
QoS-Aware Dynamic Composition of Web
Services Using Numerical Temporal Planning

Guobing Zou, Qiang Lu, Yixin Chen, Senior Member, IEEE, Ruoyun Huang, You Xu, and Yang Xiang

Abstract—Web service composition (WSC) is the task of combining a chain of connected single services together to create a more

complex and value-added composite service. Quality of service (QoS) has been mostly applied to represent nonfunctional properties of

web services and differentiate those with the same functionality. Many research has been done on QoS-aware service composition, as

it significantly affects the quality of a composite service. However, existing methods are restricted to predefined workflows, which can

incur a couple of limitations, including the lack of guarantee for the optimality on overall QoS and for the completeness of finding a

composite service solution. In this paper, instead of predefining a workflow model for service composition, we propose a novel

planning-based approach that can automatically convert a QoS-aware composition task to a planning problem with temporal and

numerical features. Furthermore, we use state-of-the-art planners, including an existing one and a self-developed one, to handle

complex temporal planning problems with logical reasoning and numerical optimization. Our approach can find a composite service

graph with the optimal overall QoS value while satisfying multiple global QoS constraints. We implement a prototype system and

conduct extensive experiments on large web service repositories. The experimental results show that our proposed approach largely

outperforms existing ones in terms of solution quality and is efficient enough for practical deployment.

Index Terms—WSC, QoS, automated planning, temporal reasoning, numerical optimization

Ç

1 INTRODUCTION

WEB services are modular, self-describing, self-con-
tained, platform-independent software components

that can be published by service providers over the
Internet. Since web services became available, many
organizations prefer to only keep their principal business,
but outsource other application services over the Internet
[1]. Web service composition (WSC) has been widely
applied, allowing construction and sharing of independent
and autonomous software [2]. As the number of web
services proliferates, automated WSC is motivated by the
need to improve the effectiveness and efficiency of
integrating services [3].

WSC is the task of combining a set of single web
services together to create a more complex, value-added
and cross-organizational business process. WSC requires a
computer program to automatically select, integrate, and
invoke multiple web services to achieve a user-defined

objective [3]. For those web services providing the same
functionality, quality of service (QoS) has been mostly
applied to represent their nonfunctional properties and
differentiate them for service composition. QoS is a broad
concept that encompasses a group of nonfunctional
properties, such as execution price, execution duration,
availability, execution success rate, and reputation [4].
Given a set of multiple global QoS constraints and user
preferences, the challenge is how to efficiently construct a
composite service such that its overall QoS is optimal,
while all the QoS constraints are satisfied.

Existing QoS-aware WSC approaches fall short on
finding solutions with globally optimal QoS, because it is
a very difficult optimization problem with logical reason-
ing, discrete decisions, temporal constraints, and numerical
optimization. In particular, when the number of web
services becomes large, there is a huge search space. As a
result, most existing QoS-aware WSC methods are re-
stricted to predefined workflows [4], [5], [6], [7], [8], [9].
That is, it has a predefined workflow model to support
service selection, as the one shown in Fig. 1. A predefined
workflow consists of a set of tasks. For each task, it
corresponds to a group of candidate web services so that
each of them can perform the task. Fig. 2 illustrates the
candidate services for a workflow model with p tasks. Since
these conventional approaches are based on predefined
workflows, their search space is reduced to a smaller one,
which results in two limitations. One is that they cannot
make sure its overall QoS is optimal, considering other
workflows. Another is that these approaches do not
guarantee finding a solution satisfying the global QoS
constraints for a composition task, even if there exists one
under a different workflow.

Automated planning has been a popular method for
WSC [10], [11], [12], [13], [14], [15], [16], [17], [18], [19].

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014 1

. G. Zou is with the School of Computer Engineering and Science, Shanghai
University, Room 919, Computer Building, 99 Shangda Road, Baoshan
District, Shanghai 200444, China. E-mail: guobingzou@gmail.com.

. Q. Lu is with the Department of Computer Science and Technology, School
of Computer Science and Technology, University of Science and
Technology of China, No. 96, JinZhai Road, Hefei, Anhui 230026, China.
E-mail: rczx@mail.ustc.edu.cn.

. Y. Chen is with the Department of Computer Science and Engineering,
Washington University in St. Louis, Campus Box 1045, One Brookings
Dr., St. Louis, MO 63130. E-mail: chen@cse.wustl.edu.

. R. Huang is with Google Inc., 747 6th Street South, Kirkland, WA 98033.
E-mail: rh11@cse.wustl.edu.

. Y. Xu is with the Washington University in St. Louis, 20 W Kinzie St.,
Chicago, IL 60611. E-mail: yx2@cse.wustl.edu.

. Y. Xiang is with the Tongji University, 4800 Caoan Road, Shanghai
201804, China. E-mail: shxiangyang@tongji.edu.cn.

Manuscript received 20 Dec. 2011; revised 23 June 2012; accepted 26 Sept.
2012; published online 12 Oct. 2012.
For information on obtaining reprints of this article, please send e-mail to:
tsc@computer.org, and reference IEEECS Log Number TSC-2011-12-0120.
Digital Object Identifier no. 10.1109/TSC.2012.27.

1939-1374/14/$31.00 � 2014 IEEE Published by the IEEE Computer Society

However, these approaches only try to find a composite
service satisfying the functionality requirement, but do not
consider QoS at all.

To address the above issues, we propose a novel
planning-based approach to WSC with QoS optimization.
One can specify multiple global QoS constraints and user
preferences, and our method finds a composite service that
optimizes the overall QoS, while satisfying those specified
global QoS constraints.

Instead of predefining a workflow composition model for
the selection of web services, our approach transforms a
composition task with multiple global QoS constraints and
preferences to a planning problem with temporal and
numeric features. We leverage advances in temporal numer-
ical planning to optimally and efficiently solve the resulting
planning problems by our temporally numeric planner.

Our new approach has several advantages. It ensures
that a composition solution can be found if one exists,
while existing work may not when no solution within a
predefined workflow satisfies global QoS constraints.
Furthermore, our new approach can optimize the QoS,
while conventional approaches only find the optimal QoS
under a predefined workflow, which may not be globally
optimal. The experimental results show that, our approach
significantly extends the capability of prior work by
ensuring global satisfiability and optimality without assum-
ing a predefined workflow. The drawback of our approach
is in its computational cost for a composition task. However,
although our approach is slower than existing approaches, it
can solve large instances in a few seconds and is still fast
enough for practical deployment, thanks to efficient search
engines in state-of-the-art automated planners.

2 RELATED WORK

2.1 QoS-Aware WSC

Conventional QoS-aware WSC approaches can be classified
into the following five categories, all of which assume a
predefined workflow, which constrains their solution space.
As a result, they are not globally complete or optimal.

. Exhaustive search. This approach [8] tries to enumer-
ate all possible combinations by using candidate
web services for each task. As a consequence, a
composite service with the optimal QoS value for a
predefined workflow model can be selected, if one
exists and satisfies all global QoS constraints.
However, the time complexity of this approach is
high, i.e., OðmpÞ, where m and p are, respectively, the
maximum number of candidate services for a task
and the number of tasks in a workflow.

. Local optimization. This is a locally optimal QoS
service selection process [4] for WSC. A QoS vector
is used to represent QoS of each service and a

multiple criteria decision-making (MCDM) process
[2], [8] is applied to calculate QoS value of a service,
using the weights assigned by a user to each QoS
criterion. For each task in a workflow, the service
with the optimal QoS value is selected from its
candidate service group, as shown in Fig. 2.
Although this approach is locally optimal and
efficient with a low time complexity of Oðm � pÞ, it
does not guarantee to satisfy global QoS constraints.

. Integer programming. Since high complexity makes
exhaustive search impractical in real applications
and local optimization does not take global QoS
constraints into account, Zeng et al. [4] proposed a
method based on integer programming (IP). Based
on a predefined workflow model, it transforms a
QoS-aware WSC problem to an IP problem. An IP
solver is then used to find a solution.

. Approximative algorithm. To decrease the time com-
plexity, Zhang et al. [7] model the QoS-aware
WSC problem as a multidimensional multichoice
knapsack problem. It still requires a predefined
workflow. Although it is an NP-complete problem, a
heuristic algorithm can be used. An approximative
algorithm of constructing the convex hull of related
points [7] was applied to generate a composite
service with a suboptimal QoS value.

. Situation calculus and Golog. Considering rich user
preferences as a key component, McIlraith’s group
proposed two ways of automated WSC with users’
customized preferences [3], [20]. They first proposed
a means of performing automated WSC by exploit-
ing the agent programming language Golog to
represent generic procedures and a first-order
preference language to represent qualitative tempor-
al user preferences [20]. Subsequently, a middle-
ground execution engine [3] has been presented to
generate high-quality compositions based on a
hierarchical task network (HTN) WSC system,
HTNWSC-P [21], which recursively decomposes a
composition task into subtasks, and stops when it
reaches primitive tasks that can be performed
directly by planning operators.

