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Abstract

Background: Differentiation of human embryonic stem cells requires precise control of gene expression that
depends on specific spatial and temporal epigenetic regulation. Recently available temporal epigenomic data derived
from cellular differentiation processes provides an unprecedented opportunity for characterizing fundamental
properties of epigenomic dynamics and revealing regulatory roles of epigenetic modifications.

Results: This paper presents a spatial temporal clustering approach, named STCluster, which exploits the temporal
variation information of epigenomes to characterize dynamic epigenetic mode during cellular differentiation. This
approach identifies significant spatial temporal patterns of epigenetic modifications along human embryonic stem
cell differentiation and cluster regulatory sequences by their spatial temporal epigenetic patterns.

Conclusions: The results show that this approach is effective in capturing epigenetic modification patterns
associated with specific cell types. In addition, STCluster allows straightforward identification of coherent epigenetic
modes in multiple cell types, indicating the ability in the establishment of the most conserved epigenetic signatures
during cellular differentiation process.
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Background
An epigenome consists of chemical modifications and
variations to histones, DNA methylation and other pro-
teins that package the genome [1, 2]. These epigenetic
modifications crucially contribute to epigenetic mainte-
nance of chromatin structures and gene expression reg-
ulation [3]. There are various interactions among these
modifications, which act combinatorially to orchestrate
gene expression in different cell types [4]. When heri-
table from one cell generation to the next, the epige-
netic information can bring about lasting changes in gene
expression [5, 6].
Embryonic development is a complex process that

requires precise gene regulation to govern developmental
decisions during cellular differentiation [7, 8]. However,
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how gene expression is regulated and maintained along
developmental transitions remains to be understood. Cur-
rently, it is well accepted that transcription factors binding
to cis-regulatory sequences coordinately regulate gene
expression in response to various environmental cues [9].
On the contrary, the regulatory functions of epigenetic
modifications that accompany embryogenesis are largely
unexplored. To fully investigate the mechanisms of epi-
genetic regulation in the cellular differentiation process,
extensive research efforts provide genome-wide maps of
epigenetic modifications at multiple developmental time
points. Human embryonic stem cells were differentiated
into a variety of precursor cell types [3, 10], including
mesendoderm [11], trophoblast-like cells [12], mesenchy-
mal stem cells [13] and neural progenitor cells [14].
Mouse embryonic stem cells were also differentiated into
mesendoderm cells [15]. The availability of these tem-
poral epigenomic data provides a unique opportunity
for characterizing fundamental properties of epigenome
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dynamics and revealing regulatory roles of epigenetic
modifications.
To establish combinatorial patterns of epigenetic mod-

ification, previous computational methods primarily
utilize spatial information of epigenetic marks. For exam-
ple, Chromasig was designed to study histone modifica-
tion patterns using correlations of histone signals [16].
CoSBI also used the correlations within 5Kbp genomic
segments to exhaustively searched for histone code [17].
ChromHMM applied a HMMmodel to annotate genomic
sequences by co-occurrence of multiple epigenetic marks
[18]. RFECS was developed based on random forests
[19]. AWNFR explored epigenomic landscapes using the
wavelet transforms [20]. Although these methods success-
fully identify the combinatorial epigenetic mode based on
spatial epigenomic information, there is still an urgent
need to exploit newly produced temporal information to
study the dynamic patterns and functions of epigenetic
modifications.
In this study, we developed a spatial temporal clustering

approach that exploits the temporal variation information
of epigenomes along the differentiation process, aiming to
characterize dynamic properties of epigenetic modifica-
tions. This approach identifies significant spatial temporal
patterns of epigenetic modifications during embryoge-
nesis and cluster regulatory sequences by their spatial
temporal epigenetic patterns. The results might shed a
light on how epigenetic modifications evolve temporally
and how the spatial temporal patterns of epigenetic mod-
ifications regulate gene expression during the process of
cellular differentiation.

