Knowledge-Based Systems 62 (2014) 98-112

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Dynamic composition of Web services using efficient planners
in large-scale service repository

@ CrossMark

Guobing Zou?, Yanglan Gan"*, Yixin Chen¢, Bofeng Zhang*

2School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
b School of Computer Science and Technology, Donghua University, Shanghai 201620, China
€ Department of Computer Science and Engineering, Washington University in St. Louis, MO 63130, USA

ARTICLE INFO ABSTRACT

Article history:

Received 7 July 2013

Received in revised form 16 February 2014
Accepted 1 March 2014

Available online 13 March 2014

Web services as independent software components are published by service providers over the Internet
and invoked by service requesters for their desired functionalities. In many cases, however, there is no
single service in a Web service repository satisfying a service request. So how to design an efficient
method for composing a chain of connected services has become an important research issue. Recently,
much research has been done into the search time reduction when finding a composite service. However,
most methods take a long time for traversing all of the Web services in a service repository, thus it makes
their response time significantly overrun a user’s waiting patience. This paper develops an efficient
approach for automatic composition of Web services using the state-of-the-art Artificial Intelligence
Automated planning (AI) planners, where a Web service composition (WSC) problem is regarded as a WSC planning problem.
Deterministic planner Unlike most traditional WSC methods that traverse a Web service repository many times, our approach
PDDL converts a Web service repository into a planning domain in PDDL just once, which will only be
regenerated when the Web service repository changes. This treatment substantially reduces the response
time and improves the scalability of solving WSC problems. We have implemented a prototype system
and conducted extensive experiments on large-scale Web service repositories. The experimental results
demonstrate that our proposed approach outperforms the state-of-the-art.

© 2014 Elsevier B.V. All rights reserved.

Keywords:
Web service
Service composition

1. Introduction

Web services are loosely coupled, self-descriptive, modular and
Web-accessible distributed software components. They can be
published in a Web service repository, discovered by software
agents and composed as new value-added Web services. In most
cases, the standard Web Service Description Language (WSDL!) is
used to describe the input and output interface of a Web service
for its functionality at the syntactical level. Meanwhile, Simple Ob-
ject Access Protocol (SOAP) is commonly used for transferring mes-
sages and communications among Web services. Recently, Web
service has become more and more important as it offers an extre-
mely versatile and powerful tool to dynamically create distributed
applications on demand. Its applications increase rapidly in many

* Corresponding author. Address: School of Computer Science and Technology,
2999 North Renmin Road, Shanghai, China. Tel.: +86 21 67792291; fax: +86 21
67792106.

E-mail addresses: gbzou@shu.edu.cn (G. Zou), ylgan@dhu.edu.cn (Y. Gan),
chen@cse.wustl.edu (Y. Chen), bfzhang@shu.edu.cn (B. Zhang).

1 http://www.w3.org/TR/wsdl.

http://dx.doi.org/10.1016/j.knosys.2014.03.002
0950-7051/© 2014 Elsevier B.V. All rights reserved.

fields, such as electronic commerce, enterprise application integra-
tion and geographic information systems.

Web service discovery (WSD) aims at finding a service to fulfill
a given service request. In many cases, however, no single service
in a Web service repository is capable of fulfilling a service request.
Therefore, it is mandatory to find a chain of services. They can be
functionally connected together as a new composite service to
satisfy the given service request. The problem of finding a group
of connected and composable services from a Web service reposi-
tory is called Web service composition (WSC). There are two ways
in solving a WSC problem. The first way is to build a workflow
business model [1] by domain experts with the help of GUI-based
modeling software. However, it is impractical and error-prone
when a Web service repository involves a large number of services.
The other is to automatically and efficiently compose existing
services from a large-scale Web service repository, which has
become an important research issue in Web service community.

To efficiently solve the problem of dynamic composition of Web
services, the main idea of this paperis to considera WSC problemas a
WSC planning problem, and then to use the state-of-the-art Al plan-
ners (e.g., Metric-FF [2] and SatPlan06 [3,4]) to find a composition

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.03.002&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.03.002
mailto:gbzou@shu.edu.cn
mailto:ylgan@dhu.edu.cn
mailto:chen@cse.wustl.edu
mailto:bfzhang@shu.edu.cn
http://www.w3.org/TR/wsdl
http://dx.doi.org/10.1016/j.knosys.2014.03.002
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112 99

plan for a composition request. More specifically, we first convert all
ofthe available services in a large-scale Web service repository into a
planning domain in Planning Domain Definition Language (PDDL?),
and then translate a composition request into a planning problem in
PDDL. Finally, a WSC planning problem (consisting of a PDDL domain
and a PDDL problem)is fed into an efficient Al planner, which can auto-
matically find a composition plan for the given composition request.

The most distinguishing characteristic of our method lies in its
shorter response time compared to other Al planning based WSC
methods [5-9]. From the perspective of applicability, the response
time is crucial to a WSC problem. It determines whether a WSC
method can quickly respond to a composition request within a
short period of time. Our proposed method only needs to traverse
a Web service repository once. By doing so, time spent on parsing
the Web service repository, which is a major part of the response
time, can be greatly saved in our method. On the contrary, despite
the fact that other Al planning based WSC methods, such as search
by heuristic function [7,8] and planning graph model [9], have
taken many efforts on reducing search time when finding a
composite service, they repeatedly traverse all services in a Web
service repository whenever a user submits a composition request.

The second characteristic of our proposed method is its compat-
ibility with the exploitation of multiple automatic planners for ser-
vice requesters. As it can be used with classical planners that
support PDDL, users can choose from available desired planners
according to their personalized requirements. For instance, Sat-
Plan06 planner [3,4] can be used to find a composition plan with
the minimum number of parallel steps, while Metric-FF planner
[2] can find a feasible composition plan more quickly. Conversely,
other Al planning based WSC methods, such as [5-9], take fixed
composition modes or search strategies that cannot be served for
complex user requirements in terms of their personalized
preferences.

The third characteristic of our WSC method is its powerful
applicability in real-world applications. Although most of recent
WSC approaches [10-14] have taken into account semantic Web
services described either in DAML-S®> or OWL-S,* both providers
and requesters have to describe the services in terms of ontological
concepts to avoid semantic heterogeneity. The requesters may have
difficulty in framing a service request correctly because of strict
semantic rules to specify service functionality. Moreover, the con-
struction of domain ontology for each area is also a challenging task
with the help of domain experts. Currently, the dynamic composi-
tion of Web services in semantic level is still hard in practice from
the view of the semantic annotation by service providers and com-
position request specification by service requesters. In comparison
with the existing planner-based semantic WSC methods, we investi-
gate WSC approach with Web services described in WSDL. It can be
technically supported at present by industrial community. However,
as more domain ontologies are being constructed and applied in
real-world applications, semantic composition of Web services has
emerged as a mainstream research direction in WSC community.

As described above, the innovation of this work can be summa-
rized in two aspects. First, we propose a novel approach that
translates a WSC problem to a WSC planning problem. It is solved
by advanced Al planning techniques that can effectively compose
Web services with shorter response time. Second, our WSC ap-
proach is based on standard PDDL specifications. It provides those
service requesters with the flexibility of utilizing multiple efficient
automated planners for personalized composition requests. How-
ever, Despite these advantages, the drawback of our approach is
its syntactical matchmaking between preconditions and effects

2 http://cs-www.cs.yale.edu/homes/dvm/.
3 http://www.daml.org/services/.
4 http://www.w3.org/Submission/OWL-S/.

among WSC actions. That is, we currently mainly focus on in purely
syntactic way rather than semantic composition of Web services.
Therefore, this kind of matching scheme could mismatch the
scenarios in real world applications, where WSC actions might be
highly matched in terms of semantic way by similarity computa-
tion with a given threshold. In this aspect, although the proposed
approach can solve large instances in a few seconds and outper-
form the existing WSC approach with faster response time and
better scalability, to improve the correctness of WSC, our future
work plans to consider semantic similarity calculation between
the effects and preconditions of two WSC actions using semantic
Web services posted on the website of ICEBE09,” where the input
and output parameters are described and annotated by the taxon-
omy of concepts in OWL.

The proposed WSC approach has been implemented as a proto-
type system. Extensive experiments have been conducted on 18
groups of large-scale Web service repositories involving 81,464
Web services. The experimental results demonstrate that our
proposed WSC approach using deterministic planning can
significantly outperform WSPR [7,8], which is one of the state-of-
the-art Web service composition methods.

The rest of this paper is organized as follows. Section 2 reviews
the related work of WSC. Section 3 presents a motivating example
in a real-world application. Section 4 formulates the WSC problem
and WSC planning problem. Section 5 presents our approach for
dynamic composition of Web services using planning. Section 5.1
illustrates its mapping mechanism in the translation process. Algo-
rithms in Sections 5.2 and 5.3 are designed to generate a planning
domain and a planning problem. Section 5.4 analyzes computa-
tional complexity of WSC planning problem translation. Section 5.5
finds a composition plan. Section 6 presents the WSC system archi-
tecture. Section 7 shows and analyzes extensive experimental re-
sults. Section 8 concludes the paper and discusses the future work.

2. Related work

According to the applied theories and techniques [15,16], WSC
methods can be classified as workflow-based methods, Al planning
based methods, graph theory based methods, and program synthe-
sis based methods. In addition, there are other approaches used to
address WSC problem, including algebraic process, m-calculus,
petri net, model checking and finite-state machine [17].

In the workflow based methods, they first build an abstract
business process model that consists of a set of tasks, control
and data flow [15]. Then, each task in the process model contains
a query clause used to search a real atomic service from a Web
service repository. The authors in [18] presented an aggregated
reliability (AR) model to measure the probability that the given
state will lead to successful execution in the context, where each
service may execute with some failure probability. Based on AR
computation, it can dynamically select Web services performed
on a composite service with more reliable execution. However,
an abstract business workflow for a predetermined composite
service needs to be modeled before dynamic service selection.
The authors in [1] proposed a scientific workflow based editor,
which allows scientists to query and compose distributed data
sources. As a result, this kind of WSC methods are based on a
workflow model and belong to a static composition approach.
Moreover, it needs to be manually deployed by domain experts
and GUI-based modeling softwares. Therefore, its dynamicity
and flexibility are obviously reduced so that it is inappropriate for
dynamic composition of Web services in a large-scale Web service
repository.