In addition to above hard QoS contracts and user

preferences of WSC, Rosario et al. [22] argued that users

would find it very natural to “soften” contracts so that

probabilistic QoS and soft contracts should be taken for

transaction-based web service orchestration.

2.2 Planning-Based WSC

For automated WSC, some approaches use AI search

techniques to find a composition solution, such as heuristic

2 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Fig. 1. A predefined workflow model for a WSC. It consists of eight
business process tasks.

Fig. 2. The candidate services for a composite service workflow model
containing p tasks. Each task tið1 � i � pÞ corresponds to a set of
candidate services Ti.

forward and regression search [13], [16] and planning graph

construction [14]. Rahmani et al. [23] proposed a novel

backward search algorithm for automatically directing the

composition process of web services. Although it considers

nonfunctional user preferences for optimizing quality of

WSC, multiple hard global QoS constraints are not taken

into account when finding a composition solution. Based on

an aggregated metric proposed by Blanco et al. [24] to

estimate quality of service composition, two algorithms

called DP-BF and PT-SAM are presented to select the best

compositions, respectively. DP-BF combines a best first

strategy with a dynamic programming technique and PT-

SAM adapts a Petri net unfolding algorithm trying to find a

desired marking from an initial state. By extending colored

Petri net (CPN) formalism, Cardinale et al. [25] presented a

CPN transactional web service selection (CPN-TWS) algo-

rithm to address the issue of selecting and composing

web services, considering functional and QoS requirements

combined with transactional properties. The result is a CPN

corresponding to a transactional composite service whose

components locally optimize the QoS. For composition-

oriented discovery of web services, an extensive matchmak-

ing algorithm called service aggregation matchmaking

(SAM) [26] features a more flexible matching by accounting

for service composition.
There are also some composition approaches, where

automated planners have been applied to select web

services in real applications [27], [28] [29], [30] [31], [32],

[33] for building operational business processes. The service

composition planner OWLS-XPlan [27], [28] has been

applied in an agent-based mobile eHealth system for

emergency medical assistance (EMA) tasks. Another im-

portant application area for automated planner is the

creation of new processes in business process management

(BPM) at the SAP corporation. In this application [29], [30],

a status and action management (SAM) model was

developed to employ planning in a real-time BPM process

modeling environment, SAP NetWeaver platform. O-Plan

[31], [32], another automated planner, is used in a wide

variety of WSC applications [32], [33], including air

campaign planning, noncombatant evacuation operations,

and biological pathway discovery.

3 PROBLEM FORMULATION

In this section, we first focus on the understanding of QoS-

aware service composition problem by a set of formal

definitions, and then clearly demonstrate what a composi-

tion solution is to a QoS-aware WSC problem.

Definition 1 (Web Service). A web service w consists of a

finite set of operations, denoted as w ¼ fop1; op2; . . .g, where

each op 2 w, it is a three-tuple ðI; O;QÞ, where I ¼ fI1;

I2; . . .g is a set of input interface parameters, O ¼
fO1; O2; . . .g is a set of output interface parameters, Q ¼
ðQ1; Q2; . . .Þ is a set of QoS values for a group of QoS

criteria fq1; q2; . . .g. We use op:I, op:O, and QðopÞ to denote

I, O, and Q in op, respectively.

Each web service plays a role that can perform a set of
operations. A web service repository is a set of disjoint
services. We denote it as W ¼ fw1; w2; . . .g.
Definition 2 (Functionality Request). A user’s functionality

request, r, is a two-tuple ðrin; routÞ, where rin ¼ fr1
in; r

2
in; . . .g

is an interface parameter set provided as request inputs, and
rout ¼ fr1

out; r
2
out; . . .g is a goal specification provided as

desired results.

A functionality request ðrin; routÞ is specified by a user
who provides a set of input parameters as request condition
and goal facts as desired results.

QoS criteria can be divided into two categories: positive
and negative. Positive QoS criteria denote better quality
with higher values, while negative ones correspond to
lower quality with higher values. Based on widely used
QoS criteria [4], [34], we use a QoS vector QðopÞ to represent
QoS values of each operation op.

QðopÞ ¼ ðqpriceðopÞ; qtimeðopÞ; qsuccðopÞ; qavailðopÞ; qrepðopÞÞ;

where it models the values of a group of QoS criteria
{execution price, execution time, probability of success,
availability, reputation} in an operation op.

Definition 3 (Global QoS Constraints). Given a group of
QoS criteria fq1; q2; . . .g, global QoS constraints, denoted as
C, are a set of QoS values ðc1; c2; . . .Þ. Each ci 2 C is a lower
bound on a positive QoS criterion qi or an upper bound on a
negative QoS criterion qi.

Each global QoS constraint in C is used to restrict on its
corresponding QoS criterion as global QoS value of a
composite service.

Definition 4 (User Preferences). Given a group of QoS criteria
fq1; q2; . . .g, user preferences, denoted as P , are a set of QoS
weights ðp1; p2; . . .Þ. Each pi 2 P , it denotes a user’s
preference on the QoS criterion qi. The preferences must
satisfy

PjP j
i¼1 pi ¼ 1, and 0 � pi � 1.

For a user preference in P , it denotes a bias on its
corresponding QoS criterion by a user.

Given a set of services, a functionality request, a set of
global QoS constraints and preferences, we define the
problem of QoS-aware service composition as below.

Definition 5 (QoS-Aware WSC Problem). A QoS-aware
WSC problem, denoted as Q-WSC, is defined by ðW;C; P ;
rin; routÞ, where

1. W ¼ fw1; w2; . . .g is a web service repository,
2. C ¼ ðc1; c2; . . .Þ is a set of global QoS constraints,
3. P ¼ ðp1; p2; . . .Þ is a set of user preferences,
4. rin ¼ fr1

in; r
2
in; . . .g is an input parameter set, and

5. rout ¼ fr1
out; r

2
out; . . .g is a goal specification.

The above Q-WSC problem defines a composition
problem where a user can specify multiple global QoS
constraints, a set of user preferences, and a functionality
request based on a service repository.

Example 1. Consider a QoS-aware WSC problem ðW;C;
P ; rin; routÞ. For the service repository W , it has three
services fw1; w2; w3g, where w1 ¼ fop1; op2; op3g, w2 ¼
fop4; op5g and w3 ¼ fop6; op7; op8g. Table 1 shows all the

ZOU ET AL.: QOS-AWARE DYNAMIC COMPOSITION OF WEB SERVICES USING NUMERICAL TEMPORAL PLANNING 3

operations in W , and their input and output parameters.
Table 2 shows five QoS criteria as well as their QoS
values for each operation in W . Assume that a user
submits C ¼ f240; 150; 0:40; 0:35; 3:8g as global QoS con-
straints on the five QoS criteria, as shown in Table 2.
Also, suppose that the user provides five QoS prefer-
ences P ¼ f0:25; 0:3; 0:15; 0:2; 0:1g. Finally, an input
parameters set rin ¼ fpar1; par2g and a goal specification
rout ¼ fpar17; par18; par19g are also specified as func-
tionality request.

Given a request r ¼ ðrin; routÞ, we need to find a
sequence of operations L ¼ ðop1; op2; . . . ; opmÞ from W ,
such that it satisfies the functionality request. We define
a service state as a set of input and/or output interface
parameters R ¼ fx1; x2; . . .g.
Definition 6 (Operation Applicability). Given an operation
op ¼ ðI; O;QÞ, it is applicable at a service state R if op:I � R.
We denote this as R� op.

The above definition describes the applicability of an
operation to a service state by checking whether input
requirements of the operation are subsumed in the state.

When an applicable operation op is applied to R, the
resulting service state R0 ¼ R� op is R0 ¼ R [op:O, in
which the values of the parameters in op:O are set by
executing op. An operation sequence is an ordered list
L ¼ ðop1; op2; . . . ; opmÞ, where each element is an operation
op. Applying a sequence L to a service state R results in
R0 ¼ R� L ¼ ð� � � ððR� op1Þ � op2Þ � � � � opmÞ if every step
is applicable (otherwise R� L is undefined).

Definition 7 (Solution Satisfiability). Given two service
states X ¼ fx1; x2; . . .g, Y ¼ fy1; y2; . . .g and a set of services
W , if X � opi � � � � � opm � Y , 1 � i;m � jW j, we say
ðopi; . . . ; opmÞ is a solution sequence and denote this
satisfiability as ðopi � � � � � opmÞ / ðX ! Y Þ.

Solution satisfiability identifies the applicability of an
ordered sequence of operations from a service state.

Definition 8 (Composition Solution). Given a Q-WSC
problem ðW;C; P ; rin; routÞ, a composition solution to the

problem is a solution sequence, L� ¼ ðop1; . . . ; opmÞ, such that
ðop1 � � � � � opmÞ / ðrin ! routÞ is satisfiable.

