QoS weights by a service requester. The 
specified weights must satisfy 

1

1
n

j
j

w
=

=∑  (17) 
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where each wj represents the service requester preference on the QoS criterion qj, and  
0 ≤ wj ≤ 1. 

4.5.3 Comprehensive weight assignment 

In conjunction with objective and subjective QoS weight assignment, we combine them 
as the comprehensive preference to assign a QoS weight on a QoS criterion. That is, we 
assign the QoS weight wj by two QoS weights. 

o s
j j jw w w= ∗ + ∗α β  (18) 

where o
jw  and s

jw  are respectively the QoS weights obtained by objective and subjective 
assignment on the QoS criterion qj. Especially, α and β represent proportional values on 
these two weights when merging them into a comprehensive QoS weight. For 
proportional value α, we calculate it by 

1 1

1 1 1 1

m n
o

ijj
i j

m n m n
o s

ij ijj j
i j i j

w v

w v w v

= =

= = = =

′∗

=
′ ′∗ + ∗

∑∑

∑∑ ∑∑
α  (19) 

The proportional value α is determined by the proportion between the sum of the 
aggregated QoS of each service in Sq by objective weight assignment and the sum of the 
aggregated QoS of each service in Sq by objective and subjective weight assignments. 
Symmetrically, for the proportional valueβ, it is determined by 

1 1

1 1 1 1

m n
s

ijj
i j

m n m n
o s

ij ijj j
i j i j

w v

w v w v

= =

= = = =

′∗

=
′ ′∗ + ∗

∑∑

∑∑ ∑∑
β  (20) 

With the two parameters α and β, for a QoS criterion qj, we comprehensively assign its 
QoS weight wj by the given o

jw  and .s
jw  

Considering the worst case, we use the comprehensive QoS weight assignment 
scheme as an example to analyse the time complexity. It includes the case of objective 
QoS weight assignment, which costs the time of computing QoS value ratio, information 
entropy, and the weight of each QoS criterion. Thus, it is denoted as WT ′  = O((m + m) ∗ n 
+ m ∗ n + n) = O(3mn + n). As a result, the time complexity of comprehensive weight 
assignment is TW = WT ′  + O(2 ∗ m ∗ n + 2 ∗ n) = O(5mn + 3n). 

4.6 QoS-based service discovery algorithm 

Based on above service functionality matchmaking, QoS filtering and selection, QoS 
normalisation and weight assignment, we describe the overall QoS-based service 
discovery approach in the Algorithm 2. The algorithm takes a Q-WSD = (S, C, W, Ir, Or) 
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as input, and outputs a set of ranked services 1 2{ , , , },r r r r
mS s s s=  each of which can 

both satisfy service functionality request and multiple QoS constraints. 

Algorithm 2: Q-WSD 
Input: a QoS-based service discovery problem, Q-WSD=(S, C, W, Ir, Or); 

Output: a set of ranked services 1 2{ , , , };r r r r
mS s s s=  

1 Sf ← Ø; Sq ← Ø; Sr ← Ø; 

2 QoSq ← Ø; ;q
NQoS ← Ø  

3 Invoke Algorithm 1 (S, Ir, Or); 

4 Match 1 2{ , , , };f f ff
hS s s s=  

5 QoS filtering with C = {c1, c2,···,cn} on Sf; 

6 Select 1 2{ , , , };q q qq
mS s s s=  

7 Generate m ∗ n QoS matrix QoSq; 
8 QoS normalization on QoSq; 

9 Convert QoSq into ;q
NQoS  

10 Specify a QoS weight assignment scheme; 
11 Get W = {w1, w2,···,wn}; 

12 Calculate 
1

( ) ;
nq

j iji
j

QoS s w v
=

′= ∗∑  

13 Rank services in Sq by ( );q
iQoS s  

14 Get 1 2{ , , , };r r r r
mS s s s=  

15 return Sr; 