5 http://ws-challenge.georgetown.edu/wsc09/.

http://cs-www.cs.yale.edu/homes/dvm/
http://www.daml.org/services/
http://www.w3.org/Submission/OWL-S/
http://ws-challenge.georgetown.edu/wsc09/

100 G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112

<message name="LocateMapWeather Request">
<part name="MSISDN" type="xsd:string"/>
<part name="diameter" type="xsd:string"/>
</message>
<message name="LocateMapWeather Response">
<part name="map" type="xsd:string"/>
<part name="weather" type="xsd:string"/>
</message>

"

<message name="LocatePhone Request">
<part name="MSISDN" type="xsd:string"/>
</message>
<message name="LocatePhone Response">
<part name="state" type="xsd:string"/>
<part name="city" type="xsd:string"/>
<part name="districtNum" type="xsd:string"/>
</message>

(a) LocateMapWeather

(b) LocatePhone

<message name="GetPosition_Request">
<part name="city" type="xsd:string"/>
<part name="districtNum" type="xsd:string"/>
</message>
<message name="GetPosition Response">
<part name="longitude" type="xsd:string"/>
<part name="latitude" type="xsd:string"/>
</message>

<message name="GetLatLon_Request">
<part name="state" type="xsd:string"/>
<part name="city" type="xsd:string"/>
</message>
<message name="GetLatLon Response">
<part name="longitude" type="xsd:string"/>
<part name="latitude" type="xsd:string"/>
</message>

(c) GetPosition

(d) GetLatLon

<message name="GetMap_ Request'">
<part name="longitude" type="xsd:string"/>
<part name="latitude" type="xsd:string"/>
<part name="diameter" type="xsd:string"/>
</message>
<message name="GetMap Response">
—"

<part name=
</message>

_n

map" type="xsd:string"/>

<message name="GetWeather Request">
<part name="state" type="xsd:string"/>
<part name="city" type="xsd:string"/>

</message>

<message name="GetWeather Response">
<part name="weather" type="xsd:string"/>

</message>

(e) GetMap

(f) GetWeather

Fig. 1. The specifications of Web services map and weather in WSDL.

Many research efforts using Al planning techniques have been
reported in recent years. Web service planner (WSPR) [7,8] pre-
sented an Al planning based algorithm to implement automatic
composition of Web services. To find a feasible composition solu-
tion, it goes through two phases including forward search and
regression search. During its search for a composition solution, a
heuristic function is used to choose a service with the biggest con-
tribution to match a subgoal. However, WSPR needs to parse all of
the services in a service repository, whenever a composition re-
quest is submitted. Moreover, WSPR takes a locally optimal strat-
egy in its regression search, which does not guarantee an optimal
composition solution with the minimum number of Web services.

The authors in [9] proposed a service composition algorithm by
planning graph model. The process of finding a composition solu-
tion is the construction of a planning graph. Although it is a com-
plete algorithm (i.e., it guarantees to find a composition plan if one
exists), when a new planning graph level is expanded by a set of
applicable services, it just selects a subset of services in order, until
they cover all of the output parameters of the candidate services.
This possibly incurs redundant services in a feasible composition
solution. A generic framework for service composition was
presented in [14], where a service repository described by OWL-S
process model is translated into an Al planning domain in PDDL.
In addition, other WSC methods based on Al planning techniques
focused on certain aspects, such as a semantic type matching
algorithm considering those ambiguous state descriptions and
incomplete operator definitions [19], WSC problems with the
conformant form where services are partially controllable and
observable [20], and WSC problems by Al planning at the knowl-
edge level [21].

Besides the above planning based WSC methods, early Al
planners have been applied to address a WSC problem. SHOP2 is

a Hierarchical Task Network (HTN) planning system, which has
been exploited for automatic Web service composition in [13].
All of the available services are first translated into a SHOP2 do-
main, and then SHOP2 planner recursively divides a composition
task into many subtasks, until every subtask can be executed by
a single service. Consequently, a composition plan can be gener-
ated and returned to users. Since SHOP2 differs from classical Al
planners in its special expressions for planning domain and prob-
lem specifications, it is a WSC method with high dependency on
the fixed Al planner and predefined subtasks partition. Hoffmann
et al. [22,23] presented a planning-based method to formalize a
special case WSC problem called “Strictly Forward Effects”. It takes
integrity constraints (i.e., a set of axioms) as background theory
specified by ontology to describe domain constraints between
objects and their properties. Based on integrity constrains, a WSC
problem is converted into a conformant planning problem under
uncertainty with all of the possible initial states. An initial experi-
ment has been conducted by Conformant-FF planner [24].
However, it is extensively hard to express input and output param-
eters and domain relations by predicates defined in an ontology,
especially in a large-scale service repository. Furthermore, solving
a conformant planning problem is much harder than that of a
classical planning due to its belief updates.

In the graph theory based methods [5,6], Web services and their
relationships are represented by a relational graph. The process of
finding a composition solution is transformed to traverse relational
graph and seek an accessible path, which starts from initial inputs
and arrives at the desired outputs. In spite of facile implementation
of this kind of WSC methods, when there are a huge number of ser-
vices in a Web service repository, the relationships among services
become so complicated that it needs to spend expensive cost con-
structing a relational graph. Furthermore, search space reduction

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112 101

in a complex relational graph also becomes a difficult task to rap-
idly find a service composition path.

In the program synthesis based WSC methods, the main idea
[15] consists of three steps. Given a WSC problem, all of the Web
services are firstly translated into logical axioms, and a composi-
tion request gets translated into a logical expression. Then, a theo-
rem prover is taken to identify whether the logical expression can
be proven by the logical axioms. Finally, a composition solution can
be extracted from previous proof, or there is no solution to the
original WSC problem.

3. Motivating example

This work was motivated by real-world applications. Fig. 1
shows an example, which includes six Web services on map and
weather, and each of them is described in WSDL. The detailed spec-
ifications of these services are as follows.

(a) Given an MSISDN (one kind of telephone number) and a map
diameter, Web service LocateMapWeather (Fig. 1(a)) returns
a map with the specified diameter, as well as the current
weather forecast of the city with regard to the given
MSISDN.

(b) Given an MSISDN, Web service LocatePhone (Fig. 1(b))
responds to a state name, city name and district number of
the MSISDN.

(c) Given a city name and a district number, Web service
GetPosition (Fig. 1(c)) responds to a longitude and latitude
of the city.

(d) Given a state name and a city name, GetLatLon (Fig. 1(d)) also
returns a longitude and latitude of the city.

(e) Given a longitude, a latitude, and a map diameter, GetMap
(Fig. 1(e)) responds to a map with the diameter.

(f) Given a state and a city name, GetWeather (Fig. 1(f)) returns
the current weather forecast of the city.

Suppose that, a user provides an MSISDN (e.g., 314-629-2703)
and a diameter (e.g., 15 miles) as the initial conditions. The user
desires for a map of the city where the MSISDN locates with the gi-
ven diameter scope, and the current weather forecast of that city.
We consider two different Web service repositories as follows.

(1) Repository A: it consists of all of the six Web services:
A = {LocateMapWeather, LocatePhone, GetPosition, GetLatLon,
GetMap, GetWeather}.

(2) Repository B: it is comprised of the last five Web services:
B = {LocatePhone, GetPosition, GetLatLon, GetMap, GetWeather}.

In repository A, LocateMapWeather can be directly applied, be-
cause its required parameters, MSISDN (314-629-2703) and diam-
eter (15 miles), are given by the user. After its invocation and
execution, a map (of St. Louis city) with 15 miles diameter scope
and the current weather situation of St. Louis (e.g., 81 °F, partly
cloudy) are both returned to the user.

In repository B, however, there is no single Web service that can
fulfill the user’s service request directly. Nevertheless, we can still
find a chain of Web services composed together as a whole to sat-
isfy the service request. One feasible solution to the given service
request is as follows.

e In the first step, given an MSISDN (314-629-2703), we invoke
LocatePhone to get a state name (Missouri), city name (St. Louis)
and district number (314), respectively.

e In the second step, according to the returned state name
(Missouri) and city name (St. Louis), we invoke GetLatLon to

get the longitude (90°12') and latitude (38°37') of the city
(St. Louis).

e In the third step, we invoke GetMap using longitude (90°12"),
latitude (38°37') and the given diameter (15 miles). After the
invocation and execution, it returns a map (of St. Louis) with
the diameter scope.

o In the last step, after receiving the state name (Missouri) and city
name (St. Louis), we invoke service GetWeather to return the
current weather forecast (81 °F, partly cloudy) of the city
(St. Louis).

After the above four steps, the user gets a map (of St. Louis)
within a specified diameter scope (15 miles). Furthermore, the
current weather situation (81 °F, partly cloudy) is simultaneously
returned to the user.

In this example, we can easily find a composite service to satisfy
the service request by our manual deployment. However, as a large
number of services can be available in a Web service repository, it
tends to be a labor-intensive and difficult task. Thus, designing an
automatic and efficient WSC method is mandatory and desirable
for service requesters.

4. Problem formulation

In this section, we first formulate the WSC problem by defini-
tions, and then present the WSC planning problem from Al plan-
ning perspective.

4.1. WSC problem

Web services are commonly described by an abstract data mod-
el, which employs a set of operations as its function description, a
set of input and output messages as its request and response data,
and the binding information as its invocation protocol [25]. In
terms of a WSC problem, Web service is normally formalized by
a two tuple with input and output interface parameter set. It is
defined as below.

Definition 1 (Web Service®). A Web service, w, is a 2-tuple (I, 0),
where I = {I',I%,.. .} is an interface parameter set, and each I' € I is
an input parameter. O = {01,02, ...} is an interface parameter set,
and each O' € O is an output parameter. w.I and w.0 are referred as
Iand O in w.