Each composition solution corresponds to a composite
service graph, which reflects the invocation order of
operations including sequential and parallel ones between
two operations, as defined below.

Our objective is not to find any composition solution, but
the one that leads to the composite service graph with the
optimal global QoS. As to global constraints and QoS
optimization, we define composite service graph and then
discuss them in the subsequent section.

4 QoS MODEL

Given each operation op and its QoS values QðopÞ ¼
ðqpriceðopÞ; qtimeðopÞ; qsuccðopÞ; qavailðopÞ; qrepðopÞÞ, we now de-
fine composite service graph and its QoS model.

4.1 Composite Service QoS and Global Constraints

To describe global constraints and QoS optimization of a
composite service, we first define operation dependence
and composite service graph.

Definition 9 (Operation Dependence). Given a composition
solution,L� ¼ ðop1; op2; . . . ; opmÞ, an operation opj depends on
opi (denoted as opi 	 opj) if and only if i < j and there exists at
least one output interface parameterOk 2 opi:O, such that opi is
the last operation in op1; . . . ; opj
1 that satisfies Ok 2 opj:I.

Operation dependence describes the connectivity of two
operations during the invocation. Based on the operation
dependence relationship, the composite service graph is
defined as follows:

Definition 10 (Composite Service Graph). Given a composi-
tion solution, L� ¼ ðop1; op2; . . . ; opmÞ, its composite service
graph is a directed acyclic graph G ¼ ðV ;EÞ, such that V ¼
L� and there is an edge ðopi; opjÞ 2 E if and only if opi 	 opj.

A composite service graph G describes an execution
process that provides the partial orders among the opera-
tions in L�. For example, Fig. 3 illustrates an example of a
composite service graph G, including 8 operations and
11 operation dependences.

Given a G and a group of global QoS constraints C ¼
ðc�ðpriceÞ; c�ðtimeÞ; c�ðsuccÞ; c�ðavailÞ; c�ðrepÞÞ on {execution
price, execution time, probability of success, availability,
reputation}, the QoS value of G on each criterion and its
global constraint are as follows:

4 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

TABLE 1
Input and Output Parameters of Each Operation

Column “Service” denotes the web service that an operation belongs to.
Columns “op.I” and “op.O” are input and output parameters set.

TABLE 2
The QoS Values of Each Operation Shown in Table 1

. Execution price. Given a composite service graph G,
its execution price QpriceðGÞ is the sum of execution
prices of all the operations in G. Taking the given
global QoS constraint c�ðpriceÞ as its upper bound,
we have an inequality for the global constraint:

XN
i¼1

qpriceðopiÞ � c�ðpriceÞ; ð1Þ

where N is the number of operations in G.
. Execution time. Given a composite service graph G,

its execution time QtimeðGÞ depends on the max-
imum span of execution time of operations in G. It
is determined by a directed acyclic path starting
from an initial state and ending at a goal state,
called critical operation path, which consists of a
subset of operations in G such that the sum of their
execution time is maximized. That is, it is computed
by the expression:

QtimeðGÞ ¼
X

opi2CP
qtimeðopiÞ;

where qtimeðopiÞ is the execution time of opi, and opi
is an operation in the critical operation path CP .
For example, Table 2 shows the execution time of
each operation in Fig. 3. The critical operation path
in Fig. 3 corresponds to CP ¼ fop1; op3; op4; op5;
op7; op8g. Based on the given c�ðtimeÞ as its upper
bound, the global constraint on execution time is:

X
opi2CP

qtimeðopiÞ � c�ðtimeÞ: ð2Þ

. Probability of success. Given a composite service
graph G, its probability of success QsuccðGÞ is the
product of probability of success of all the operations
in G. Using c�ðsuccÞ as a lower bound, we have
global constraint on probability of success:

YN
i¼1

qsuccðopiÞ � c�ðsuccÞ:

Since the above inequality is a nonlinear one that
cannot be easily handled by AI planners, we trans-
form it into a linear global constraint as follows:

log1
2

YN
i¼1

qsuccðopiÞ � log1
2
c�ðsuccÞ;

or equivalently,

XN
i¼1

log1
2
qsuccðopiÞ � log1

2
c�ðsuccÞ: ð3Þ

. Availability. Given a composite service graph G, its
availability QavailðGÞ is the product of availability of
all the operations in G. Taking c�ðavailÞ as its lower
bound, the global constraint on availability is

YN
i¼1

qavailðopiÞ � c�ðavailÞ:

Similarly, we transform it into a linear constraint:

XN
i¼1

log1
2
qavailðopiÞ � log1

2
c�ðavailÞ: ð4Þ

. Reputation. Given a composite service graph G, its
reputation QrepðGÞ is the average reputation of all
the operations in G. Using c�ðrepÞ as its lower bound,
the global constraint on reputation is

PN
i¼1 qrepðopiÞ

N
� c�ðrepÞ: ð5Þ

Notice that we calculate the reputation of a
composite service graph G by the mean of compo-
nents. However, reputation is a very subjective term
and can be evaluated by multiple rating standards.
Another possibility is to use the minimal function
min() among a group of operations. Our approach
can still be applied with this choice.

Example 2. Consider the composite service graph G in
Fig. 3. Table 2 shows QoS values of each operation.
Reconsider the five global QoS constraints in Example 1,
where c�ðpriceÞ ¼ 240; c�ðtimeÞ ¼ 150; c�ðsuccÞ ¼ 0:40;
c�ðavailÞ ¼ 0:35 and c�ðrepÞ ¼ 3:8. The global constraints
on five QoS criteria in G are as follows:

1.
P8

i¼1 qpriceðopiÞ ¼ 233 � c�ðpriceÞ ¼ 240;
2.

P
opi2CP qtimeðopiÞ ¼ 141 � c�ðtimeÞ ¼ 150;

3.
P8

i¼1 log1
2
qsuccðopiÞ ¼ 1:253 � log1

2
c�ðsuccÞ ¼ 1:322;

4.
P8

i¼1 log1
2
qavailðopiÞ ¼ 1:328� log1

2
c�ðavailÞ ¼ 1:515;

and

5.

P8

i¼1
qrepðopiÞ
8 ¼ 4:013 � c�ðrepÞ ¼ 3:8.

After checking above global constraints on five QoS
criteria, G satisfies the given global QoS constraints.

4.2 QoS Normalization and Graph Optimization

When calculating the QoS score of a single operation, we
adopted a weighted sum of values on QoS criteria. Since
they have different ranges, we first normalize the QoS
values to the range of [0, 1] before using them in the
weighted sum. QoS normalization applied to each opera-
tion is designed to avoid frequent case, where several high
scores on some QoS criteria in an operation reduce the
discrimination of those low scores on some other QoS
criteria within the same operation. Depending on the

ZOU ET AL.: QOS-AWARE DYNAMIC COMPOSITION OF WEB SERVICES USING NUMERICAL TEMPORAL PLANNING 5

Fig. 3. A composite service graph consists of eight operations. Each
operation has a set of QoS values on their corresponding QoS criteria,
as shown in Table 2.

features of QoS criteria, normalization strategy is classified
for positive QoS criteria and negative ones.

For positive QoS criteria, such as probability of success,
availability, and reputation, we denote better quality by
higher values. Since our formulation is a minimization
problem, each positive QoS criterion, its QoS value of an
operation is normalized to

qji ¼
Qmax
i
 qiðopjÞ
Qmax
i
Qmin

i

; if Qmax
i 6¼ Qmin

i ;

1; otherwise;

8<
:

where qiðopjÞ and qji represent the QoS values on the ith QoS
criterion in opj before and after QoS normalization,
respectively. Qmax

i and Qmin
i are, respectively, the maximum

and minimum QoS values on the ith QoS criterion among
all the operations in a repository.

For negative QoS criteria, such as execution price and
execution time, we denote lower quality by higher values.
Each negative QoS criterion, we normalize its original QoS
value in an operation by

qji ¼
qiðopjÞ
Qmin

i

Qmax
i
Qmin

i

; if Qmax
i 6¼ Qmin

i ;

1; otherwise:

8<
:

We use a QoS vector Q0ðopÞ to represent the normalized
values of an operation op as

Q0ðopÞ ¼ ðq0priceðopÞ; q0timeðopÞ; q0succðopÞ; q0availðopÞ; q0repðopÞÞ:

Given a Q0ðopÞ, the overall QoS value qosðopÞ is
calculated by a weighted sum of Q0ðopÞ:

qosðopÞ ¼
Xn
i¼1

ðQ0ðopÞ½i� � piÞ;

where Q0ðopÞ½i� is the normalized value of op on the ith QoS
criterion, n is the number of QoS criteria in op, and pi is a
user’s preference on the ith QoS criterion. The weights
satisfy

Pn
i¼1 pi ¼ 1 and 0 � pi � 1.