Algorithm 2 first invokes Algorithm 1 to find those services 1 2{ , , , },f f ff
hS s s s=  each 

of which can satisfy functionality request (lines 3–4). Then, we filter out those services 
that violate the QoS constraints C = {c1, c2,···,cn} from Sf, thus a subset of services remain 
and store in 1 2{ , , , }q q qq

mS s s s=  where each of them can also satisfy the specified 
multiple QoS constraints (lines 5–6). By using the selected services in Sq, the third step 
generates an m ∗ n QoS matrix QoSq, and it is converted into a normalised one q

NQoS   
by QoS normalisation strategy (lines 7–9). After that, with the designation of a  
QoS weight assignment, we get n weight preferences W = {w1, w2,…,wn} on QoS  
criteria (lines 10–11). Finally, we calculate aggregated QoS of each web service in 

1 2{ , , , },q q qq
mS s s s=  and rank them as a set of sorted services in a descending order  

1 2{ , , , }r r r r
mS s s s=  (lines 12–14). 

For the calculation of aggregated QoS of each service, we take a weighted  
sum of normalised QoS values with the assigned weights. So it is denoted as 

1 1
( 1) ( ).

m n
QoS i j

T O O m n
= =

= = ∗∑ ∑  To rank the selected services by QoS filtering, heap 

sorting algorithm with priority queue is applied to rank services by their aggregated QoS, 
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so the complexity is TR = O(m ∗ log2m), where m is the number of services selected by 
QoS filtering and service selection. 

4.7 Analysis of computational complexity 

Under the assumption of parameters that we have applied for previous analyses of time 
complexity, the computational complexity of Q-WSD is determined by six parts: service 
functionality matchmaking, QoS filtering, QoS normalisation, QoS weight assignment, 
aggregated QoS calculation, and service ranking. 

With the combination of all the time complexity analyses above, the total complexity 
of the approach is T = TF + TQ + TN + TW + TQoS + TR = O(2N ∗ (P + 3) + h ∗ n + 5m ∗  
n / 2 + 5m ∗ n + 3n + m ∗ n + mlog2m). Since in a large-scale service repository, we have 
the inequalities: N >> P, N >> n, N > h, h > m, and m > n. As a result, the time 
complexity is T = O(2P ∗ N + h ∗ n + 17m ∗ n / 2 + m ∗ log2m) = O(P ∗ N + h ∗ n + m ∗ n 
+ m ∗ log2m) = O(P ∗ N + h ∗ n + m ∗ log2m). 
Table 1 Input and output parameters of each web service s 

# Service s.I s.O 

1 s1 {I1, I2, I3} {O1, O2, O5, O6} 
2 s2 {I1, I4} {O2, O3, O4} 
3 s3 {I1, I3, I5} {O1, O2, O3, O5} 
4 s4 {I1, I3, I5, I8} {O2, O5, O7, O8, O9} 
5 s5 {I1, I3} {O2, O5} 
6 s6 {I2, I5, I8} {O3, O5, O6} 
7 s7 {I3, I7, I9} {O7, O9} 
8 s8 {I1, I3, I6, I7} {O2, O4, O5} 
9 s9 {I1, I2, I3} {O2, O5} 

Note: Column ‘s.I’ denotes the input parameters of s, and ‘s.O’ denotes the output 
parameters of s. 

From the complexity analysis, we find that the computational complexity of a Q-WSD 
problem is dominated by the linear time of the total number of services in a service 
repository, the number of functionally feasible services, and the time of ranking services. 
Thus, for a large-scale service repository, the approach is almost a linear algorithm with 
the number of services. Thus, it can be efficiently performed in a polynomial time. 

5 Empirical evaluation 

In this section, we present an initial simulated Q-WSD problem to validate the feasibility 
of our approach. The empirical running example scenario includes service functionality 
match-making, QoS filtering and service selection, QoS normalisation, QoS weight 
assignment, and service ranking. 
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5.1 Empirical Q-WSD problem 

Given a Q-WSD problem Q-WSD = (S, C, W, Ir, Or), suppose that it has nine services,  
S = {s1, s2,…,s9}, and each of service has a set of input and output parameters, as shown 
in Table 1. For the QoS of a service, assume that its provider offers five QoS values by a 
set of specified QoS criteria, as illustrated in Table 2. Suppose that a requester submits a 
set of QoS constraints C = {(time, ≤, 35), (price, ≤, 28), (avail, ≥, 0.85), (success, ≥, 
0.87), (reputation, ≥, 3.6)} on the five QoS criteria. Accordingly, the service requester 
also specifies a set of preferences W = {0.1, 0.5, 0.1, 0.2, 0.1}, and submits a service 
functionality request r = (Ir, Or) that includes two initial input parameters Ir = {I1, I3} and 
two desired output parameters Or = {O2, O5}. 