All input parameters of a Web service have to be given before it
can be applied. After the invocation, all output parameters of a
Web service are returned directly to users or for further use. In
the motivating example, LocatePhone has an input interface param-
eter set LocatePhone.l = {MSISDN} and output interface parameter
set LocatePhone.O = {state,city,districtNum}.

Definition 2 (Web Service Repository). A service repository,
denoted as W = {wy,w,,...}, is a set of available Web services,
where each w; € W is a service.

In the second scenario of the motivating example, the Web
service repository B = {LocatePhone,GetPosition,GetLatLon,GetMap,
GetWeather}.

In order to find a feasible composite service from a Web service
repository, a service requester must provide a service composition
request.

6 Generally, a Web service consists of several operations, and each operation has an
input and output interface parameter set. In order to simplify problem description, we
denote one operation as one Web service here.

102 G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112

Definition 3 (Composition Request). A composition request, r, is a
2-tuple (rin, Tour), where ry, = {r}.r%....} is an interface parameter

set provided as the initial inputs, and oy = {1}, 72, ...} is a goal
specification with a set of desirable output parameters.

In the motivating example, The composition request of the user
can be divided into an initial interface parameter set ry, =
{MSISDN, diameter} and a goal specification r,, = {map, weather}.

During the process of finding a composite service, a WSC meth-
od must check whether a service can be applicable by given an
interface parameter set. Web services are composed by the follow-
ing matching strategy.

Definition 4 (Parameter Matching). Given an interface parameter
set R={r!,r?,...}, and a Web service w = (I,0). We define the
following notations on parameter matching.

(1) If wiICR, then all input parameters of w can be fully
matched by R, i.e., w can be applicable to R. It is denoted
as R > w.

(2) If R = w, then all the output parameters of w can be added to
R after its being invoked. It is denoted as R®w = Ruw.O.

After applying w to R,R®w merges to be a new interface
parameter set. In our example, we set R as initial interface param-
eter set {MSISDN, diameter}, and w as LocatePhone. Since the input
interface parameter set of LocatePhone is {MSISDN}, it can be fully
matched by the interface parameters R = {MSISDN, diameter} (i.e.,
w.I CR), so LocatePhone can be applicable to R. After the invocation
of LocatePhone, all of the output parameters of the service
{state, city, districtNum} are added to R, i.e., R & LocatePhone =
R U LocatePhone.O = {MSISDN, diameter} U {state, city, districtNum}
= {MSISDN, diameter, state, city, districtNum}.

By using parameter matching scheme, we continuously apply
services starting from an initial parameter set R and ending at a
specified parameter set Q. It is defined as composition satisfiability
below.

Definition 5 (Composition Satisfiability). Given two interface
parameter set R= {r!',r?,...}, Q = {q',q¢?%,...}, and a set of Web
services {wy,w,,...,wn}. If Rew;a---ew)) 2Q, 1<i, j<m,
then (w;® --®@wj)x(R—Q) is denoted as composition
satisfiability.

From Definition 5, we observe that after applying services
(wi,...,w;) in order, all of the parameters in Q can be jointly
matched by the parameters in R and all of the output parameters
of services involved. Obviously, along with the invocation of Web
services, the interface parameter set starting from R is monotoni-
cally growing, until it subsumes all of the parameters in Q. In the
motivating example, we set its initial interface parameter set as
R = {MSISDN, diameter}, and goal specification as Q = {map,
weather}. For service repository B, (R @ LocatePhone & GetLatLon &
GetMap & GetWeather) D Q, so these four services can be applied
from R to Q We have the composition satisfiability
(LocatePhone ® GetLatlon @ GetMap ® GetWeather) = (R — Q).

Definition 6 (WSC Problem). Given a composition request
r = (I'iy, Tour) and a service repository W, the WSC problem, denoted
as (rin,Tour, W), is to find an ordered sequence of services
0= (wWy,wy,...,w,) from W (OCW), such that (w;®@w,
® -+ ®@Wp) o< (I — Tour) 1S satisfiable.

Note that, given a WSC problem (ri,, rou, W), a composition
solution S to the WSC problem is an ordered sequence of services
from W. More specifically, we start from r;;,, and ends at an
interface parameter set that subsumes all of the desired parame-

Vin
Vout

Legend: w;: LocatePhone w,: GetPosition
ws: GetLatLon w,: GetWeather ws: GetMap

Fig. 2. The composable relationship between five services and composition request
in the WSC problem, where r;, = {MSISDN, diameter} and r,, = {map, weather}.
Web services in the dashed area represent the disjunction relationship by providing
the same output parameters {longitude, latitude}. Either w, or w; but not both of
them is prerequisite by ws.

ters in roy, after applying the services involved in S in order. In such
a case, more than one composition solution may exist for a WSC
problem. For instance, we consider the WSC problem in the
motivating example, its composable relationship between five
Web services and the service composition request is illustrated
in the following Fig. 2.

In Fig. 2, (W1 ®W;®@Ws®Ws) o< (Fin — Tour), (W1 ®@Ws®@Ws
@ Ws) o (Tip — Towr), and (W3 @ Wy @ W3 @ Wg @ Ws) (Tin — Tour)
are satisfiable. Therefore, three of the composition solutions to
the motivating example are O0; = (W, W, W5, W), O, = (W4,

W4, W3, Ws), and O3 = (Wq, Wa, W3, Wa, Ws), Tespectively.

4.2. WSC planning problem

Al planning is an important technique with a variety of practical
applications, such as controlling space vehicles, robots, and auto-
mated code synthesis and testing [26]. It starts from an initial state,
then seeks a sequence of actions, and finally sets up an executable
plan to arrive at a specified goal. So the motivation of Al planning is
very practical: the need for information processing tools that pro-
vide affordable and efficient planning resources [26]. In particular,
it can be applied to solve WSC problems. The reason is that they
share high similarity between the process of finding a sequence
of actions in an Al planning problem and composing a chain of
Web services in a WSC problem.

To apply Al planning technique to solve a WSC problem, we
formulate WSC planning problem as follows.

Definition 7 (WSC State). In a WSC problem setting, let L be a
first-order language with finite predicates P = {p;,p,,...} and
constant symbols X = {xq,xz,...}. AWSC state comprises of a set of
grounded propositions by P on X, denoted as s = {(p1,X1), (D3,X2),
..y (DnsXn)}, wherep; e P (1 <ig<n),andx;elUO (1 <i<n)ina
Web service w.

Predicates in L are defined to describe all possible planning
states in a WSC problem, and constant symbols are from the
parameters in a composition request, or input and output
parameters of Web services. In this paper, we predefine a predicate
(yes ?x), which denotes the availability of an interface parameter x
in a Web service or a composition request during WSC planning. In
the motivating example, the user provides two initial parameters
{MSISDN, diameter}. So the initial WSC state can be represented
as {(yes MSISDN), (yes diameter)}.

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112 103

All of the states in the powerset of P form a state space S, where
a transition from one WSC state to another can be occurred by
applying a WSC action.

Definition 8 (WSC Action). In a WSC problem setting, a WSC action
is a triple a = (name(a), precond(a), effects(a)), where name(a) is
action name; precond(a) is a set of propositions provided as its
preconditions; effects(a) is a set of positive propositions used as its
effects.

A WSC action corresponds to a Web service in our WSC prob-
lem, its preconditions and effects are respectively generated from
the input and output parameters of that service by using prede-
fined predicate (yes ?x). For example, LocatePhone, in the motivat-
ing example, is transformed into a WSC action with the same
name. Therefore, it can be formalized as a = (LocatePhone,
{(yes MSISDN)}, {(yes state), (yes city), (yes districtNum)}).

An action a can be applicable to a WSC state s, if and only if all of
the preconditions of a are subsumed in s, i.e., precond(a) C s. After
applying a to s, it is transmitted to a new WSC state by the follow-
ing WSC state transition system.

Definition 9 (WSC State Transition System). In a WSC problem
setting, let L be a first-order language. The WSC state transition
system in L is a triple X = (S,A,), where S = {s1,s,,...} is a state
space represented by a set of WSC states; A = {a;,ay,...} is a set of
WSC actions; y:SxA — S is a state transition function. For any
action a A, if it can be applicable to a state seS, then
7(s,a) = s U effects(a); otherwise y(s,a) is undefined.

In a WSC state transition system X, state space S has the closure
feature under state transition function 7. In other words, Vs € S, after
invoking an action a € A that can be applicable to s, y transmits s to a
new WSC state s’ = y(s, a) such that s’ € S. For example, initial state
So, in the motivating example, is expressed as {(yes MSISDN),
(ves diameter)}. Since s, subsumes all of the preconditions of Locate-
Phone, i.e., precond(LocatePhone) C s, it can be applicable to state s;.
After applying LocatePhone to state so, state transition function 7y
transmits s, to a new state s;, such that we have new state
S1 = Y(So, LocatePhone) = sy U effects(LocatePhone) = {(yes MSISDN),
(ves diameter), (yes state), (yes city), (yes districtNum)}.

Based on the above definitions, we define the WSC planning
problem as follows.

Definition 10 (WSC Planning Problem). In a WSC problem setting,
let L be a first-order language with a set of finite predicates P and
constant symbols X. The WSC planning problem, denoted as
(%,50,8), is to find an ordered sequence of WSC actions
T = (ay,0a,...,0q), such that g C y(so, 7).

(1) £ =(S,A,y) is a WSC state transition system.

(2) sp, the initial state, is an any WSC state in S.

(3) g, the goal specifications, involve a set of grounded proposi-
tions in P on X.

Given an ordered sequence of actions 7 = (a;,4a,,...,a;) and
starting from sp, we have)(So,) = Y(So,(a1,a2,...,0)) =
Y(Y(S0,a1), (Az,...,ak)) =P(...7(y(S0,a1),a2)...,a). That is, as we
orderly apply actions in 7, it leads to a series of state transitions
T = (So0,S1,---,Sk), such that we have s;=7(So,0a1),...,5% =
7(Sk_1,ax). Therefore, in a WSC planning problem, it starts from
an initial state sp, and ends at a WSC state s, after applying actions
a,,ay,...,a such that all of the goal specifications in g are sub-
sumed in s, i.e., g C s,. Particularly, although it is out of the scope
of this paper, the ordered sequence of actions 7 could be converted
into a composite service graph that may consist of multiple
invocation relationships among services such as the inclusion of
sequence, parallelism and choice.