Given a G, its QoS value QoSðGÞ is calculated by the sum
of the QoS values of all the operations in G.

QoSðGÞ ¼
XN
i¼1

qosðopiÞ:

Example 3. Reconsider the G illustrated in Fig. 3. We use
Table 2 as the original QoS of each operation. After QoS
normalization, Table 3 shows the normalized QoS
values. The user preferences on these five QoS criteria
are {0.25, 0.3, 0.15, 0.2, 0.1}, as shown in Example 1. The
QoS value of each operation can be calculated. For
example, the QoS of operation op1 is calculated by
qosðop1Þ ¼

P5
i¼1 Q

0ðop1Þ½i� � pi ¼ 0:308. As a result, the
QoS value of G in Fig. 3 is calculated by QoSðGÞ ¼P8

i¼1 qosðopiÞ ¼ 3:442.

To put all pieces together, the problem we solve is the
following. Given a Q-WSC problem ðW;C; P ; rin; routÞ
(Definition 5), our goal is to find a composite service graph
(Definition 10), G, such that it minimizes the overall QoS,

while functionality request ðrin; routÞ and all global QoS

constraints in C are satisfied. The objective function of the

Q-WSC problem is

arg min
G2Gs

QoSðGÞ; ð6Þ

where Gs represents all of the possible composite service

graphs to the Q-WSC problem.
To solve a given Q-WSC problem, we transform it into a

CSTE planning problem solved by our developed SCP

solver in the following.

5 QoS-AWARE SERVICE COMPOSITION USING

AUTOMATED PLANNING

We develop a planning-based approach to optimally solve

the Q-WSC problem. Fig. 4 illustrates an overview of

our approach. It has a couple of major steps: 1) Translate a

Q-WSC problem into a cost sensitive temporally expressive

(CSTE) planning problem [35], [36], [37], which is a numeric

planning problem with action duration and cost optimiza-

tion features. 2) Solve the CSTE planning problem by our

developed SAT-based cost planning (SCP) solver, which not

only takes logical reasoning and temporal planning into

account, but also optimizes overall QoS of a composite

service graph.
For a restricted class of Q-WSC problems where there are

no global QoS constraints on temporal restriction (e.g.,

execution time) and average-based constraint (e.g., reputa-

tion), we can also solve the planning problem using a

numeric planner (Metric-FF [38]).

5.1 CSTE Planning Problem

We first formally define the CSTE planning problem [35],

[36], [37] and CSTE action as follows:

Definition 11 (CSTE Planning Problem). A cost sensitive

temporally expressive planning problem is defined as

ðA;F; V ; s0; gÞ, where A is a set of CSTE actions, F is a set

of logical facts, V is a set of numeric variables, s0 is the initial

state, and g is a goal specification.

A CSTE planning problem describes a planning problem

with logical reasoning, temporal constraints planning, and

numerical optimization.

6 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

TABLE 3
The Normalized QoS Values of Each Operation

The original QoS values of each operation are shown in Table 2.

Definition 12 (CSTE Action). A CSTE action a is defined by a
tuple ðpre; eff; �; �Þ, where

. preðaÞ is the action precondition that consists of a set
of numeric constraints based on numeric variables V
and a set of logical facts, each of which is an atomic
proposition f 2 F .

. effðaÞ is the action effect that consists of a set of
numeric effects based on V and a set of logical facts
from F .

. �ðaÞ is the action duration.

. �ðaÞ is the action cost.

A solution to a CSTE planning problem ðA;F; V ; s0; gÞ, is
a composite dependence graph G� ¼ ðV ;EÞ, which trans-
forms the initial state s0 to a goal state g�, such that all the
logical facts in g are subsumed in g�, i.e., g � g�. Moreover,
an optimal solution to a CSTE planning problem ðA;F;
V ; s0; gÞ minimizes the cost of all CSTE actions in G�,
denoted as min

P
ai2G� �ðaiÞ.

5.2 CSTE Planning Formulation of Q-WSC

Given a Q-WSC problem ðW;C; P ; rin; routÞ, we translate it
into a CSTE planning problem ðA;F; V ; s0; gÞ.

QoS numeric variables V. We divide V into four groups to
represent objective QoS value function, QoS numeric
constraints and numeric effects.

1. An objective QoS value variable V o. It represents
the overall QoS value by the costs of all the actions in
a CSTE planning state.

2. A set of QoS value variables V d. Each V d½i�, it
represents the sum of QoS values for the ith QoS
criterion in all the operations, which correspond to
the CSTE actions in a CSTE planning state.

3. A set of global QoS constraint variables V g. Each
V g½i�, it is transformed from the ith global QoS
constraint ci 2 C.

4. A set of user preference variables V w. Each
V w½i�, it represents preference pi 2 P on the ith
QoS criterion.

CSTE actions A. For each web service w 2W , we
transform each of its operation op ¼ ðI; O;QÞ into a CSTE
action a ¼ ðpre; eff; �; �Þ.

Precondition preðaÞ. As to the numeric constraints in
preðaÞ, we specify a QoS expression as an arithmetic
expression over V and the rational numbers with a set of
arithmetic operators fþ;
; �; =g. Then, by using this, we
define a QoS numeric constraint as follows.

Definition 13 (QoS Numeric Constraint). Given a set of V

and a QoS expression, a QoS numeric constraint is a triple

ðv; comp; expÞ, where v 2 V is a numeric variable, exp is a

QoS expression, and comp 2 f<;�; >;�g is a comparative

operator.

A QoS numeric constraint restricts a numeric variable v

to satisfy a QoS expression by a comparative operator. We

use a set of QoS numeric constraints for numeric repre-

sentation in preðaÞ.

1. For each input parameter Ii 2 op:I, we introduce a
precondition fact ðyes IiÞ in preðaÞ. Here, we
represent a precondition fact by a predicate
ðyes ?pÞ which indicates the availability of an input
or output parameter p in a CSTE planning state.

2. For each QoS value variable V d½i�, if it corresponds
to a negative QoS criterion by addition (e.g.,
execution price), we develop a QoS numeric con-
straint ðV g½i�;�; V d½i� þQðopÞ½i�Þ in preðaÞ; other-
wise, if it represents a positive QoS criterion by
product (e.g., probability of success, availability), we
introduce a QoS numeric constraint ðV g½i�;� ;
V d½i�þ log1

2
QðopÞ½i�Þ in preðaÞ.

Effect effðaÞ. For the numeric representation in effðaÞ,
we define a QoS numeric effect over a set of V and a QoS
expression.

Definition 14 (QoS Numeric Effect). Given a set of V and a

QoS expression, a QoS numeric effect is a triple ðv; ass; expÞ,
where v 2 V is a variable, ass 2 f:¼;þ¼g is an assignment

operator, and exp is a QoS expression.

A QoS numeric effect updates QoS value of a numeric
variable v by assigning or adding the value of a QoS
expression. This way, we use a set of QoS numeric effects to
represent the value changes of QoS numeric variables on
each QoS criterion in effðaÞ.

1. For each output parameter Oi 2 op:O, we introduce
an effect fact ðyes OiÞ in effðaÞ.

2. For each QoS value variable V d½i�, if it represents a
QoS criterion by addition or average (e.g., execution
price, reputation), we develop a QoS numeric effect
ðV d½i�;þ¼; QðopÞ½i�Þ in effðaÞ; otherwise, it is a QoS
criterion by product (e.g., probability of success,
availability), we introduce ðV d½i�;þ¼; log1

2
QðopÞ½i�Þ

in effðaÞ.

ZOU ET AL.: QOS-AWARE DYNAMIC COMPOSITION OF WEB SERVICES USING NUMERICAL TEMPORAL PLANNING 7

Fig. 4. Overview of our approach of QoS-aware WSC using numerical temporal planning.

Duration �ðaÞ. We set the duration of action a as the QoS
value of execution time in op. Assume that execution time is
the ith QoS criterion in op, we have �ðaÞ ¼ QðopÞ½i�.

Action cost �ðaÞ.

1. We set action cost by a weighted sum of normalized
QoS values of op. Thus, we have

�ðaÞ ¼
Xn
i¼1

ðQ0ðopÞ½i� � V w½i�Þ;

where n is the number of QoS criteria in op.
The weights satisfy

Pn
i¼1 V w½i� ¼ 1, where 0 �

V w½i� � 1.
2. For the objective QoS value variable V o, we increase

its QoS value by action cost �ðaÞ after the invocation
and execution of action a. So we introduce a QoS
numeric effect ðV o;þ¼; �ðaÞÞ in effðaÞ.

Facts F. The facts include all precondition and effect facts
by input and output parameters from every operation
op 2 w 2W . That is, for each Ii 2 op:I or Oi 2 op:O, we add
a fact ðyes IiÞ or ðyes OiÞ to the facts F .

Initial state s0. We set initial state s0 by the initial facts
and initial QoS values of the numeric variables V .