Methods
Datasets
In mammals, studying the epigenetic mechanisms of
early embryonic development often requires access to
embryonic cell types. In recent studies, to analyze early
human developmental decisions, human embryonic stem
cells (hESCs) were differentiated into trophoblast-like
cells, mesendoderm, mesenchymal stem cells, and neural
progenitor cells [3, 10]. The first three states represent
developmental events that mirror critical developmental
decisions in the embryo. Mesenchymal stem cells are
fibroblastoid cells that are capable of expansion andmulti-
lineage differentiation to bone, cartilage, adipose, muscle,
and connective tissues. In these cell types, genome-wide
maps of main epigenetic marks have been generated
using ChIP-seq [21]. In detail, the investigated epigenetic
modifications were profiled, including H3K4me1/2/3,
H3K36me3, H3K9me3, H3K27me3, H3K79me1,
H2AK5ac, H2bK120ac, H2BK5ac, H3K18ac, H3K23ac,
H3K27ac, H3K4ac, H3K9ac and H4K8ac. RNA expression
profiles of these five cell types were also generated using
Affymetrix GeneChip-arrays. Here, we downloaded these

datasets from the website of NIH Roadmap Epigenome
Project (http://www.epigenomebrowser.org/) [22].

Methods
General scheme of the STCluster algorithm
The STCluster algorithm analyzes genome-wide maps
of epigenetic modifications to characterize dynamic epi-
genetic signatures during embryonic stem cell differen-
tiation. There are four major steps in the STCluster
algorithm: (i) ChIP-seq data transformation, (ii) construct
the co-occurrence graph for each cell type, (iii) mine
the co-occurrence graphs to identify spatial clusters of
genomic segments with coherent epigenetic patterns, and
(iv) mine the resulted spatial clusters of each cell type to
identify spatial temporal clusters and discover conserved
epigenetic signatures during the differentiation process.
Figure 1 illustrates the scheme of the STCluster algorithm.
In the following, we elaborate the process of epigenetic
mode analysis step by step.

Step 1. Data transformation
The whole human genome were divided into non-
overlapping 200bp bins. For each epigenetic modification
map, we first computed the summary tag count of every
bin. Then, in each cell type, raw sequence read counts of
each epigenetic modification were normalized by the total
number of reads followed by arcsine transformation [23],
to remove noises resulting from spurious tag counts in
the ChIP-seq experiments. Further, we divided the whole
genome into 5Kbp genomic regions. In this way, for each
cell type, the profiles of these epigenetic modifications
are represented as a matrix Ri, where i is the index of
the genomic regions ranging from 1 to N (assuming there
are totally N genomic regions under consideration), as
shown in Fig. 1a. In each region, the number of columns
is denoted as B and the number of epigenetic modifica-
tions is denoted as K. The column vectors correspond to
combinatorial epigenetic modification tag counts within
individual genomic bins and the row vectors correspond
to the contiguous genomic landscape of individual epige-
netic modifications.

Step 2. Construct co-occurrence graph for each cell type
In this step, we computed the correlation coefficients of
epigenetic modification pairs in each region, and then
we constructed the corresponding co-occurrence graph
for each cell type. Given the processed and organized
epigenetic modification data of each cell type, correla-
tion coefficients of any two histone modifications at every
region were calculated to obtain a coefficient matrix. If
the coefficients are higher than a given threshold, the two
epigenetic modifications are regarded as coherent in this
region. Subsequently, this region was added to the cor-
responding region set. Based on the coefficient matrix,
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Fig. 1 The overview of STCluster algorithm. a Step 1, ChIP-seq data transformation. b Step 2, construct the co-occurrence graph for each cell type. c
Step 3, mine the co-occurrence graphs to identify spatial clusters with coherent epigenomic modification patterns. d Step 4, identify
spatial-temporal clusters during the differentiation process

we further constructed the co-occurrence graph, which is
modeled as an undirected graph G = (V, E), where V is
the set of all histone modifications. For any two epigenetic
modification types hi and hj (i �=j), if they are correlated at
any region, there exists an edge e ∈ E between vertices hi
and hj. In addition, each edge in the co-occurrence graph
is associated with the region set. Figure 1b shows an exam-
ple of co-occurrence graph. Here, we set the correlation

coefficient threshold as 0.9 to achieve a high quality of
spatial clusters.