From the above analysis, one observation is that there may exist
a subset of state space, Sg = {s|(s € S) A (g Cs)}, where each WSC
state can satisfy all of the goal specifications in g. Thus, Vs € S, it
contains all of the propositions in g. As a consequence, there are
possibly multiple plans to a WSC planning problem. A composition
plan is defined as follows.

Definition 11 (Composition Plan). In a WSC problem setting, let
(X,50,g) be a WSC planning problem. A composition plan,
T = (ai,...,q), is an ordered sequence of actions, such that
g2C (S0,).

From the above definition, a composition plan 7= must be a com-
position solution to its corresponding WSC problem, because an
action uniquely maps to a Web service. Furthermore, in order to re-
duce communication cost during the execution of Web services, it
is desired to find an optimal composition solution. There could be
many optimization goals, e.g. depending on the cost of executing a
service or quality aspects. In our problem setting, a minimum com-
position plan, 7t*, is an ordered sequence of actions with as the
least services involved as possible. Accordingly, a composition
solution corresponding to 7* is also an optimal one to an original
WSC problem, with the minimum number of Web services. For
example, O = (wy,ws, W, Ws) is an optimal composition solution
in Fig. 2. However, O’ = (wy, Wy, w3, Ws, W,) is a feasible composi-
tion solution instead of an optimal one, because w, and ws; can
both provide the same output parameters so that one of them is
redundant within the composition solution O'.

Since a WSC planning problem is a classical Al planning problem,
it can be represented by the classical description of Al planning. In
classical planning, an Al planning problem can be divided into two
parts: a planning domain and a planning problem, where planning
domain denotes action specifications and planning problem in-
volves initial conditions and goals. To generate a WSC planning
problem (X, s, g), given a WSC problem (ri,, roue, W), we translate
its Web service repository W into a planning domain, and composi-
tion request (i, Toy) into a planning problem. The procedure of
generating a WSC planning problem is elaborated in Section 5.

5. Automatic composition of Web services using planning

To solve a WSC problem, composing a chain of Web services can
be converted into finding a sequence of actions in a WSC planning
task. There are two steps for dynamic composition of Web services
using automated planning technique. The first step is to take a WSC
problem (7, Tour, W) as input, and translate it into a WSC planning
problem. The second step is to apply the state-of-the-art auto-
mated planners in order to find a composition plan.

In the first step, we focus on the WSC planning problem
translation. A service repository and a composition request are
converted into a planning domain and a planning problem, respec-
tively. Fig. 3 illustrates the translation process from a WSC problem
to a WSC planning problem.

Domain translation
algorithm !
|
|
i \ WSC planning
i / problem
|)
i
| |
|
| |

Service
repository

Composition Problem translation -
request 1 algorithm — !
|
S, 3 i |
|
WSC problem i Planning problcm}

Fig. 3. Translation from a WSC problem to a WSC planning problem.

104

Given a WSC problem (ry, Tour, W), the translation starts from
the Web service repository W and the composition request
(T'in, Toue)- Then, the domain translation algorithm takes charge of
parsing all of the services in W into a planning domain. The prob-
lem translation algorithm is responsible for translating (ri,, Tout)
into a planning problem. Finally, the WSC planning problem con-
sists of a planning domain and a planning problem. We elaborate
the translation process in the following.

5.1. Mapping mechanism of WSC planning problem

The Planning Domain Definition Language (PDDL) [27] is an
action-centered description language that is inspired by the
well-known STRIPS formulations of Al planning problems. It is a
standard encoding language for describing classical Al planning
tasks, and has been widely adopted by most of the classical plan-
ners, such as Metric-FF [2] and SatPlan06 [3,4].

We use PDDL to describe a WSC planning problem, which is
generated by two translation procedures in Fig. 3. (1) in planning
domain translation, all of the available services in a service repos-
itory are modeled as actions in a PDDL domain. (2) in planning
problem translation, initial parameters and goal specifications in
a composition request are respectively modeled as an initial state
and a goal specification in a PDDL problem. Fig. 4 illustrates the
translation mechanism, which maps a Web service described in
WSDL specification and a composition request to a PDDL domain
and a PDDL problem.

As shown in Fig. 4, an operation in a Web service is mapped into
an action in a PDDL domain. More specifically, inputs and outputs
of a Web service are respectively modeled as preconditions and ef-
fects of its corresponding action. Meanwhile, all of the parameters
from inputs and outputs of that service are added as problem ob-
jects in a PDDL problem. In a composition request, initial and goal
parameters are respectively mapped to an initial state and a goal
specification in the PDDL problem. The domain and problem trans-
lation algorithms are introduced in Sections 5.2 and 5.3.

5.2. WSC planning domain translation

Given a service repository W = {wy,w,,...}, we present the
algorithm designed to generate a planning domain in PDDL.
Algorithm 1 describes its translation process.

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112

Algorithm 1. Gen-WSC-Planning-Domain

Input: W = {w;,wy,---}, Web service repository;
Output: PD, PDDL domain; PO, problem objects;
1 PD(Types, Predicates, Actions) < 0;

2 Types « {string}; Predicates « {(yes x)};

3 PO« 0;a« 0;

4 foreach w € W do

5 name(a) « service name of w;

6 foreach I' € w.I do

7 L precond(a) « precond(a) U {(yes I')};

8 foreach O’ € w.0 do
9 L effects(a) « effects(a) U {(yes O")};

10 Actions < Actions U {a};
11 PO <« POUw.IUw.O;
12 assign a « 0;

13 return PD, PO,

In terms of PDDL specifications, a planning domain contains
three parts: types, predicates and actions. To simplify the problem
formalization, in WSC planning translation we assume that all of
the input and output parameters in a service have a uniform type
string, and all of the grounded propositions in a WSC action by
using finite predicates in P are used to denote the availability of
an input or output parameter with a specified predicate (yes ?p)
in a WSC planning state. Although we only allow a simple data type
and a predefined predicate for the presentation of service interface
parameters, it can be extended to deal with the situations where
there are complex data types and multiple predicates. The reason
is that to find a composition plan for a deterministic WSC planning
problem, most of the off-the-shelf efficient automatic planners
(e.g., Metric-FF [2] and SatPlan06 [3,4]) apply heuristic search
strategy for the syntactic matchmaking of effect and precondition
propositions between two actions with logic reasoning techniques.
It can accept multiple data types and first-order predicates. How-
ever, the condition is that, when service providers publish services
in a repository, they need to specify input and output parameters
with the provided data types and predicates. By doing so, our ap-
proach can automatically translate a set of disjoint Web services
in a repository into a WSC planning domain without any manual
deployment.

Web service PDDL Composition request
— PortType Domain Problem Request name —
L Operation --------------------- » Action —]
Initial state <------- Initial parameters —

Input ----------- » Precondition
L Goal state <------- Goal parameters —
Part '
|
Output -—---------- » Effect Objects

A

‘— Binding

Predicate

Fig. 4. Mapping mechanism from a Web service in WSDL specification and a composition request to a PDDL domain and a PDDL problem.

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112 105

Based on this assumption, Algorithm 1 takes a service reposi-
tory W with a set of Web services as an input, and the output is
a WSC planning domain in PDDL with a set of parameters as prob-
lem objects. Each Web service w € W is translated into an action a
in PDDL. That is, (1) service name of w is set as action name of a; (2)
for each input parameter I' € w.I, we create a grounded proposition
(ves I'), which is added to precond(a) as one of the preconditions;
(3) in the same way, for each output parameter 0' € w.0, we use
it to create a grounded proposition (yes 0'), and add it to
effects(a) as one of the effects; (4) finally, all of the input and out-
put parameters of Web service w are accumulated and put into PO
as problem objects for WSC planning problem translation.

Taking the Web service repository B in Section 3 as an example,
the five services, {LocatePhone,GetPosition,GetLatLon,GetMap,
GetWeather}, are translated into their corresponding actions in a
PDDL domain. Fig. 5 illustrates part of the generated planning
domain. As shown, the planning domain involves predefined types
{string} and predicates {(yes ?x)}. Especially, the generated WSC
planning domain involves five WSC actions and two of them in
Fig. 5 correspond to Web services LocatePhone and GetLatLon,
respectively.

In addition, during the WSC planning domain translation from
Web services to WSC actions, we get a set of input and output
parameters extracted from each service w,PO = {pp € (w.IU
w.0),w € W}. After the domain translation, PO = {MSISDN, state,
city, districtNum, longitude, latitude, weather, diameter, map}. Each
input or output parameter p € PO is used as a problem object in
WSC planning problem translation shown in Algorithm 2.

5.3. WSC planning problem translation

Given a composition request (ri,, 7o), We devise the algorithm
of generating a planning problem in PDDL. The translation process
is shown in Algorithm 2.

The translation algorithm of generating a planning problem
takes a composition request (T, Toy) and problem objects PO as
its inputs. The output is a PDDL problem PP, which comprises of
three parts: objects, initial state and goal specifications. We ini-
tially set each of them as (. Then, (1) for each parameter p € PO,
itis added as a problem object in PDDL problem; (2) for each initial
parameter r, € r;,, we form a grounded proposition (yes ri), which
is put into the initial state as one of its request conditions. Thus, we

(define (domain Map_Weather Domain)
(:requirements :typing)
(:types string - object)
(:predicates (yes ?x - string))

(:action LocatePhone
:precondition
(and (yes MSISDN))
:effect
(and (yes state) (yes city) (yes districtNum)))

(:action GetLatLon
:precondition
(and (yes state) (yes city))
-effect
(and (yes longitude) (yes latitude)))

)...