1. For each riin 2 rin, we add an initial fact ðyes riinÞ.
2. We set the objective QoS value variable V o as 0.
3. For each QoS value variable V d½i�, we set its initial

QoS value as 0.
4. For each QoS constraint variable V g½i�, if it is used

to restrict a QoS criterion by product (e.g., prob-
ability of success, availability), we set its initial
value as log1

2
C½i�; otherwise, its value is directly

initialized as C½i�.
5. For each user preference variable V w½i�, we directly

set its value as the corresponding preference in P .
That is, we set each V w½i� as user preference P ½i�.

Goal specification g. We set g as a set of goal facts. For each
goal parameter riout 2 rout, we add a goal fact ðyes rioutÞ in g.

Example 4. Reconsider the QoS-aware WSC problem
ðW;C; P ; rin; routÞ, as shown in Example 1. After Q-WSC
temporal planning translation, it is transformed into a
CSTE planning problem ðA;F; V ; s0; gÞ.

The QoS numeric variables V :

1. V o ¼ qos total;
2. V d ¼ ðprice d; time d; succ d; avail d; rep dÞ;
3. V g ¼ ðprice g; time g; succ g; avail g; rep gÞ; and
4. V w ¼ ðprice w; time w; succ w; avail w; rep wÞ.
After the translation, an operation in W is translated

to a CSTE action. We take the operation op1 as an
example, its corresponding CSTE action a1 is as follows:

For the precondition preða1Þ:

1. Precondition facts: fðyes par1Þ; ðyes par2Þg.
2. QoS numeric constraints:

fðprice g; �; price dþ 26Þ; ðsucc g;
�; succ dþ log1

2
0:85Þ; ðavail g;

�; avail dþ log1
2
0:93Þg:

For the effect effða1Þ:

1. Effect facts: fðyes par3Þ; ðyes par4Þg.
2. QoS numeric effects:

fðprice d;þ¼; 26Þ; ðsucc d;þ¼; log1
2
0:85Þ; ðavail d;

þ¼; log1
2
0:93Þ; ðrep d;þ¼; 4:6Þg:

For the action duration �ða1Þ:
It is the QoS value on execution time of the operation

op1, so we have �ða1Þ ¼ 15.
For the action cost �ða1Þ:

1. We set cost �ða1Þ as the QoS value of operation
op1. Thus, we have �ða1Þ ¼

P5
i¼1ðQ0ðopÞ½i� �

V w½i�Þ ¼ 0:308, where V w½i� equals with the
ith user preference P ½i�.

2. Add �ða1Þ to V o : fðqos total;þ¼; 0:308Þg.
After the translation, we get eight CSTE actions in

A ¼ fa1; a2; . . . ; a8g, each of which is transformed from
its corresponding operation in Example 1.

The facts F consists of all the atomic propositions by
input and output parameters of each operation. Thus, we
have F ¼ fðyes par1Þ; ðyes par2Þ; . . . ; ðyes par19Þg.

The initial state s0 consists of five parts:

1. Initial facts: fðyes par1Þ; ðyes par2Þg.
2. Initial objective QoS value: qos total ¼ 0.
3. Initial value on each QoS criterion: ðprice d ¼ 0,

time d ¼ 0, succ d ¼ 0, avail d ¼ 0, rep d ¼ 0Þ.
4. Global QoS constraints: ðprice g ¼ 240, time g ¼

150; succ g ¼ 1:322, avail g ¼ 1:515, rep g ¼ 3:8Þ.
5. User preferences: ðprice w ¼ 0:25, time w ¼ 0:3,

succ w ¼ 0:15, avail w ¼ 0:2, rep w ¼ 0:1Þ.
Finally, goal specification consists of a set of goal facts

by rout, so g ¼ fðyes par17Þ; ðyes par18Þ; ðyes par19Þg.

5.3 Time Complexity Analysis of CSTE Translation

The CSTE planning formulation of Q-WSC consists of a
CSTE domain and a CSTE problem. The former part models
each operation op 2 w in W as a CSTE action a 2 A. The
latter translates a functionality request ðrin; routÞ and QoS
requirements (C;P) to an initial state so and a goal state g.

Since CSTE domain translation is dominated by the
conversion time from all of the operations in W to their
CSTE actions in A, its time complexity is calculated by
Oð
P

w2W
P

op2wððjop:Ij þ jV dj þ jop:Oj þ jV djÞ þ ðnþ 3ÞÞÞ,
where n is the number of QoS criteria in an operation. We use
N and M to denote the number of services in W and the
maximum number of operations in a web service. Further-
more,K ¼ maxop2wf op:Ij j þ op:Oj jg is an upper bound on the
number of parameters in an operation in W . Meanwhile,
jV dj is equal to n, so the time complexity is OðNMðK þ
2nÞ þNMðnþ 3ÞÞ ¼ OðNMðK þ 3nþ 3ÞÞ. For a large scale
W , we haveN
M,N
 K,N
 n, andK
 n. As a result,
the time complexity of CSTE domain translation isOðNMKÞ.

The time complexity of CSTE problem translation is
dominated by the number of numeric variables. The time
complexity is bounded by OðjV dj þ jV gj þ jV wj þ
jrinj þ jroutjÞ. Since the number of numeric variables is
equal to the number of QoS criteria n, the time complexity is
Oð3nþ jrinj þ jroutjÞ. In a composition request, we have
n > jrinj; n > jroutj. Thus, the time complexity of CSTE
problem translation is OðnÞ, which is linear to the number
of QoS criteria.

8 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

5.4 CSTE Planning by the SCP Solver

Given a CSTE planning instance transformed from a Q-WSC

problem, we solve it by a CSTE planner, called the SCP

solver [35], [36], [37]. SCP translates a CSTE problem into an

optimization problem with satisfiability (SAT) constraints

and multiple global constraints, denoted as QoS-MinCost

SAT problem and defined as follows.

Definition 15 (QoS-MinCost SAT Problem). A QoS-

MinCost SAT problem is a tuple �c ¼ ðU;L; �Þ, where U is

a set of Boolean variables, L is a set of clauses, and � is a set

of cost function f�qos; �price; �succ; �avail; �reqg, where each

�i : U ! IN. A solution to �c is a variable assignment that

minimizes the objective function:

QoSð Þ ¼
X
x2U

�qosðxÞv ðxÞ;

subject to:

v ðpÞ ¼ 1; 8p 2 L;

and multiple global constraints on QoS criteria:

X
x2U

�priceðxÞv ðxÞ � c�ðpriceÞ;
X
x2U

�succðxÞv ðxÞ � log1
2
c�ðsuccÞ;

X
x2U

�availðxÞv ðxÞ � log1
2
c�ðavailÞ;

X
x2U

�reqðxÞv ðxÞ � c�ðrepÞ:

Fig. 5 shows the architecture of the SCP planner. Based

on our previous work [36], we turn a CSTE instance into an

optimization problem with SAT-based constraints, which is

called a MinCost SAT instance as defined above. To solve

the encoded MinCost SAT instance, we develop BB-CDCL,

a Branch-and-Bound algorithm based on the conflict driven

clause learning (CDCL) procedure. The planning algorithm

follows the bounded SAT solving strategy, originally

proposed in SATPlan. It starts from a lower bound of the

makespan (N ¼ 1), encodes the CSTE planning problem as a

MinCost SAT instance, either proves it unsatisfiable and

increase the makespan by 1, or finds an optimal solution to
the MinCost SAT instance.

Given a Q-WSC problem ðW;C; P ; rin; routÞ, after our
CSTE planning formulation and problem solving by the
SCP solver, we can generate a composite dependence graph
which describes the correct invocation and execution order
of CSTE actions, and can be directly mapped to a composite
service graph by a simple mapping from planning actions
to operations.

5.5 Numeric Planning by Metric-Based Planner

For a class of restricted Q-WSC problems, we transform a
Q-WSC problem ðW;C; P ; rin; routÞ into a numeric planning
problem and solve it by a numeric planner.

5.5.1 Finding a Linear Solution Plan

A numeric planning problem is a CSTE planning problem
ðA;F; V ; s0; gÞ, except that, 1) there are no temporal and
average-based global constraints in s0, and 2) every action
a 2 A is a numeric action.

Definition 16 (Numeric Action). A numeric action is a
CSTE action without action duration, which is denoted as a
triple a ¼ ðpre; eff; �Þ. The precondition is preðaÞ ¼
ðpðpreÞ; qðpreÞÞ, where pðpreÞ are precondition facts and
qðpreÞ are QoS numeric constraints. The effect is effðaÞ ¼
ðpðeffÞ; qðeffÞÞ, where pðeffÞ are effect facts and qðeffÞ are
QoS numeric effects.