The Q-WSD problem described above will be taken into account throughout the 
empirical evaluation. By doing so, we validate the feasibility of the approach for  
QoS-based automatic discovery of web services. 
Table 2 Multiple QoS values of each web service in Sf = {s1, s3, s4, s5, s8, s9} 

# Service Time Price Avail Success Reputation 

1 s1 15 9 0.85 0.97 4.2 
2 s3 20 16 0.79 0.89 3.6 
3 s4 13 25 0.95 0.90 4.5 
4 s5 9 34 0.88 0.86 3.7 
5 s8 28 14 0.96 0.87 4.8 
6 s9 32 7 0.80 0.93 3.9 

Notes: For a web service, five QoS values are assigned on the specified QoS criteria. 
Column ‘time’, ‘price’, ‘avail’, ‘success’, ‘reputation’ represent execution time, 
execution price, availability, probability of success, and reputation. 

5.2 Functionality matchmaking and QoS filtering 

During the service functionality matchmaking, we consider the Q-WSD problem in 
Section 5.1, where we only take its functionality request r = (Ir, Or) as an example. The 
input and output parameters are Ir = {I1, I3} and Or = {O2, O5}, respectively. After service 
functionality matchmaking, Algorithm 1 discovers six functionally feasible web services 
Sf = {s1, s3, s4, s5, s8, s9}, each of which satisfies the functionality request r. 

For the QoS filtering and service selection, we still take the specified multiple QoS 
constraints that are shown in Section 5.1. There are five QoS constraints on the 
predefined QoS criteria, C = {(time, ≤, 35), (price, ≤, 28), (avail, ≥, 0.85), (success, ≥, 
0.87), (reputation, ≥, 3.6)}. After QoS filtering and service selection, we further filter out 
those services that cannot satisfy the QoS constraints C from six functionally feasible 
services Sf = {s1, s3, s4, s5, s8, s9}. By doing so, s5 does not satisfy C. Thus, we shrink Sf 
and only remain a subset of QoS satisfiable services Sq = {s1, s3, s4, s8, s9}. 

Note that throughout the empirical experiments, we select the parameters in terms of 
the QoS values of the simulated services. In real-world WSD application scenarios, 
however, the service requesters need to decide the setting of different parameters from 
the view of their real requirements, including the preferences on QoS criteria and 
multiple QoS constraints. 
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5.3 QoS normalisation and weight assignment 

For the QoS normalisation, we reconsider the QoS-based service discovery problem  
Q-WSD = (S, C, W, Ir, Or), as shown in Section 5.1. After service matchmaking, QoS 
filtering and service selection, a subset of QoS satisfiable services Sq = {s1, s3, s4, s8, s9} 
remain for QoS normalisation. So we set up an original QoS matrix and normalise their 
QoS values. By using the QoS normalisation strategy in the equations (10) and (11), the 
normalised QoS values of each service in Sq are shown in Table 3. 

In the QoS weights assignment, we first use QoS weights W = {0.1, 0.5, 0.1, 0.2, 0.1} 
specified in Section 5.1 as the subjective QoS assignment scheme. For the objective QoS 
weight assignment, we calculate each QoS weight by the equations (14)–(16) based on 
the normalised QoS matrix derived from Table 3. Finally, we combine the QoS weights 
from objective and subjective assignment scheme, so that comprehensive QoS weights 
can be calculated by using the equations (18)–(20). Table 4 shows QoS weights on five 
QoS criteria amongst three weight assignment scheme. 
Table 3 The normalised QoS values of each service in Sq 

# Service Time Price Avail Success Reputation 

1 s1 0.895 0.889 0.353 1 0.50 
2 s3 0.632 0.50 0 0.20 0 
3 s4 1 0 0.941 0.30 0.750 
4 s8 0.211 0.611 1 0 1 
5 s9 0 1 0.059 0.60 0.250 

Note: The original QoS values of the corresponding web service are shown in Table 2. 