Fig. 5. Part of the planning domain in PDDL for the Web service repository B in the
motivating example.

have Inits = {(yes ri)|ri, e rin}; (3) symmetrically, for each
e € Tour, @ grounded proposition (yes) is created and added
to the goal specifications, i.e., Goals = {(yes 1%,,)|"u € Tour}-

Algorithm 2. Gen-WSC-Planning-Problem

Input: (7i,, 7,u:), composition request;
PO, problem objects;
Output: PP, PDDL problem;
1 PP(Ob jects, Inits, Goals) « 0;
2 foreach p € PO do
3 l_ Objects <« Objects U {p};
4 foreach r! er;, do
5 |_ Inits « Inits U {(yes ')};

s foreach r! , € ry, do A
7 L Goals — Goals U {(yes rl,)}

8 return PP;

Taking the WSC problem (r,, rou, W) in Section 3 as an example,
there are ri;, = {MSISDN, diameter} and r,,, = {map, weather}. After
the problem translation, part of the generated planning problem in
PDDL is shown in Fig. 6. Each interface parameter in PO, generated
in Algorithm 1, is used as a problem object. Initial state consists of
two grounded propositions from ry,, Inits = {(yes MSISDN),
(ves diameter)}. The goal specifications are translated from 1oy,
i.e,, Goals = {(yes map), (yes weather)}.

5.4. Analysis of computational complexity

Let (Tin, Tour, W) be a WSC problem, where W is a Web service
repository, i, is a set of initial input parameters and r,,; involves
all of the parameters of goal specifications. For each w € W, we de-
note the number of input and output parameters as P!, = |w.I| and
P° = |w.0|, respectively. Suppose that P = maXyew{|w.I| + [w.0|} is
used to denote the maximum number of input and output

(define (problem Map Weather Problem)
(:domain Map_Weather Domain)
(:objects

MSISDN - string
state - string

city - string
districtNum - string
longititude - string

)
(:init
(yes MSISDN)
(yes diameter)
)
(:goal (and
(yes map)
(yes weather)
)

)

Fig. 6. Part of the WSC planning problem given a service composition request
(rin,Tour) and the service repository B in the motivating example, where
rin = {MSISDN, diameter}, r,, = {map, weather}, and B = {LocatePhone, GetPosition,
GetLatLon, GetMap, GetWeather}.

106 G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112

parameters among all of the services in W. We also assume that
P <« |W]| is satisfiable in a large-scale Web service repository.

The time computational complexity of generating a planning
domain is determined by mapping Web services into actions as well
as problem objects. We denote Tpp as the time complexity of gener-
ating problem objects. So the time complexity of planning domain
translation can be calculated as: Taomain = O(|W| + > e (IWI|+
W.0)) + W[+ Tpo + [W|) = 03 * [W| + X,.(P), + P) + Tro) =
O3 = |W| + |W| % P + Tpo). Furthermore, Tpo is dominated by
the number of services involved in W and the number of parame-
ters in each service w. More specifically, Yw € W, we identify
whether each parameter p € (w.I Uw.0) is subsumed in PO, i.e.,
Tro = O(X e (W] + [W.0]) = O(F e (Pl + P)) = O(W] « P).
Consequently, the complexity of domain translation is Tgomein =
0(3 = |W| + |[W| % P+ |W| * P) = O((3 + 2P) |W|). Since we
have P <« |[W| in a large-scale service repository, the time
complexity of domain translation is Tgomen = O(|W)).

The time complexity of the planning problem translation for a
WSC problem is dominated by three parts: the number of objects
in PO, initial and goal parameter size in (i, I'our). Considering the
worst case, without any repeated parameters exist among services.
Thus, the time complexity of problem translation in PDDL is Tyrobiem
= O(Suew (W11 + W.00) +rin] + [Fauel) = O yeaw ([Pl + [P+ I
+|rout|) = O(P * |W| + |rin| + |Toue|)- In terms of a large-scale service
repository, since we have P < |W|,|rip| < |[W|, and [rou| < [W],
the time complexity of problem translation is Tyropiem = O(|W]).

From the calculation of time computational complexity, both
WSC planning domain and WSC planning problem translation are
linear algorithms in regard to the number of services in a Web
service repository. Thus, they can be efficiently performed in a
polynomial time.

5.5. Finding a composition plan

In the second step, we apply efficient automated planners to
solve a WSC planning problem translated from a WSC problem in
the first step. In order to verify the correctness of the WSC ap-
proach using planning, we solve the WSC problem described in
the motivating example. Two highly efficient planners that support
PDDL specifications, Metric-FF [2] and SatPlan06 [3,4], are applied
to solve the WSC planning problem generated by planning domain
and planning problem translation. Given the composition request
in the motivating example, each of the two planners can find a
composition plan.

(1) Metric-FF planner. The composition plan found by the
Metric-FF contains an ordered sequence with four services,
7 = (LocatePhone, GetPosition, GetMap, GetWeather).

(2) SatPlan06 planner. The found service composition plan by
using the SatPlan06 also involves an ordered sequence with
four Web services. However, its invocation steps differ from
the order generated by the Metric-FF, 7' = (LocatePhone,
GetWeather, GetPosition, GetMap).

From the verification of our WSC approach, Metric-FF and Sat-
Plan06 can both find a composition plan that is directly mapped
to a composition solution to the WSC problem in Section 3. We fur-
ther prove that both planners can find a composition solution to
the composition request in this scenario. There are three reasons.
First, if there is a composition solution to a given WSC problem,
(Tin, Tour, W), @ composition plan must be found in its corresponding
WSC planning problem, (X, so, g). Second, if a given WSC planning
problem, (X, so,g), has a composition plan, Al planners can find it
as long as they are implemented with complete planning algo-
rithms. Third, since Metric-FF and SatPlan06 are both complete,

our WSC system guarantees that it can find a composition solution
to the given WSC problem in the motivating example. In this WSC
motivating problem, both planners take less than 10 ms to find a
composition plan. More performance analyses conducted on
large-scale Web service repositories with 81,464 services are elab-
orated in the experimental evaluation.

5.6. Discussion

Although we only applied two efficient off-the-shelf automatic
planners to find a composition plan for a WSC planning problem,
there are also some recently developed state-of-the-art Al planners
that have been taken into account for the dynamic composition of
Web services and enterprise business process workflow integra-
tion in real-world applications. These approaches [10,28-33] are
indeed used by corporations to create and manage operational
business processes. Medical transport services are offered online
by a variety of medical transport companies on the Internet. The
service composition planner OWLS-XPlan [10,28] has been utilized
in an agent based mobile eHealth system for emergency medical
assistance (EMA) planning tasks, called Health-SCALLOPS. The
planner runs on the server of a national EMA center to support
the planning of patient relocation to selected hospitals, or patient
repatriation. Furthermore, business processes coordinate the flow
of activities within and between enterprises, where another impor-
tant application area for automated planner is the creation of new
processes in Business Process Management (BPM) at SAP corpora-
tion, one of the leading vendors of enterprise software. In this
application [29,30], the model called Status and Action Manage-
ment (SAM) was developed by SAP and used for planning to obtain
a BPM planning application. SAM is compiled as a variant of plan-
ning language PDDL and an off-the-shelf fast forward (FF) planner
is then adapted to help business experts create new processes sim-
ply by specifying the desired behavior in a real-time BPM process
modeling environment, SAP NetWeaver platform. In addition, even
though O-Plan [31,32] is an early automated planner, it takes an
engineering approach to the construction of an efficient domain
independent composition planning system which includes a mix-
ture of Al and numerical techniques. It has been used in a wide
variety of real applications [32,33], including air campaign plan-
ning, non-combatant evacuation operations, and biological path-
way discovery. Finally, as a new designed classical Al planner
LAMA [34] built on heuristic forward search, unlike the exploita-
tion of binary state variables and multi-heuristic search to combine
the landmark heuristic with a variant of the well-known FF heuris-
tic [2], its core feature is the use of a pseudo-heuristic derived from
landmarks, propositional formulas. Since LAMA builds on the fast
downward planning system using finite-domain, it has potential
application in dynamic composition of Web services with good
performance of finding a composition plan.

Our proposed approach is original and distinguishes from exist-
ing methods with several advantages. Although many works have
been done on dynamic composition of Web services using determin-
istic planning, our developed WSC planning system is superior to
other existing Al planning WSC methods in its faster response time
of finding a composition plan and better scalability on solving
large-scale instances, thanks to the advanced deployment and
exploitation of Al planning techniques. Additionally, we compile a
WSC planning problem into a WSC planning problem in PDDL, so
that our approach can be compatible with those off-the-shelf Al
planners that supports the specifications with propositional logics
and reasoning of planning domain and problem in PDDL. Further-
more, in contrast to other existing Al planning WSC methods, since
it has powerful flexibility in the exploitation of different automatic
planners, our approach can find a composition plan for service

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112 107

Service Provider Composition
Request

B 8. @
L1

Service Requester

Table 1
Distributions of the tested Web service repositories in Composition1.

Composition1

Dataset ID Dataset # of services # of 1/0

‘ WSC Graphical User Interface Ordered Sequence of Services wsr-1-1 Composition1-20-4 2156 4-8
wsr-1-2 Composition1-20-16 2156 16-20
Start W3 (oo Wiy wsr-1-3 Composition1-20-32 2156 32-36

) wsr-1-4 Composition1-50-4 2656 4-8
- wsr-1-5 Composition1-50-16 2656 16-20
PDDL Domain PDDL Problem i W i wsr-1-6 Composition1-50-32 2656 32-36

Translator Translator } wsr-1-7 Composition1-100-4 4156 4-8
o ™ Ws End wsr-1-8 Composition1-100-16 4156 16-20
PDDL Generation A wsr-1-9 Composition1-100-32 4156 32-36

¥ Y
- - 1 Al Planners Table 2
WSDL Service JE— JE— ! > ((12)) 2:;“11;(1;;: Distributions of the tested Web service repositories in Composition2.
Repository PDDL Domain PDDL Problem Composition2
WSC planning problem Dataset ID Dataset # of services # of /O

Fig. 7. The system architecture of Web service composition using efficient wsr-2-1 Composition2-20-4 3356 4-8
automated planners. wsr-2-2 Composition2-20-16 6712 16-20
wsr-2-3 Composition2-20-32 3356 32-36

requesters with the consideration of their preferences, such as faster wsr-2-4 Composition2-50-4 5356 4-8
response time or the minimum parallel steps in the desired compo- wsr-2-5 Composition2-50-16 5356 16-20
iti lution. The experimental results demonstrate that, our ap- wsr-2-6 composition2-50-32 2356 32-36

sition solution. 1 p 0] -nat, p wsr-2-7 Composition2-100-4 8356 4-8
proach has significantly extended the capability of prior work by wsr-2-8 Composition2-100-16 8356 16-20
ensuring fast response time and good scalability when composing wsr-2-9 Composition2-100-32 8356 32-36

Web services in large-scale service repositories.
6. System architecture

To validate the feasibility and efficiency of our proposed WSC
approach, we propose an architecture of Web service composition
based on the state-of-the-art automated planners, designed for
tests and experiments but not for production system. The system
architecture is outlined in Fig. 7. It contains a WSC graphical user
interface (GUI), a PDDL domain translator, a PDDL problem transla-
tor, a Web service repository with WSDL specification and two
highly efficient Al planners. In addition, there are two kinds of
participants: service provider and service requester. Service
providers publish their services to the Web service repository for
use. Service requesters consume those services offered by the
service providers.