Given a numeric planning problem ðA;F; V ; s0; gÞ, we
define a numeric planning state S ¼ ðSp; SqÞ in its solution
space, where Sp is a fact state with a set of facts fðyes p1Þ;
ðyes p2Þ; . . .g, and Sq is a numeric state with a set of QoS
values ðV o; V d½1�; V d½2�; . . . ; V d½n�Þ.
Definition 17 (Action Applicability). A numeric action a ¼
ðpre; eff; �Þ is applicable to S (denoted as S � a), if it can
satisfy: 1) pðpreÞ is subsumed in S, pðpreÞ � Sp, and 2) QoS
numeric constraints in qðpreÞ must be satisfied by using the
QoS value V d½i� ð1 � i � nÞ in Sq, where n is the number of
QoS criteria.

When a numeric action a is applicable to a state S, the
resulting planning state is S0 ¼ S � a, where S0p ¼ Sp [
pðeffÞ, and S0q ¼ Sq . qðeffÞ, meaning that the QoS values
ðV o; V d½1�; V d½2�; . . . ; V d½n�Þ in S0q are updated by apply-
ing the corresponding QoS values in Sq to QoS numeric
effects in qðeffÞ.

An action sequence, � ¼ ða1; a2; . . . ; amÞ, is an ordered list
of numeric actions. Applying a � to a numeric planning
state S results in a new planning state S0 ¼ S � � ¼ ðððS �
a1Þ � a2Þ � � � � � amÞ if every step is applicable (otherwise
S � � is undefined).

Definition 18 (Plan Satisfiability). Given a numeric planning
state S ¼ ðSp; SqÞ, an action sequence � ¼ ðai; aj; . . . ; akÞ,
and a set of propositional facts X ¼ fðyes x1Þ; ðyes x2Þ; . . .g,
if S0 ¼ S � � is defined and X � S0p, we denote it as
ðai � aj � � � � � akÞ ffl ðS ! XÞ, where 1 � i; j; k � j�j.

Plan satisfiability describes the applicability of an
ordered sequence of actions to a numeric planning state.

ZOU ET AL.: QOS-AWARE DYNAMIC COMPOSITION OF WEB SERVICES USING NUMERICAL TEMPORAL PLANNING 9

Fig. 5. The architecture of the SCP planner.

Definition 19 (Linear Solution Plan). Given a numeric
planning problem ðA; F; V ; s0; gÞ, a linear solution plan is an
action sequence, �� ¼ ðai; aj; . . . ; akÞ, such that ðai � aj �
� � � � akÞ ffl ðs0 ! gÞ is satisfiable.

A linear solution plan, �� ¼ ðai; aj; . . . ; akÞ, is optimal, if
the objective variable V o in S�q has the minimal QoS value,
where S� ¼ ðS�p ; S�q Þ ¼ so � �� is a resulting numeric plan-
ning state after applying every action a 2 �� to the initial
state s0.

Example 5. Reconsider the QoS-aware WSC problem
ðW;C; P ; rin; routÞ, as shown in Example 1. Here, we only
consider global QoS constraints C ¼ ð240; 0:40; 0:35Þ on
execution price, probability of success, and availability.
After translation, we generate a numeric planning
problem ðA;F; V ; s0; gÞ. We then use Metric-FF [38] to
find a linear solution plan, as shown in Fig. 6. The solution
plan satisfies: ða1 � a3 � a4 � � � � � a8Þ ffl ðs0 ! gÞ, where
s0 and g are initial state and goal state.

We use Metric-FF [38] as an automated optimizer to
address the problem, because it is a well-known numeric
planner with the best performance in numeric track of the
International Planning Competition. Note that, unlike SCP,
it is a suboptimal planner that cannot guarantee optimality
of the solution. However, it is very efficient and gives high-
quality solutions in practice.

5.5.2 Constructing a Composite Dependence Graph

Given a linear solution plan, we convert it into a composite
dependence graph, which includes both sequential and
parallel order among numeric actions.

Definition 20 (Action Dependence). Given a numeric
planning problem ðA;F; V ; s0; gÞ, and a linear solution plan
�� ¼ ða1; . . . ; amÞ, a numeric action aj depends on ai
(denoted as ai ‘ aj), if and only if i < j and there exists
at least one precondition fact f 2 pðpreÞ in aj, such that
f 62 s0 and ai is the last action in a1; . . . ; aj
1 that satisfies
f 2 pðeffÞ in ai.

By performing action dependence on a given �� ¼
ða1; . . . ; amÞ, we convert it into a composite dependence
graph G� as follows.

Definition 21 (Composite Dependence Graph). Given a
linear solution plan �� ¼ ða1; . . . ; amÞ, the composite depen-
dence graph is a directed acyclic graph, G� ¼ ðV ;EÞ, such that
V ¼ �� and there is an edge ðai; ajÞ 2 E if aj depends on
aiðai ‘ ajÞ.

Example 6. Reconsider the linear solution plan ��, as shown
in Fig. 6. After performing action dependence on the ��,

Fig. 7 illustrates the generated composite dependence

graph, where each numeric action ai corresponds to an

operation opi in Example 1.

Once a linear solution plan �� with suboptimal QoS

value is found by Metric-FF, we only need to convert this
plan into a composite dependence graph G� once, which

still keeps suboptimal in terms of comprehensive QoS. In
fact, the conversion from �� to G� can be done fast enough

because we only need to make a conversion within a very
small finite number of numeric actions involved in ��. After

the conversion, we directly map the G� to a composite

service graph G by replacing actions with their correspond-
ing operations, as shown in Fig. 3.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setup and Data Sets

Experiments are conducted on a DELL PC with Intel Dual

Core 3.1 GHZ CPU and 4G RAM. We implemented a

prototype system in Java. We also implemented the IP-

based approach [4] by automatically generating AMPL

model and data from web service repositories, which can be

solved by an IP solver.
We have conducted extensive experiments on 30 web

service repositories with 7,275 number of web services.

Table 4 shows the number of operations in each of these
30 web service repositories. They are from six simulated

predefined composition workflow models with the number
of tasks 9, 16, 18, 7, 14, and 20, respectively. We mark these

six workflow models as A, B, C, D, E, and F. By using our
developed module Q-services generator to generate ran-

domly specified number of operations, every workflow
corresponds to five web service repositories. These reposi-

tories are generated, respectively, by the number of 5, 10, 15,
20, and 25 candidate operations for each task in the

workflow, as well as randomly adding certain number of
operations outside of the workflow.

For the QoS values of each operation in a web service
repository, we use the module Q-services generator to

randomly generate five QoS values on a group of
QoS criteria, including execution price, execution time,

probability of success, availability and reputation. Every
QoS value on a QoS criterion is generated by Q-services

generator with a specified value domain. Specifically, the

range of five QoS values for each operation in the
workflow models A, B, and C is {5-100, 1-50, 0.65-1,

0.65-1, 3.5-5} on the five QoS criteria. On the other hand,
we have the range of five QoS values {5-50, 1-15, 0.65-1,

0.65-1, 3.5-5} for those operations in the workflow models
D, E, and F.

10 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

Fig. 6. The linear solution plan with suboptimal QoS value found by
Metric-FF. Each numeric action ai corresponds to an operation opi from
the Q-WSC problem in Example 1.

Fig. 7. The composite dependence graph for the linear solution plan
shown in Fig. 6.

6.2 QoS Value of a Composite Service Graph

6.2.1 The Results of Comprehensive QoS

The 30 web service repositories are classified into two groups
to evaluate the QoS value of a composite service generated
by our approach and the IP-based approach [4]. The first
group of 15 web service repositories is from the workflow
models A, B, and C. They are used to test our proposed
approach using Metric-FF (called Metric-FF) and the IP-
based approach (called IP-Linear), where each composition
request in a service repository has three global QoS
constraints without temporal and average-based features.
The second group of 15 web service repositories from the
workflows D, E, and F are applied to our approach using SCP
solver (called SCP Solver) and the IP-based approach (called
IP-SAT) with five global QoS constraints in each request.

Table 5 shows global QoS constraints of the 30 composi-
tion requests for these 30 web service repositories. On the
one hand, we take the 15 composition requests on the first
group of 15 web service repositories from workflow models
A, B, and C. Each of these composition requests corre-
sponds to a web service repository and has three global QoS
constraints in the order of execution price, probability of
success, and availability. On the other hand, we take
another 15 composition requests on the second group of

15 web service repositories from the workflow models D, E,
and F. Each of them has five global QoS constraints in the
order of execution price, execution time, probability of
success, availability, and reputation. We set QoS prefer-
ences P ¼ ð0:2; 0:2; 0:2; 0:2; 0:2Þ on the five QoS criteria.
After Q-WSC planning formulation, each Q-WSC problem
is translated to a CSTE or numeric planning problem that is
fed to Metric-FF or SCP solver to find a composite service
graph. Also, we transform the Q-WSC problem to an IP
problem with an AMPL model and AMPL data. Then, we
use an IP solver CPLEX to find a composite service graph.
Table 6 summarizes the comprehensive QoS of each
composite service generated by Metric-FF, SCP solver, and
the IP-based approach.