Step 3. Mine spatial clusters from co-occurrence graph
The co-occurrence graph represents in a compact way
all the correlated epigenetic modifications in different
regions. It can be used to mine potential spatial clus-
ters corresponding to each developmental stage, and filter
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out most of the unrelated data. The STCluster algorithm
applies a depth first search (DFS) strategy on the co-
occurrence graph to mine all the spatial clusters. A typical
spatial cluster represents a group of genomic regions that
share spatial epigenetic patterns. To gain the significant
epigenetic states, we set the minimum number of histone
modifications as 5 and the minimum percent of regions
as 0.1%. For each cell type, we identified a set of spatial
clusters, as shown in Fig. 1c.

Step 4. Identify spatial-temporal clusters from spatial clusters
On obtaining the maximal spatial cluster set for all cell
types, we utilized them to mine the maximal spatial-
temporal clusters. This is accomplished by enumerating
the subsets of the time points (Fig. 1d), using a pro-
cess similar to the spatial cluster clique mining. The
regions in each spatial temporal clusters exhibit similar
changes of epigenetic modifications during the cellular
differentiation process. Spatial-temporal clusters indicate
specific conserved chromatin signatures that are shared
by multiple time points along the embryonic stem cell
differentiation.

Results and Discussion
Identifying combinatorial epigenetic states during
differentiation
To investigate combinatorial epigenetic states during
the differentiation of embryonic stem cells, we applied
STCluster to the genome-wide epigenetic modification
maps of five cell types, including H1, Mesendoderm,
Trophoblast-like cells, Mesenchymal stem cells and Neu-
ronal progenitor cells. STCluster first grouped genomic
regions based on spatial patterns of epigenetic modifica-
tions to identify spatial clusters. For each cell type, we
set the minimum number of histone modifications as

5 and the minimum percent of regions as 0.1%, which
allow us to capture patterns that involve at least five epi-
genetic modifications and re-occur across at least 0.1%
of the human genome. With this parameter setting, we
respectively identified 3344, 667, 4726, 1422, 1984 spa-
tial clusters in H1, Mesendoderm, Trophoblast-like cells,
Mesenchymal stem cells and Neuronal progenitor cells.
Next, we evaluated the occurrence frequencies of all

investigated epigenetic modifications in the identified
spatial clusters. Specifically, the occurrence frequency of
an epigenetic modification is computed as the ratio of the
occurrence in these spatial clusters and the total number
of 5Kbp non-overlapping regions in the genome. Their
occurrence frequencies are depicted in Fig. 2. We found
that epigenetic modification H3K18ac has a high fre-
quency in all cell types, which indicates that these regions
share the variation pattern of this epigenetic modification.
Epigenetic modifications (H3K4me1/3) seldom occur in
the spatial clusters of H1, whereas epigenetic modification
(H3K4me2) frequently occur in the spatial clusters of cell
types except H1. In the spatial clusters of Neuronal pro-
genitor cells, most epigenetic modifications have median
occurrence frequencies.
Expanding this research, we studied co-occurred epi-

genetic modifications at each developmental stage of
the differentiation process. For each cell type, we ranked
the identified spatial clusters according to the number
of regions co-occupied by epigenetic modification set.
We discovered groups of epigenetic modifications that
frequently co-occur in each cell type. Table 1 summarizes
the top 10 frequently co-occurred epigenetic modifica-
tions. Overall, the clustering results show that different
cell types exhibit diverse cell type specific patterns of
epigenetic modifications. The overlaps of epigenetic
modifications among these cell types are small. However,

Fig. 2 The occurrence frequencies of all investigated epigenetic modifications in the identified spatial clusters
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Table 1 The top 10 co-occurred epigenetic modifications in different cell types during the differentiation process