Table 4 The QoS weights on the specified QoS criteria by objective, subjective and 
comprehensive QoS weight assignment scheme 

Scheme Time Price Avail Success Reputation 

Objective 0.1860 0.1423 0.2747 0.2167 0.1803 
Subjective 0.1 0.5 0.1 0.2 0.1 
Comprehensive 0.1414 0.3278 0.1841 0.208 0.1387 

Notes: The QoS weights are specified by the service requesters in subjective assignment 
way, while they are calculated in objective assignment way by the aggregated 
QoS of services shown in Table 3. The QoS weights of comprehensive assignment 
way are calculated together by subjective and objective assignment scheme. 

5.4 Service ranking and empirical analysis 

Based on QoS weights of three assignment scheme generated in Section 5.3, we calculate 
the aggregated QoS of each service in Sq = {s1, s3, s4, s8, s9} discovered and filtered in 
Section 5.2, by using the QoS aggregation utility function in equation (13). The 
normalised QoS values of each service is shown in Table 3. The aggregated QoS of each 
service is shown in Table 5. On the basis of these results on the aggregated QoS of web 
services, we apply an efficient sorting algorithm (heap sort algorithm) to rank these 
services. 
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Table 5 The aggregated QoS of each service in Sq by three different QoS weight scheme 

# Service Objective Subjective Comprehensive 

1 s1 0.6968 0.8193 0.7603 
2 s3 0.2320 0.3532 0.2949 
3 s4 0.6447 0.3291 0.4811 
4 s8 0.5812 0.5266 0.5529 
5 s9 0.3336 0.6509 0.4981 

Note: The normalised QoS values of each service are shown in Table 3. 

From the aggregated QoS of each service shown in Table 5, we rank the services from 
the perspective of three weight assignment scheme. In terms of objective QoS weight 
assignment, the services are ranked as {s1, s4, s8, s9, s3}. On the contrary, they are ranked 
as {s1, s9, s8, s3, s4} in the subjective QoS weight assignment. Finally, in conjunction with 
the above two schemes, these services are ranked as {s1, s8, s9, s4, s3}. 

6 Conclusions and future work 

Automatic and effective WSD can simplify the implementation of business processes in 
SOA. This paper presents an integrated QoS-based approach for automatic discovery of 
web services under multiple QoS constraints and service requester preferences, and 
proposes a number of novel techniques, including functionality matchmaking, QoS 
filtering, QoS normalisation, QoS weight assignment, and service ranking. 

The method first performs the service persistence registration by parsing input and 
output interfaces of web services. Then, the method discovers functionally feasible 
services by service functionality matchmaking. A subset of those services are further 
filtered out with QoS filtering and service selection by the satisfiability of multiple QoS 
constraints. Subsequently, the method normalises the QoS values of all the QoS 
satisfiable services by normalisation strategy, and calculates the aggregated QoS of each 
service with utility function. Finally, the methods ranks and compares these services from 
three provided QoS weight assignment scheme with an efficient off-the-shelf sorting 
algorithm. We conduct empirical experiments on simulated web services. The 
experimental results validate the feasibility of our Q-WSD approach. 

Our future work includes three directions. The first one is the extension of our current 
approach to support service functionality matchmaking in semantic level, which plans to 
integrate semantic descriptions into input and output interfaces with existing domain 
ontologies. The second one is to take the dynamics of multiple QoS values of services 
into account in real applications and plans to analyse the nature of dynamically changing 
QoS by uncertain evaluation strategies. The third direction we plan to investigate is to 
conduct more experimental experiments to further validate the effectiveness and 
efficiency of our approach in large-scale and real-world service repositories. 
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