The process of dynamic composition of Web services based on
automated planners is comprised of four steps. First, service provid-
ers publish their Web services by WSC graphical user interface to the
WSC system, which stores all of the registered services into a Web
service repository. Second, the WSC system reads all of the services
from the Web service repository, and translates them into a planning
domain by using the PDDL domain translator. Third, a service re-
quester submits a composition request by the WSC graphical user
interface, which is translated into a planning problem in PDDL by
the WSC system using the PDDL problem translator. Based on the
generated WSC planning problem (consisting of a PDDL domain
and a PDDL problem), the WSC system invokes an Al planner (e.g.,
Metric-FF [2] or SatPlan06 [3,4]) to find a composition plan, which
is mapped to a composition solution to the corresponding WSC prob-
lem. Finally, our WSC system returns the solution to the requester by
the WSC graphical user interface.

7. Experimental evaluation
7.1. Experimental setup and datasets

In order to evaluate the effectiveness of our WSC method and
compare its performance with the state-of-the-art WSC method,

we developed a prototype system where all of the WSC compo-
nents together with graphical user interface (GUI) in system archi-
tecture (Fig. 7) have been implemented by IDE Eclipse 3.5, Visual
Editor 1.4 and Java. In addition, Al planners (Metric-FF and
SatPlan06) applied in our experiments are integrated in the proto-
type. All of the experiments are performed on a PC with Intel Pen-
tium(R) dual core processor 2.4 GHz and 1G RAM. Apart from Al
planners tested on Ubuntu 10.04, other programs are run on Win-
dows XP.

We have conducted extensive experiments on 81,464 Web ser-
vices that are distributed in the 18 groups of large-scale Web ser-
vice repositories. The datasets are published on ICEBE05’ and can
be freely downloaded from the website® of Web service challenge.
These 18 groups of Web service repositories are categorized into
Composition1 and Composition2, which are shown in Tables 1 and 2,
respectively.

As shown in the service repository distributions, the number of
services involved in a dataset ranges from 2156 to 8356, and the
size of input or output parameters in a service ranges from 4-8,
16-20 to 32-36. In terms of the number of services and parameter
size in a Web service repository, the easiest dataset to be dealt with
is Composition1-20-4. On the contrary, the most difficult dataset is
Composition2-100-32.

Each service repository either in the Composition1 or Composi-
tion2 has 11 composition requests for test. Accordingly, there are
11 composition solutions to their corresponding requests provided
for verifying the correctness of WSC methods. Especially, no matter
how differently composition requests have been used for the
datasets in Composition1 or Composition2, their corresponding
solutions involve the same number of services, as long as they have
the same request ID and category.

From the distributions of Web services in Composition1 and
Composition2 in Tables 1 and 2, note that since all of the input

7 ICEBEO5 provides a set of test data for both service composition and service
discovery challenges.
8 http://ws-challenge.georgetown.edu/ws-challenge/WSChallenge.htm.

http://ws-challenge.georgetown.edu/ws-challenge/WSChallenge.htm

108 G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112

and output parameters in a Web service have a uniform type, we
predefine string as the data type for an interface parameter, and
specify a predicate (yes ?p) to represent the grounded propositions
in preconditions and effects of a WSC action to denote the
availability of the parameter p. As mentioned in Section 5.2, to deal
with non-uniform data types and multiple predicates for WSC
planning domain translation, we leverage the advanced automatic
planners that apply heuristic search algorithm for the syntactic
matchmaking of effect and precondition propositions between
two actions with logic reasoning techniques, which can accept
multiple data types and first-order predicates. Nevertheless, the
condition is that service providers must specify input and output
parameters with predefined complex data types and multiple
predicates, when they publish Web services in a Web service
repository.

7.2. Experimental results

The experimental results are shown in two ways. (1) the trans-
lation time spent on generating a planning domain and a planning
problem on each dataset in Composition1 and Composition2. (2)
the response time on all of the composition requests for 18 groups
of datasets compared with WSPR [7,8].

7.2.1. Translation time for generating a planning domain and a
planning problem

For each dataset in Composition1 and Composition2, translation
time spent on generating its planning domain and planning prob-
lem is shown in Table 3. Especially, translation time for a planning
problem generation is an average value on all of the 11 composi-
tion requests within a dataset. Thus, it is calculated by

I Translate(r;)/11, where Translate(r;) is the translation time
for a composition request r;, where 1 <i < 11.

The results summarized in Table 3 indicate that the average
time for generating a planning problem in PDDL can be taken with-
in a short period of time. It ranges from 1.36 ms to 14.27 ms. In the
meantime, with an increasing number of services and parameter
size involved in different Web service repositories, the translation
time taken for generating a planning domain rises with slow
speedup. It ranges from 74,031 ms to 1,103,375 ms. In particular,
although translation time lasts much longer for the generation of
a planning domain than that for a planning problem, the task to
translate a Web service repository can be performed offline just
for one time, and it only needs to be partly recomputed when that
Web service repository has changed (e.g., there are new services
added or existing services have eliminated from the Web service
repository).

7.2.2. Response time on finding a composition plan
From the view of practicability in real-world applications, the
response time is of vital importance to a WSC method, because it

Table 3

determines whether a feasible composition solution can be rapidly
returned to users within a short period of time. Therefore, we
employ response time as the evaluation metric to compare the effi-
ciency of our method with the state-of-the-art WSC method WSPR
[7,8] throughout the experiment.

Definition 12 (Response Time). Given a Web service repository W,
and its corresponding planning domain D. The response time of a
WSC method m, denoted as RT(m), holds the duration, when it
starts from submitting a composition request r by a user and ends
at receiving a composition solution or failing to find it. The response
time in our method and WSPR are respectively defined as:

(1) RT(Metric-FF) = Translate(r) + Parse(P) + Parse(D) + Plan(m);
(2) RT(SatPlan06) =Translate(r) + Parse(P) + Parse(D) + Plan(m);
(3) RT(WSPR) = Parse(r) + Parse(W) + Search(O);

The response time in our WSC method lasts the duration,
including translating a composition request r to its corresponding
planning problem P, parsing planning problem P and planning do-
main D, and applying an Al planner to find a composition plan 7.
On the other hand, WSPR takes its response time by parsing com-
position request r, parsing Web services in a service repository W,
and searching a composition solution O by its forward and regres-
sion search strategy.

We denote WSPR as the WSC method [7,8], which is one of the
state-of-the-art Al planners that can be directly used for Web ser-
vice composition. To simplify the expression, Metric-FF is marked
as our WSC method based on Metric-FF planner, and SatPlan06
stands for our WSC method by using SatPlan06 planner. We test
the response time on 11 composition requests in each dataset
within 18 groups of Web service repositories among three ap-
proaches, i.e., Metric-FF, SatPlan06, and WSPR. The 11 composition
requests tested on each dataset are separate trials and could occur
in any order. The results of response time are illustrated in Fig. 8.

7.3. Experimental analysis

From the above experimental results, we summarize the com-
parisons and analyses between our WSC method using efficient
planners and WSPR as follows.

(1) Our method based on Al planners (Metric-FF, SatPlan06) can
find a composition solution faster than WSPR in response
time. To be more precise, the response time of using Met-
ric-FF ranges from 0.27 s to 14.915 s; the minimal response
time of SatPlan06 is 0.58 s and the maximum is 110.95s.
Correspondingly, the response time of WSPR ranges from
8.313s to 153.422s. The main reason for the difference
between our method and WSPR in response time is that

Translation time taken for generating a planning domain and a planning problem on all of the 18 groups of datasets in Composition1 and Composition2. Column Domain
represents the translation time of generating a planning domain in PDDL. Column Problem is the average time of translating 11 composition requests in a dataset to a planning

problem in PDDL.