H1 Mesendoderm Trophoblast-like cells Mesenchymal stem cells Neuronal progenitor cells

1 H3K4me2,H3K4me1,
H2aK5ac,H3K27ac,
H2bK5ac,H3K23ac,
H3K9me3,H3K79me1,
H3K4ac,H3K9ac,
H2bK120ac

H3K4me2,H3K4me1,
H3K27ac,H3K23ac,
H3K9ac,H3K18ac

H2aK5ac,H2bK5ac,
H3K27me3,H3K23ac,
H3K9me3,H3K79me1,
H3K4ac,H3K9ac,
H2bK120ac,H3K18ac

H3K4me2,H3K36me3,
H3K27ac,H2bK5ac,
H3K23ac,H3K9me3,
H3K4ac,H3K9ac,
H2bK120ac

H3K4me1,H3K36me3,
H2aK5ac,H3K27ac,
H2bK5ac,H3K27me3,
H3K23ac,H3K79me1,
H3K9ac,H2bK120ac

2 H2aK5ac,H2bK5ac,
H3K23ac,H3K79me1,
H3K4ac,H2bK120ac

H3K4me2,H3K4me1,
H3K27ac,H3K23ac,
H3K9ac,H2bK120ac

H3K4me1,H2bK5ac,
H3K27me3,H3K23ac,
H3K9me3,H3K79me1,
H3K4ac,H3K9ac,
H2bK120ac,H3K18ac