6.2.2 Comparison and Analysis

Based on the above experimental results on comprehensive
QoS, we compare our approach against the IP-based
approach and analyze the results.

1. Our proposed approach using planning does not
depend on a predefined workflow model for QoS-
aware service composition problem. However, the
IP-based approach requires a predefined workflow
and selects a sequence of services for the tasks
defined in that workflow. Although these approaches
under predefined workflows can efficiently find a
composite service graph, they cannot ensure global
satisfiability and optimality for a Q-WSC problem.

2. Our approach using Metric-FF planner can gener-
ate a linear solution plan with a globally sub-
optimal QoS value. Experimental results show that
the comprehensive QoS of a composite service
found by our approach using Metric-FF outper-
forms that generated by the IP-based approach on
all the test cases.

3. To deal with global QoS constraints with temporal
and average-based features, we use our SCP solver
to handle planning problems with temporal expres-
siveness and numeric reasoning. As shown in the
experimental results, the QoS value of a composite
dependence graph found by our approach using
SCP solver is always better than that of a composite
service found by the IP-based approach.

ZOU ET AL.: QOS-AWARE DYNAMIC COMPOSITION OF WEB SERVICES USING NUMERICAL TEMPORAL PLANNING 11

TABLE 4
The 30 Web Service Repositories for Testing

Metric-FF, SCP Solver and the IP-Based Approach

The number of candidate operations for a task in a workflow are 5, 10,
15, 20, and 25. “WO” is the number of operations covered by tasks in a
workflow. “TO” is the number of operations in a service repository.

TABLE 5
Global QoS Constraints within a Composition Request for Each Repository

In the first group of 15 composition requests for the workflows A, B, and C, each composition request has three global QoS constraints in the order of
execution price, probability of success, and availability. In the second group of 15 composition requests for the workflows D, E, and F, it has five
global QoS constraints in each request in the order of execution price, execution time, probability of success, availability, and reputation.

6.3 Time of Generating a Composite Service

We compare the computational time of our approach using
Metric-FF and SCP to the IP-based approach. The experi-
ments are tested on 30 composition requests, as shown in
Table 5. Our approach using Metric-FF and SCP finds a
linear solution plan and a composite dependence graph for
a composition request, respectively. The IP-based approach
using an IP solver finds a composite service graph for a

composition request. Figs. 8 and 9 show computational time
of each request.

From Figs. 8 and 9, we can see that, for the IP-based
approach, its computing time of each composition request
is in no more than 0.421 seconds. Our approach using
Metric-FF can find a Q-WSC solution within 0.81 seconds
for any composition request. For more complex problems
with temporal numeric planning, our approach using SCP

12 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

TABLE 6
Experimental Results on the Comprehensive QoS Value (the Lower the

Better) Found by Metric-FF, SCP Solver and the IP-Based Approach

Column “Constraint” represents global QoS constraints specified in a composition request, as shown in Table 5. For a composition request on each
web service repository, it corresponds to a set of global QoS constraints Cm

p , where p is the workflow model and m is the number of candidate
operations for each task in the model. For example, C5

A represents the global QoS constraints {209,0.228,0.274} in Table 5. Column “FF” represents
Metric-FF. Column “SCP” represents SCP solver.

Fig. 8. Experimental results on the computational time of Q-WSC of our approach using Metric-FF planner and the IP-based method IP-Linear. There
are 15 composition requests tested on 15 web service repositories.

Fig. 9. Experimental results on the computational time of Q-WSC of our approach using SCP solver and the IP-based method IP-SAT. There are
15 composition requests tested on 15 web service repositories.

finds the optimal solution in no more than 3.55 seconds for
all of the 30 composition requests.

Our approach is slower than the IP-based approach. The
reason is that the IP-based approach only optimizes the QoS
value under a given predefined workflow model (and hence
suboptimal), while our approach using the SCP solver finds
the optimal Q-WSC solution under all possible workflows, a
service composition task with a much larger search space.

When the problem size is within the range specified by
our experiments, the developed SCP planner can be
integrated by corporations to help workflow creators build
their operational business processes in real applications,
such as airline ticket ordering, electronic commerce, and
enterprise business workflow management.

From the above experimental results on computational
time, we conclude that our approaches with Metric-FF and
SCP, although slower than the IP-based approach, are still
fast enough for practical use. Since our approach delivers
solutions with the optimal QoS, it should be preferred by
users who concern about QoS values such as execution
price and time.

7 CONCLUSIONS

This paper presents an AI planning-based method for Q-
WSC. The method first compiles a Q-WSC problem into a
CSTE planning problem. Then, the method applies our
recently developed SCP planner to handle the CSTE
planning problem using temporal planning and numerical
optimization and find a composite service graph with the
optimal QoS. For a restricted class of Q-WSC problems, we
transform them into a numeric planning problem, which
can be solved by a metric-based planner Metric-FF. Our
approach significantly extends the capability of prior work
by ensuring global satisfiability and optimality without
assuming a predefined workflow. The experimental results
demonstrate that our proposed approach is fast enough for
practical deployment, thanks to the highly efficient auto-
mated planners.

ACKNOWLEDGMENTS

This work was partially supported by US National Science
Foundation grant IIS-0713109, a Microsoft Research New
Faculty Fellowship, a National Natural Science Foundation
of China (61303096), and a Shanghai Natural Science
Foundation (13ZR1454600).

REFERENCES

[1] J. Rao and X. Su, “A Survey of Automated Web Service
Composition Methods,” Proc. First Int’l Conf. Semantic Web Services
and Web Process Composition, vol. 3387, pp. 43-54, 2005.

[2] J. Haddad, M. Manouvrier, and M. Rukoz, “TQoS: Transactional
and QoS-Aware Selection Algorithm for Automatic Web Service
Composition,” IEEE Trans. Services Computing, vol. 3, no. 4, pp. 73-
85, Jan.-Mar. 2010.

[3] S. Sohrabi and S. McIlraith, “Preference-Based Web Service
Composition: A Middle Ground between Execution and Search,”
Proc. Int’l Semantic Web Conf. (ISWC ’10), 2010.

[4] L. Zeng et al., “QoS-Aware Middleware for Web Services
Composition,” IEEE Trans. Software Eng., vol. 30, no. 5, pp. 311-
327, May 2004.

[5] D.A. Menascé, “Composing Web Services: A QoS View,” IEEE
Internet Computing, vol. 8, no. 6, pp. 88-90, Nov./Dec. 2004.

[6] M. Jaeger, G. Rojec-Goldmann, and G. Múhl, “QoS Aggregation
for Web Service Composition Using Workflow Patterns,” Proc.
Int’l Enterprise Distributed Object Computing Conf., 2004.

[7] W. Zhang et al., “QoS-Driven Service Selection Optimization
Model and Algorithms for Composite Web Services,” Proc.
Ann. Int’l Computer Software and Applications Conf. (COMPSAC),
2007.

[8] B. Wu, C. Chi, and S. Xu, “Service Selection Model Based on QoS
Reference Vector,” Proc. IEEE Congress Services, 2007.

[9] S. Hwang et al., “Dynamic Web Service Selection for Reliable
Web Service Composition,” IEEE Trans. Services Computing, vol. 1,
no. 2, pp. 104-116, Jan. 2008.

[10] M. Falou et al., “A Distributed Planning Approach for Web
Services Composition,” Proc. Int’l Conf. Web Services (ICWS ’10),
2010.

[11] P. Bertoli et al., “Continuous Orchestration of Web Services via
Planning,” Proc. Int’l Conf. Automated Planning and Scheduling
(ICAPS ’09), 2009.

[12] J. Hoffmann et al., “Message-Based Web Service Composition,
Integrity Constraints, and Planning under Uncertainty: A New
Connection,” J. Artificial Intelligence Research, vol. 35, no. 1, pp. 49-
117, 2009.

[13] S. Oh, D. Lee, and S. Kumara, “Effective Web Service Composition
in Diverse and Large-Scale Service Networks,” IEEE Trans.
Services Computing, vol. 1, no. 1, pp. 15-32, Jan.-Mar. 2008.

[14] X. Zheng and Y. Yan, “An Efficient Syntactic Web Service
Composition Algorithm Based on the Planning Graph Model,”
Proc. Int’l Conf. Web Services (ICWS ’08), 2008.

[15] J. Hoffmann, P. Bertoli, and M. Pistore, “Web Service Composition
as Planning, Revisited: In between Background Theories and
Initial State Uncertainty,” Proc. AAAI Conf. Artificial Intelligence
(AAAI), 2007.

[16] S. Oh, D. Lee, and S. Kumara, “Web Service Planner (WSPR): An
Effective and Scalable Web Service Composition Algorithm,” Int’l
J. Web Services Research, vol. 4, no. 1, pp. 1-23, 2007.