Composition1

Composition2

Dataset ID Domain (ms) Problem (ms) Dataset ID Domain (ms) Problem (ms)
wsr-1-1 74,031 1.36 wsr-2-1 164,922 1.36

wsr-1-2 75,641 1.45 wsr-2-2 625,453 2.82

wsr-1-3 77,203 2.82 wsr-2-3 175,735 8.55

wsr-1-4 109,765 1.45 wsr-2-4 400,140 291

wsr-1-5 112,250 291 wsr-2-5 412,312 2.82

wsr-1-6 112,953 2.82 wsr-2-6 417,438 11.18
wsr-1-7 250,922 1.45 wsr-2-7 964,031 2.82

wsr-1-8 253,000 291 wsr-2-8 972,469 1.45

wsr-1-9 260,172 14.27 wsr-2-9 1,103,375 8.45

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112 109

Vietic FF 2
10 |-e— satPlanae 19 33
SR or I N S S,
N 17 30
6l Tt 2 T
s 15
@ 4t B WSPR
o7 i3 2
F 2
£ g2 £
36 4 S0
3 3 3
4 1ol 218
25 g g
3 g9 15
4 & 8t &
4 7 13
N 6 10
5
2 4 N
3 5 ._.—_./._._./0—0—0—\
, 1 ._.—./._._'/0—0—0—\‘
e g o et 2 N
 — o
M2 B ® o it I) © o il G T

5 7 5 6 7 5 ® 7
Composition requests. Composition requests Composition requests

(a) RT of wsr-1-1 (b) RT of wsr-1-2 (¢) RT of wsr-1-3

VericFF 2 W
15 . s S~ —"
N WS . et
13 22 - sare
20 3 wseR
12 3
P 18 28
210 5 e
5 Es E®
39 H 523
] 31]
g8 - §20
g7 g g
H g g8
&
g g 10 “i1s
5 8 13
4 7 10
3 5 s
2 3 ._.—./'_'—'/H—._\ N
! gzzzﬁ:-:,—_f:,__:::h 2 2
0 0
W2 8 4 5 ® 7 8 @ 0 il M2 3w B ® 7 8 @ 0 il W2 8w B s 7 @ e 0
Composition requests Composition requests Compositon requests
(d) RT of wsr-1-4 (e) RT of wsr-1-5 (f) RT of wsr-1-6
2
21 6
i N N
20 60
TetioF
b 35 o 57 [Fe—sa
18 3 Satpranoe] 53 WSPR
b 30 wSPR 50
16 o
315 528 5
St H N
225 o
E13 g 240
‘312 3% 537
211 £20 23
210 2! 230
5 g i3
& & &
H 15 bt
7 13 2
M 10 17
5
H ¢ 0
3
2 N M 7
P N ’
s — 3
5 7 © 718

® 9 o il I GG Moz @ ® @ o 1

i 5 7 5
Composition requests Composition requests Composition requests

(g) RT of wsr-1-7 (h) RT of wsr-1-8 (i) RT of wsr-1-9

18 Mot FF & H_"_‘_‘_"__‘_"__g_\ 5
17 e~ Satplan 0 50
1 WSPR 5 Torio P

p Wetic-FF
e |-e— satPlanoe|
WseR

Response time (s)

M 12 @ @ 5 s 7 8 @ o il M2 @ w5 7
Composition requests Composition requests

(j) RT of wsr-2-1 (k) RT of wsr-2-2 (1) RT of wsr-2-3

e~ Satplan 50 ‘\._.,_A—‘_.,——A—a—-—\]
2 WSPR P bt Wetric- 77|
2 "Metric-FF 75 [~ SatPlan(
23 43 [~®— SatPlan0| 70 WSPR
w:

GG I ® @ ol

5 7
Composition requests

2 40 SPR. 65
Z20 =37 Z60
218 233 255
E 17 ggo ;so
g1 g7 §45
I I
20
10 p 30
8 2
7 s 20
5 1 15
3 7 10
2 3 5

o2 @8 M ® 9 0 i1 I [GEGE M2 @ ® 9 o il

5 6 7 5 6 7 5 ® 17
Composition requests Composition requests Composition requests

(m) RT of wsr-2-4 (n) RT of wsr-2-5 (0) RT of wsr-2-6

8
pe Vetic.FF| 8 160
[-o—satpian b _‘/H_,__._H—\ 150
4 WSPR 140
0 7 e FF
38 1 |- satpiance] 130
35 65 WSPR 120
a3 560 110
230 Y K
£ 255 2100
3 =50)
25 245 1%
223 g H
g g0 g7
454 35 &
18 & 0
15 bt 50
1 2
w0
10 20
M P 30
s 10 20
3 5 0
o
o2 s ® 1 ol M2 B o ® 9 0 i1 M2 @ © 0 i

5 ® 17 5 7 5 6 7
Composition requests Composition requests Composition requests.

(p) RT of wsr-2-7 (q) RT of wsr-2-8 (r) RT of wsr-2-9

Fig. 8. The response time of each 11 composition requests on their corresponding dataset in 18 groups of Web service repositories among three WSC approaches Metric-FF,
SatPlan06 and WSPR.

110

(2)

(3)

Table 4

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112

the applied planners can more rapidly parse planning
domain, while WSPR takes much longer to parse all of the
services in a Web service repository. Also, the planning time
taken by Metric-FF and SatPlan06 outperforms the search
time in WSPR. Especially, our WSC method using Metric-FF
can best satisfy all of the composition requests because its
response time to the hardest dataset (Composition2-100-
32) still remains within a short period of time.

Our WSC method using Metric-FF is significantly faster than
that SatPlan06 when a dataset becomes more difficult to han-
dle. The major reason is that SatPlan06 needs to convert WSC
planning problem into a constraint satisfaction problem
(CSP), before it starts invoking a solver to find a composition
plan. However, one benefit of SatPlan06 for service requesters
is that a composition plan with the minimum number of par-
allel steps can be found if it exists from a service repository.
The scalability of our WSC method is superior to WSPR. One
fact is that all of the WSC methods take much longer time to

find a composition solution given a more difficult Web ser-
vice repository. However, along with the increase of the
number of Web services and parameter size in a Web service
repository, the response time taken by planners Metric-FF
and SatPlan06 rises substantially slower than that taken by
WSPR. Tables 4 and 5 show the absolute increase and its rate
of response time from service number and parameter size
among Metric-FF, SatPlan06 and WSPR.

With regard to the change of service number, Metric-FF has
the lowest increase rate of average response time on all of
the Web service repositories as well as the absolute increase
of response time. In most cases, SatPlan06 has a worse
increase rate of average response time than WSPR, but its
absolute increase of response time is extensively slower
than WSPR. Symmetrically, although WSPR has the lowest
increase rate of average response time along with the change
of parameter size, its absolute increase of response time is
the quickest. In general, Metric-FF keeps in a stable and slow

The absolute increase and its rate of response time among Metric-FF, SatPlan06 and WSPR along with the change of service number. |P| gives the parameter size of input or output
of a service. |W| is the number of services in a repository. ART is the average response time on all of the 11 composition requests in a Web service repository. RTI is the absolute
increase of average response time compared with the preceding ART. Rate is the increase rate of average response time.

|P| W] Metric — FF SatPlan06 WSPR
ART RTI Rate ART RTI Rate ART RTI Rate
4-8 2156 0.306 - - 0.800 - - 8.674 - -
2656 0.344 0.038 0.124 0.980 0.180 0.225 11.242 2.568 0.296
4156 0.491 0.147 0.427 1.539 0.559 0.570 17.665 6.423 0.571
16-20 2156 1.149 - - 2.334 - - 17.753 - -
2656 1.198 0.049 0.043 3.565 1.231 0.527 22.478 4.725 0.266
4156 1.873 0.675 0.563 5.419 1.854 0.520 36.278 13.800 0.614
32-36 2156 3.224 - - 5.076 - - 29.988 - -
2656 3.422 0.198 0.061 7.910 2.834 0.558 37.726 7.738 0.258
4156 4.792 1.370 0.400 14.221 6.311 0.798 62.629 24.903 0.660
4-8 3356 0.569 - - 2.672 - - 14.878 - -
5356 0.845 0.276 0.485 4.391 1.719 0.643 24.046 9.168 0.616
8356 1.214 0.279 0437 7.373 2.982 0.679 38.934 14.888 0.619
16-20 5356 3.817 - - 18.307 - - 49.776 - -
6712 4.359 0.542 0.142 30.210 11.903 0.650 63.430 13.654 0.274
8356 5.320 0.961 0.220 32.235 2.025 0.067 81.791 18.361 0.289
32-36 3356 7.819 - - 26.609 - - 50.719 - -
5356 11.098 3.279 0.419 49.489 22.880 0.860 86.794 36.075 0.711
8356 14.833 3.735 0.337 92.536 43.047 0.870 148.807 62.013 0.714
Table 5
The absolute increase and its rate of response time among Metric-FF, SatPlan06 and WSPR along with the change of parameter size. Column notations have the same meaning
with Table 4.
\4 P| Metric — FF SatPlan06 WSPR
ART RTI Rate ART RTI Rate ART RTI Rate
2156 4-8 0.306 - - 0.800 - - 8.674 - -
16-20 1.149 0.843 2.755 2334 1.534 1.918 17.753 9.079 1.047
32-36 3.224 2.075 1.806 5.076 2.742 1.175 29.988 12.235 0.689
2656 4-8 0.344 - - 0.980 - - 11.242 - -
16-20 1.198 0.854 2.483 3.565 2.585 2.638 22.478 11.236 0.999
32-36 3.422 2.224 1.856 7.910 4.345 1.219 37.726 15.248 0.678
4156 4-8 0.491 - - 1.539 - - 17.665 - -
16-20 1.873 1.382 2.815 5.419 3.880 2.521 32.278 14.613 0.827
32-36 4.792 2.919 1.558 14.221 8.802 1.624 62.629 30.351 0.940
3356 4-8 0.569 - - 2.672 - - 14.878 - -
32-36 7.819 7.250 12.742 26.210 23.538 8.809 50.719 35.841 2.409
5356 4-8 0.845 - - 4.391 - - 24.046 - -
16-20 3.817 2.972 3.517 18.307 13.916 3.169 49.776 25.730 1.070
32-36 11.098 7.281 1.908 49.489 31.182 1.703 86.794 37.018 0.744
8356 4-8 1.214 - - 7.373 - - 38.934 - -
16-20 5.320 4.106 3.382 32.235 24.862 3.372 81.791 42.857 1.101
32-36 14.833 9.513 1.788 92.536 60.301 1.871 148.807 67.016 0.819

G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112 111

increase of response time, as Web service repository
becomes more complex (i.e., service number and parameter
size). SatPlan06 is relatively more sensitive than Metric-FF in
its response time with the increase of service number and
parameter size. However, WSPR fluctuates with the quickest
change in its response time.