H3K4me2,H3K36me3,
H2bK5ac,H3K23ac,
H3K4ac,H2bK120ac

H3K4me1,H3K36me3,
H3K27ac,H2bK5ac,
H3K27me3,H3K9me3,
H3K79me1,H3K9ac,
H2bK120ac

3 H2bK5ac,H3K27me3,
H3K23ac,H3K79me1,
H3K4ac,H3K9ac

H2aK5ac,H2bK5ac,
H3K79me1,H3K4ac,
H2bK120ac,H3K18ac

H3K27ac,H2bK5ac,
H3K27me3,H3K23ac,
H3K9me3,H3K18ac

H3K36me3,H2aK5ac,
H2bK5ac,H3K23ac,
H3K9me3,H3K4ac H3K9ac

H3K4me2,H2aK5ac,
H3K23ac,H3K9me3,
H3K4ac,H2bK120ac

4 H3K4me2,H3K4me1,
H2aK5ac,H3K27ac,
H2bK5ac,H3K27me3,
H3K23ac,H3K79me1,
H3K4ac,H3K9ac,H3K18ac

H3K4me1,H3K36me3,
H3K27ac,H3K23ac,
H3K79me1,H3K4ac,
H3K9ac,H2bK120ac,
H3K18ac

H3K27ac,H2bK5ac,
H3K27me3,H3K23ac,
H3K9me3,H2bK120ac

H3K36me3,H2aK5ac,
H2bK5ac,H3K23ac,
H3K4ac,H3K9ac

H3K4me2,H2aK5ac,
H3K23ac,H3K9me3,
H3K9ac,H2bK120ac

5 H2bK5ac,H3K27me3,
H3K23ac,H3K79me1,
H3K4ac,H3K18ac

H3K27ac,H3K27me3,
H3K9me3,H3K4ac,
H2bK120ac,H3K18ac

H3K27ac,H2bK5ac,
H3K27me3,H3K23ac,
H3K9me3,H3K9ac

H3K4me2,H3K36me3,
H2bK5ac,H3K23ac,
H3K9me3,H3K9ac

H3K27ac,H2bK5ac,
H3K27me3,H3K9me3,
H3K9ac,H2bK120ac

6 H2aK5ac,H2bK5ac,
H3K9me3,H3K79me1,
H3K4ac,H2bK120ac

H3K4me2,H3K27ac,
H3K9me3,H3K4ac,
H2bK120ac,H3K18ac

H3K27ac,H2bK5ac,
H3K27me3,H3K23ac,
H3K9me3,H3K79me1

H3K36me3,H2aK5ac,
H2bK5ac,H3K9me3,
H3K4ac,H2bK120ac

H3K27ac,H2bK5ac,
H3K27me3,H3K9me3,
H3K4ac,H2bK120ac

7 H2aK5ac,H2bK5ac,
H3K23ac,H3K79me1,
H3K4ac,H3K9ac

H3K4me2,H3K4me1,
H3K27ac,H3K27me3,
H3K9me3,H3K18ac

H3K27ac,H2bK5ac,
H3K27me3,H3K23ac,
H3K9me3,H3K4ac

H3K4me2,H3K36me3,
H2bK5ac,H3K23ac,
H3K9me3,H3K4ac

H3K4me2,H3K4me1,
H3K23ac,H3K9me3,
H3K9ac,H2bK120ac

8 H3K4me2,H2aK5ac,
H3K27ac,H2bK5ac,
H3K27me3,H3K23ac,
H3K9me3,H3K79me1,
H3K4ac,H3K9ac,H3K18ac

H3K4me2,H3K4me1,
H3K27ac,H3K27me3,
H3K4ac,H3K18ac

H3K4me2,H3K27ac,
H3K27me3,H3K23ac,
H3K9me3,H3K9ac

H3K4me2,H3K36me3,
H2bK5ac,H3K23ac,
H3K4ac,H3K9ac,
H2bK120ac

H3K4me2,H3K4me1,
H3K23ac,H3K9me3,
H3K4ac,H2bK120ac

9 H3K4me2,H3K4me1,
H2aK5ac,H3K27ac,
H2bK5ac,H3K23ac,
H3K9me3,H3K79me1,
H3K4ac,H3K9ac H3K18ac

H3K4me2,H3K4me1,
H3K27ac,H3K27me3,
H3K4ac,H2bK120ac

H3K4me1,H3K27ac,
H3K27me3,H3K23ac,
H3K9me3,H3K79me1

H3K4me2,H3K4me1,
H3K9me3,H3K4ac,
H3K9ac,H2bK120ac

H3K4me2,H3K4me1,
H3K36me3,H2aK5ac,
H3K27me3,H3K23ac,
H3K79me1,H3K9ac,
H2bK120ac

10 H2aK5ac,H2bK5ac,
H3K9me3,H3K79me1,
H3K4ac,H3K9ac

H3K4me2,H3K27ac,
H3K27me3,H3K4ac,
H2bK120ac,H3K18ac

H3K4me1,H3K27ac,
H3K27me3,H3K23ac,
H3K9me3,H3K79me1

H3K4me2,H3K36me3,
H2bK5ac,H3K23ac,
H3K9me3,H2bK120ac

H3K4me2,H3K4me1,
H2aK5ac,H3K27ac,
H3K9me3,H3K9ac,
H2bK120ac

We found that epigenetic marks <H3K4me1, H3K4me2>
and <H3K4me1, H3K4ac> frequently co-occur in the
spatial clusters of different cell types. Part of these cell
types, such as H1 cell line and Mesendoderm, Mesenchy-
mal stem cells and Neuronal progenitor cells, share more
epigenetic patterns than other groups of cell types.

Identifying conserved epigenetic states during the
differentiation of ES cells
There are large differences among the investigated epi-
genetic modifications regarding their temporal variations.
To identify conserved epigenetic states and explore the
temporal patterns of these epigenetic modifications, we

applied STCluster to further group genomic regions based
on the spatial clusters. The identified spatial temporal
clusters are represented as triples (<genomic regions>,
<epigenetic modifications>, <cell types>). Each clus-
ter lists the genomic regions with the co-occupied epi-
genetic modifications, which exhibit little variation at
different cell types during the differentiation process.
Taking a typical spatial temporal cluster as an exam-
ple, Fig. 3 displays the profiles of co-occurred epigenetic
modifications in different regions during the differentia-
tion process. In this cluster, eight epigenetic modifications
(H3K4me2, H3K23ac, H3K27ac, H2BK120ac, H3K27me3,
H3K79me1, H3K4ac and H3K9ac) co-occur the clustered
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Fig. 3 Profiles of co-occurred epigenetic modifications display an overall conserved pattern at five different stages during the differentiation process