[17] M. Pistore, P. Traverso, and P. Bertoli, “Automated Composi-
tion of Web Services by Planning in Asynchronous Domains,”
Proc. Int’l Conf. Automated Planning and Scheduling (ICAPS ’08),
2005.

[18] M. Pistore et al., “Automated Composition of Web Services by
Planning at the Knowledge Level,” Proc. Int’l Joint Conf. Artificial
Intelligence, 2005.

[19] E. Sirin et al., “HTN Planning for Web Service Composition Using
SHOP2,” J. Web Semantics, vol. 1, no. 4, pp. 377-396, 2004.

[20] S. Sohrabi, N. Prokoshyna, and S. McIlraith, “Web Service
Composition via Generic Procedures and Customizing User
Preferences,” Proc. Int’l Semantic Web Conf. (ISWC ’06), 2006.

[21] S. Sohrabi and S. McIlraith, “Optimizing Web Service Composi-
tion While Enforcing Regulations,” Proc. Int’l Semantic Web Conf.
(ISWC ’09), 2009.

[22] S. Rosario et al., “Probabilistic QoS and Soft Contracts for
Transaction-Based Web Services Orchestrations,” IEEE Trans.
Services Computing, vol. 1, no. 4, pp. 187-200, Oct. 2008.

[23] H. Rahmani, G. GhasemSani, and H. Abolhassani, “Automatic
Web Service Composition Considering User Non-Functional
Preferences,” Proc. Int’l Conf. Next Generation Web Services Practices
(NWESP ’08), 2008.

[24] E. Blanco, Y. Cardinale, and M. Vidal, “Aggregating Functional
and Non-Functional Properties to Identify Service Composi-
tions,” Engineering Reliable Service Oriented Architecture: Managing
Complexity and Service Level Agreements, pp. 145-174, IGI Global,
2011.

[25] Y. Cardinale et al., “CPN-TWS: A Coloured Petri-Net Approach
for Transactional-Qos Driven Web Service Composition,” Int’l
J. Web and Grid Services, vol. 7, no. 1, pp. 91-115, 2011.

[26] A. Brogi, S. Corfini, and R. Popescu, “Semantics-Based Composi-
tion-Oriented Discovery of Web Services,” ACM Trans. Internet
Technology, vol. 8, no. 4, pp. 1-39, 2008.

[27] M. Klusch, A. Gerber, and M. Schmidt, “Semantic Web Service
Composition Planning with OWLS-XPlan,” Proc. AAAI Fall Symp.
Semantic Web and Agents, 2005.

[28] M. Klusch and A. Gerber, “Fast Composition Planning of OWL-S
Services and Application,” Proc. European Conf. Web Services
(ECOWS ’06), 2006.

ZOU ET AL.: QOS-AWARE DYNAMIC COMPOSITION OF WEB SERVICES USING NUMERICAL TEMPORAL PLANNING 13

[29] J. Hoffmann, I. Weber, and F. Kraft, “SAP Speaks PDDL:
Exploiting a Software-Engineering Model for Planning in Business
Process Management,” J. Artificial Intelligence Research, vol. 44,
pp. 587-632, 2012.

[30] J. Hoffmann, I. Weber, and F.M. Kraft, “Planning@SAP: An
Application in Business Process Management,” Proc. Int’l Schedul-
ing and Planning Applications Workshop (SPARK ’09), 2009.

[31] K. Currie and A. Tate, “O-Plan: The Open Planning Architecture,”
Artificial Intelligence, vol. 52, no. 1, pp. 49-86, 1991.

[32] A. Tate and J. Dalton, “O-Plan: A Common Lisp Planning Web
Service,” Proc. Int’l Lisp Conf. (ILC ’03), 2003.

[33] S. Khan et al., “A Multi-Agent System-Driven AI Planning
Approach to Biological Pathway Discovery,” Proc. Int’l Conf.
Automated Planning and Scheduling (ICAPS ’03), 2003.

[34] Y. Liu, A. Ngu, and L. Zeng, “QoS Computation and Policing in
Dynamic Web Service Selection,” Proc. Int’l World Wide Web Conf.
(WWW ’04), 2004.

[35] Q. Lu et al., “A SAT-Based Approach to Cost Sensitive Temporally
Expressive Planning,” to be published in ACM Trans. Intelligent
Systems and Technology, 2012.

[36] R. Huang, Y. Chen, and W. Zhang, “An Optimal Temporally
Expressive Planner: Initial Results and Application to P2P
Network Optimization,” Proc. Int’l Conf. Automated Planning and
Scheduling (ICAPS ’09), 2009.

[37] Q. Lu et al., “Temporal Planning for Co-Design of Host
Scheduling and Workflow Allocation in Mobile Environments,”
Proc. Int’l Scheduling and Planning Applications Workshop (SPARK
’11), 2011.

[38] J. Hoffmann et al., “The Metric-FF Planning System: Translating
Ignoring Delete Lists to Numeric State Variables,” J. Artificial
Intelligence Research, vol. 20, no. 1, pp. 291-341, 2003.

Guobing Zou received the joint PhD degree in
computer science from Tongji University and
Washington University in St. Louis, Missouri, in
2012. He has been an assistant professor in the
School of Computer Engineering and Science at
Shanghai University since 2012. His research
interests include web service composition, auto-
mated planning, Semantic Web, and information
retrieval. He has published 17 papers in inter-
national journals and conferences, including.

AAAI ’12, Soft Computing, the Journal of Tongji University, FSKD ’09,
and CCV ’10. He currently serves as a program committee member for
CIT ’12 and UUMA ’12. He has also worked as a reviewer for the Journal
of Artificial Intelligence Research, KDD ’09, AAAI ’10, and ICDM ’10.

Qiang Lu received the BE and PhD degrees
from the School of Computer Science and
Technology, University of Science and Technol-
ogy of China (USTC), in 2007 and 2012,
respectively. He is currently a postdoctoral
researcher in the School of Computer Science
and Technology at USTC. His research interests
include automated planning and scheduling,
parallel and distributed computing, and cloud
computing. He received the Joint PhD Training

Scholarship from the China Scholarship Council in 2009. He has
published more than 10 papers in journals and conference proceedings,
including the ACM Transactions on Intelligent Systems and Technology,
ICAPS ’11, CloudCom ’11, and IPC ’11. He is a student member of the
ACM and the CCF.

Yixin Chen received the PhD degree in com-
puter science from the University of Illinois at
Urbana-Champaign in 2005. He is an associate
professor of computer science at the Washing-
ton University in St. Louis, Missouri. His re-
search interests include nonlinear optimization,
constrained search, planning and scheduling,
data mining, and data warehousing. His work on
planning won first-place prizes in the Interna-
tional Planning Competitions (2004 and 2006).

He won the Best Paper Award at AAAI (2010) and ICTAI (2005), and a
best paper nomination at KDD (2009). He received an Early Career
Principal Investigator Award from the US Department of Energy (2006)
and a Microsoft Research New Faculty Fellowship (2007). He serves as
an associate editor for the IEEE Transactions on Knowledge and Data
Engineering and ACM Transactions on Intelligent Systems and
Technology. He is a senior member of the IEEE.

Ruoyun Huang received the PhD degree in
computer science from Washington University in
St. Louis, Missouri, in August 2011. Before
receiving his PhD degree, he worked for
BearingPoint Consulting. He is currently a soft-
ware engineer at Google, working with large-
scale intelligent systems. His research interests
include automated planning, large-scale intelli-
gent systems, web service composition, and
probabilistic inference. He has published more

than 12 papers in top journals and conference proceedings, including
the Journal of Artificial Intelligence Research, Artificial Intelligence, AAAI
(2008, 2010, 2012), and ICAPS ’09. He won the AAAI ’10 Outstanding
Paper Award.

You Xu received the BSc degree in mathe-
matics from Nanjing University in 2006 and the
MSc degree in computer science from the
Washington University in St. Louis, Missouri, in
2009. He is currently working toward the PhD
degree in the Department of Computer Science
and Engineering at Washington University in
St. Louis, Missouri. He is currently working for
Google in Chicago, Illinois. His research inter-
ests include large-scale nonlinear optimization,

constrained search, and partial-order reduction for planning, and
automated planning in cloud computing. He has published 12 papers,
including some appearing in conference proceedings such as RTAS ’12,
RTAS ’11, MobiHoc ’10, RTSS ’10, and IJCAI ’09.

Yang Xiang received the PhD degree in
management science and engineering from the
Harbin Institute of Technology in 1999. He is a
professor in the Department of Computer
Science and Technology at Tongji University.
His research interests include data warehousing,
data mining, intelligent decision support system,
service computing and e-commerce. He has
published more than 100 papers in international
journals and conferences, including Expert Sys-

tems with Applications, Science China Information Sciences, and the
Chinese Journal of Electronics. He has published four books on
intelligent decision support system in complex problems.

14 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 7, NO. 1, JANUARY-MARCH 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