(4) Our WSC method guarantees completeness in finding a com-

position solution. Since all of the applied planners (Metric-FF
and SatPlan06) are implemented with complete algorithms,
our WSC method can find a composition plan if one exists.
The experimental results demonstrated that Metric-FF and
SatPlan06 can both find a composition plan with no excep-
tions to all of the 11 composition requests on each dataset.
The found composition plans can be exactly matched with
the provided solutions that are optimal to all of the compo-
sition requests. Meanwhile, WSPR can also find correspond-
ing composition solutions with the least number of services
to all of the composition requests on each dataset.
Based on the experimental results and analyses, it comes to
a conclusion that our proposed WSC method using Metric-FF
planner outperforms SatPlan06 and WSPR both in its
response time and scalability.

8. Conclusions and future work

The ability to automatically and efficiently compose Web
services can potentially simplify the implementation of business
processes. This paper presents an efficient approach for dynamic
composition of Web services using the state-of-the-art automated
planners. Unlike most existing WSC methods that need to parse all
of the services in a Web service repository, whenever users submit
a composition request, our WSC method translates a Web service
repository into a planning domain in PDDL just once, and it needs
to be recomputed only when the Web service repository has
changed. Therefore, our WSC method can rapidly respond to a
composition request. The extensive experiments conducted on
large-scale Web service repositories indicate that our proposed
WSC method using Metric-FF outperforms the state-of-the-art
both in its response time and scalability.

There are several limitations that will be further addressed in
our near future research, including the support of semantic Web
service composition, replanning of composite service during the
execution failure, and efficiently updating WSC planning domain.
These efforts involve adding semantic similarity calculation to
WSC planning problem and Al planners for more effective match-
ing between input and output parameters of Web services, auto-
matically updating planning domain in PDDL by monitoring the
change of Web service repository, and verifying our WSC approach
on more real-world Web service repositories with more abundant
textual descriptions.

Acknowledgements

This work was supported by the National Natural Science Foun-
dation of China (61303096,61300100), Shanghai Natural Science
Foundation (13ZR1454600,13ZR1451000), an Innovation Program
of Shanghai Municipal Education Commission (14YZ017), a
Specialized Research Fund for the Doctoral Program of Higher
Education (20133108120029), a National Science Foundation
(NSF) Grant 11S-0713109, and a Microsoft Research New Faculty
Fellowship.

We thank Jérg Hoffmann, Henry Kautz and Bart Selman for their
open sources of Al planners Metric-FF and SatPlan06. We would
like to appreciate the two anonymous reviewers for their insightful
suggestions and constructive comments.

References

[1] L Altintas, E. Jaeger, K. Lin, et al., A Web service composition and deployment
framework for scientific workflows, in: Proceedings of the IEEE International
Conference on Web Services (ICWS), 2004.

[2] J. Hoffmann, B. Nebel, The FF planning system: fast plan generation
through heuristic search, J. Artif. Intell. Res. (JAIR) 14 (1) (2001) 253-
302.

[3] H. Kautz, B. Selman, Unifying SAT-based and graph-based planning, in:
Proceedings of the International Joint Conference on Artificial Intelligence
(IJCATI), 1999, pp. 318-325.

[4] H. Kautz, B. Selman,]. Hoffmann, SatPlan: planning as satisfiability, in:
Abstracts of the International Planning Competition (IPC), 2006.

[5] R. Aydogan, H. Zirtiloglu, A graph-based Web service composition
technique using ontological information, in: Proceedings of the IEEE
International Conference on Web Services (ICWS), 2007, pp. 1154-
1155.

[6] S. Hashemian, F. Mavaddat, A graph-based approach to Web services
composition, in: Proceedings of the International Symposium on
Applications and the Internet (SAINT), 2005.

[7] S.Oh, D. Lee, S. Kumara, Web service planner (WSPR): an effective and scalable
Web service composition algorithm, Int. J. Web Services Res. (IJWSR) 4 (1)
(2007) 1-22.

[8] S. Oh, D. Lee, S. Kumara, Effective Web service composition in diverse and
large-scale service networks, IEEE Trans. Services Comput. (TSC) 1 (1) (2008)
15-32.

[9] X. Zheng, Y. Yan, An efficient syntactic Web service composition algorithm
based on the planning graph model, in: Proceedings of the IEEE International
Conference on Web Services (ICWS), 2008, pp. 691-699.

[10] M. Klusch, A. Gerber, M. Schmidt, semantic Web service composition planning
with OWLS-XPlan, in: Proceedings of AAAI Fall Symposium on Semantic Web
and Agents, 2005.

[11] J. Peer, A PDDL based tool for automatic Web service composition, in:
Proceedings of the International Workshop on Principles and Practice of
Semantic Web Reasoning (PPSWR), 2004, pp. 149-163.

[12] M. Sheshagiri, M. Desjardins, T. Finin, A planner for composing services
described in DAML-S, in: Proceedings of the ICAPS Workshop on Planning for
Web Services, 2003.

[13] E. Sirin, B. Parsia, D. Wu, et al., HTN planning for Web service composition
using SHOP2, J. Web Semantics (JWS) 1 (4) (2004) 377-396.

[14] B. Yang, Z. Qin, Composing semantic Web services with PDDL, Inf. Technol. J. 9
(1) (2010) 48-54.

[15] J. Rao, X. Su, A survey of automated Web service composition methods, in:
Proceedings of the International Workshop on Semantic Web Services and
Web Process Composition (SWSWPC), 2005, pp. 43-54.

[16] B. Srivastava,]. Koehler, Web service composition-current solutions and open
problems, in: Proceedings of the ICAPS Workshop on Planning for Web
Services, 2003.

[17] N. Milanovic, M. Malek, Current solutions for Web service composition, IEEE
Internet Comput. 8 (6) (2004) 51-59.

[18] S. Hwang, E. Lim, C. Lee, et al., Dynamic Web service selection for reliable
Web service composition, IEEE Trans. Services Comput. (TSC) 1 (2) (2008)
104-116.

[19] M. Carman, L. Serafini, P. Traverso, Web service composition as planning,
in: Procceedings of the ICAPS Workshop on Planning for Web Services,
2003.

[20] G. Giacomo, R. Masellis, F. Patrizi, Composition of partially observable services
exporting their behaviour, in: Proceedings of the International Conference on
Automated Planning and Scheduling (ICAPS), 2009.

[21] M. Pistore, A. Marconi, P. Bertoli, et al., Automated composition of Web
services by planning at the knowledge level, in: Proceedings of the
International Joint Conference on Artificial Intelligence (IJCAI), 2005, pp.
1252-1259.

[22] J. Hoffmann, P. Bertoli, M. Helmert, et al., Message-based Web service
composition, integrity constraints, and planning under uncertainty: a new
connection, |. Artif. Intell. Res. (JAIR) 35 (1) (2009) 49-117.

[23] J. Hoffmann, P. Bertoli, M. Pistore, Web service composition as planning,
revisited: in between background theories and initial state uncertainty, in:
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2007, pp.
1013-1018.

[24]]. Hoffmann, R. Brafman, Conformant planning via heuristic forward search: a
new approach, Artif. Intell. (AlJ) 170 (6-7) (2006) 507-541.

[25] A. Tsalgatidou, T. Pilioura, An overview of standards and related
technology in Web services, Distrib. Parall. Databases (DPD) 12 (2-3)
(2002) 135-162.

[26] M. Ghallab, D. Nau, P. Traverso, Automated Planning: Theory and Practice,
Morgan Kaufman Publishers, 2004.

[27] D. McDermott, M. Ghallab, A. Howe, et al., PDDL-the planning domain
definition language, 1998.

[28] M. Klusch, A. Gerber, Fast composition planning of OWL-S services and
application, in: Proceedings of European Conference on Web Services
(ECOWS), 2006, pp. 181-190.

[29] J. Hoffmann, I. Weber, F. Kraft, Sap speaks PDDL: exploiting a software-
engineering model for planning in business process management, J. Artif.
Intell. Res. (JAIR) 44 (2012) 587-632.

http://refhub.elsevier.com/S0950-7051(14)00075-6/h0105
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0105
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0105
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0110
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0110
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0110
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0115
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0115
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0115
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0120
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0120
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0125
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0125
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0130
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0130
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0135
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0135
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0135
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0140
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0140
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0140
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0145
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0145
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0150
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0150
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0150
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0155
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0155
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0155
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0160
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0160
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0160

112 G. Zou et al./ Knowledge-Based Systems 62 (2014) 98-112

[30] J. Hoffmann, I. Weber, F.M. Kraft, Planning@sap: an application in business
process management, in: Proceedings of International Scheduling and
Planning Applications Workshop (SPARK) at ICAPS, 2009.

[31] K. Currie, A. Tate, O-plan: the open planning architecture, Artif. Intell. (Al]) 52
(1) (1991) 49-86.

[32] A.Tate,]. Dalton, O-plan: a common lisp planning web service, in: Proceedings
of International Lisp Conference (ILC), 2003, pp. 12-25.

[33] S. Khan, K. Decker, W. Gillis, et al., A multi-agent system-driven ai planning
approach to biological pathway discovery, in: Proceedings of International
Conference on Automated Planning and Scheduling (ICAPS), 2003, pp. 246-
255.

[34] S. Richter, M. Westphal, The lama planner: guiding cost-based anytime
planning with landmarks, J. Artif. Intell. Res. (JAIR) 39 (1) (2010) 127-
177.

http://refhub.elsevier.com/S0950-7051(14)00075-6/h0165
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0165
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0170
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0170
http://refhub.elsevier.com/S0950-7051(14)00075-6/h0170

	Dynamic composition of Web services using efficient planners in large-scale service repository
	1 Introduction
	2 Related work
	3 Motivating example
	4 Problem formulation
	4.1 WSC problem
	4.2 WSC planning problem

	5 Automatic composition of Web services using planning
	5.1 Mapping mechanism of WSC planning problem
	5.2 WSC planning domain translation
	5.3 WSC planning problem translation
	5.4 Analysis of computational complexity
	5.5 Finding a composition plan
	5.6 Discussion

	6 System architecture
	7 Experimental evaluation
	7.1 Experimental setup and datasets
	7.2 Experimental results
	7.2.1 Translation time for generating a planning domain and a planning problem
	7.2.2 Response time on finding a composition plan

	7.3 Experimental analysis

	8 Conclusions and future work
	Acknowledgements
	References