regions in five different cell types. For each region, these
epigenetic marks display conserved modification patterns
at all these five stages.
The detailed information of all identified spatial tem-

poral clusters are listed in Additional file 1. The results
indicate that there exist conserved epigenetic states
during the differentiation process. We observed a high
co-occurrence and stable patterns of H3K4me2 with

H3K23ac, H3K18ac, H3K27ac and H3K9ac at five differ-
ent stages along the differentiation process. Our observa-
tion is consistent with the previous finding that H3K4me2
is one of the backbone epigenetic modifications along
with H3K27ac and H3K9ac [18, 24]. On the contrary,
some epigenetic modification patterns are only coherent
in certain cell types. For example, the variation pattern
of epigenetic modifications <H3K27me3, H3K9me3,

Fig. 4 The RNA expression levels of the identified spatial temporal clusters
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H3K79me1, H3K4ac, H3K9ac> is shared in four cell
types except Mesendoderm. <H3K4me2, H3K23ac,
H3K27ac, H3kK27me3, H3K79me1, H3K18ac> are only
shared in H1, Mesendoderm, and Trophoblast-like cells
except Mesenchymal stem cells and Neuronal progenitor
cells. Notably, the identified spatial temporal clusters
reveal more details of the differentiation process.

Analyzing the regulatory roles of epigenetic modifications
during differentiation
As epigenetic marks were thought to be predictive of gene
expression levels in a context-independent manner [25],
we further analyzed the RNA expression levels of the iden-
tified spatial temporal clusters to see if this theory holds
during embryonic stem cell differentiation. Specifically,
we extracted the RNA expression data of the genomic
regions included in the spatial temporal clusters, and com-
pared the expression level in the corresponding cell types.
Consistent with previous study, some epigenetic marks,
such as H3K27ac and H3K36me3, are correlated with
RNA expression level of different genomic regions at dif-
ferent developmental stages. However, several epigenetic
modifications show cell type specific regulation onmRNA
expression. As shown in Fig. 4, the variations of tempo-
ral epigenetic modifications are not correlated with gene
expression changes in several spatial-temporal clusters,
which are primarily located in promoter regions. These
results imply that epigenetic patterns mediate gene regu-
lation during cell differentiation in a complex way, rather
than in a linear manner.

Conclusions
Identifying epigenomic dynamics is important to under-
stand mechanisms for gene regulation. Our knowledge
about the temporal patterns of epigenetic modifications
and the consequence of them are still limited. There is
a urgent need to develop new computational approach
that exploits the complex epigenomic landscapes and dis-
covers significant signatures out of them. In this study,
we developed a spatial temporal clustering algorithm
to explore the epigenomic landscapes of five cell types
during embryonic stem cell differentiation. Using this
approach, we identified spatial temporal patterns of epi-
genetic modifications in early embryogenesis. Different
from previous computational methods, our approach is
designed to investigate the dynamic epigenetic land-
scapes as well as the combinational epigenetic modes.
The experimental results demonstrate that the pro-
posed STCluster algorithm could successfully capture
dynamic epigenetic modification patterns associated with
specific cell types. In addition, STCluster allows straight-
forward identification of epigenetic conservation at mul-
tiple developmental stages during cell differentiation
process.

Additional file

Additional file 1: The detailed information of identified spatial temporal
clusters. Details for the spatial temporal clusters, represented as triples
(<genomic regions>, <epigenetic modifications>, <cell types>). Each
cluster lists the genomic regions with the co-occupied epigenetic
modifications, which exhibit little variation at different cell types during the
differentiation process. (TXT 3962 kb)
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