
UCLAO∗ and BHUC: two novel planning
algorithms for uncertain Web service composition

Sen Niua,†, Guobing Zoua,†,∗, Yanglan Ganb,∗, Zhimin Zhoua, Bofeng Zhanga
aSchool of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
bSchool of Computer Science and Technology, Donghua University, Shanghai 201620, China

{sniu,gbzou}@shu.edu.cn, ylgan@dhu.edu.cn, {zmzhou,bfzhang}@shu.edu.cn

Abstract—The inherent uncertainty of Web service is the most
important characteristic due to its deployment and invocation
within a real and highly dynamic Internet environment. Web
service composition with uncertainty (U-WSC) has become an
important research issue in service computing. Although some
research has been done on U-WSC via non-deterministic planning
in Artificial Intelligence, they cannot handle the situation that
uncertain Web services with the same functionality exist in a
service repository and could not get all of possible solution
plans that constitute an uncertain composition solution for a
given request. To solve above research challenges, this paper
models a U-WSC problem into a U-WSC planning problem.
Accordingly, two novel uncertain planning algorithms using
heuristic search called UCLAO* and BHUC, are presented to
solve the U-WSC planning problem with state space reduction,
which leads to high efficiency of finding a service composition
solution. We have conducted empirical experiments based on a
running example in e-commerce application as well as our large-
scale simulated datasets. The experimental results demonstrate
that our proposed algorithms outperform the state-of-the-art
non-deterministic planning algorithms in terms of effectiveness,
efficiency and scalability.

Keywords—Web service; Web service composition; Uncer-
tainty; Non-deterministic planning

I. INTRODUCTION

Web service composition (WSC) is the task of combining

a set of single Web services together to create a complex,

value-added and cross-organizational business process [1]. It

is applicable to those scenarios where individual Web service

cannot satisfy the functionality requirement of a composition

request. Many works have been done on WSC [2], [3], [4], [5],

[6], where a WSC problem is modeled as a workflow business

model or a classic AI planning problem that can be solved

by an off-the-shelf automated planner to find a plan solution.

However, most of these approaches suppose that Web services

are stateless with certain execution effects. Thus, they seldom

considered the feature of inherent uncertainty of services.

Since Web services are published, deployed and invoked in

dynamic Web environment, there are multiple internal features

with uncertainty, mainly including non-deterministic effects

on functionality properties and inconsistent QoS values on

non-functionality criteria. Therefore, uncertain Web service

composition (U-WSC), composing existing Web services with

the consideration of their uncertain features, has received many

†These authors contribute equally to this study and share first authorship.
∗Corresponding author.

attentions and become a challenging research issue to be

solved in service-oriented business applications.

Some efforts on uncertain Web service composition have

been made in recent years. Based on integrity constrains, a

WSC problem taking into account uncertainty with possible

initial states is converted into a conformant planning problem

[7]. And then, the conformant planning problem is solved

by Conformant-FF planner using forward heuristic algorithm.

This approach only considered uncertainty about initial states,

instead of non-deterministic stateful execution effects in Web

services. Moreover, WSC problem is also formulated as a par-

tially observable non-deterministic planning problem solved

by Model Based Planner (MBP) planner [8], where Web

services are transformed into state transition systems (STSs).

Although it realizes the interactions between Web services by

belief states, the strong assumption is that MBP thoroughly

reply on predefined Web services. This incurs the failure of

finding a solution within a service repository where multiple

uncertain services share the same functionality. Also, when

there is more than one uncertain service with the same

functionality, existing non-deterministic planning algorithms

[9], [10], [11], [12] cannot find all possible paths for a given

U-WSC problem. Thus, how to design novel algorithms to

effectively and efficiently solve an uncertain Web service

composition problem has become a research issue.

To address the above challenge, we proposed a framework

modeling a U-WSC problem as a fully observable non-

deterministic planning (FOND) problem that is expressively

generated by a U-WSC planning problem. To solve the U-

WSC planning problem, we proposed two novel kinds of

U-WSC planning algorithms using heuristic graph search,

called Uncertain Composition LAO* (UCLAO*) algorithm

and Breadth Heuristic Uncertain Composition (BHUC) algo-

rithm. Based on LAO* algorithm [9], the UCLAO* algorithm

improved the node structure and the process of expanding the

successor nodes, which effectively reduces the state search

space and finds all possible solution paths with uncertainty.

In terms of scalability, the BHUC is an efficient U-WSC

algorithm using forward breadth search strategy. According

to the value of heuristic function, the algorithm selects the

applicable action with the maximum value. Compared to

UCLAO* algorithm, it significantly improves the efficiency of

finding a solution to an uncertain composition request, since

it directly search all possible paths without redundancy.

2016 IEEE International Conference on Services Computing

978-1-5090-2628-9/16 $31.00 © 2016 IEEE

DOI 10.1109/SCC.2016.75

531

To validate the feasibility of our proposed algorithms,an

empirical experiment has been conducted on a case study in

e-commerce real application. The experimental results demon-

strated that our approach not only can effectively handle the

WSC problem with uncertainty where multiple uncertain Web

services with the same functionality exist in a service reposi-

tory, but also can efficiently find all the possible solutions for

a given U-WSC problem.
The rest of this paper is organized as follows. In Section 2,

we describe a running example on a real-world e-commerce

application. Section 3 presents the problem formulation. In

Section 4, we propose two novel algorithms for uncertain

Web service composition using non-deterministic planning.

Experimental results on the running example are shown in

Section 5. Section 6 reviews related work on Web service

composition. Finally, Section 7 concludes the paper.

II. MOTIVATING EXAMPLE

A running example from e-commerce application will be

used throughout the paper. It consists of six Web services,

including Retailer, Manufacturers M1, M2, and M3, Assemble

and Ship. Each service is responsible for a specific task with a

collection of functionalities by its operations. Specifically, the

Retailer sends a product request. The Manufacturers M1,M2

and M3 have the same functionality, receiving a purchase

request and checking its availability for the given request of

the product purchase. The Assemble makes the assembling

service based on the available status of the product and the

Ship provides the shipping service of the product order.
The goal is to construct an integrated business process (i.e.,

a composed service) for product purchasing, assembling and

delivering by combining a set of uncertain Web services. These

services collaborate with each other to achieve a situation

where the Ship can successfully provide the service with

a requested product delivery for the Retailer. The abstract

process of product ordering among six services is shown in

Fig.1.

A
vailable_yes

Available_yes

Available_yes

Retailer
request

re
qu

es
t

request

Assemble
Assemble_yes

Available_no

Available_noM1

M2

M3

Fail

Ship

Figure 1. Abstract process in Retailer and Manufacturer.

In Fig.1, the Retailer sends a given product request (product
name, numbers) to these manufacturers. The Manufacturers
M1, M2 and M3 can provide the given product requested

by the Retailer. Assume that M1 and M2 may not be

satisfied for the request, while M3 must be available. After

receiving the given product request, the manufacturers check

their availability (CheckAvail) for the request. If the checking

status is available (Available yes), the Assemble provides the

assembling order service, and finally the Ship service delivers

the given product to the Retailer (product name, numbers,
price, date).

III. PROBLEM FORMULATION

We first formulate uncertain Web service composition (U-

WSC) problem by a set of formal definitions, and then present

what a composition solution is to a U-WSC problem. Here,

we mainly focus on the inherent functional uncertainty of Web

service, which is defined as below.

Definition 1 (Uncertain Web Service). An uncertain Web

service ws consists of a finite set of operations, denoted as

ws = {op1, op2, · · · } and ∃opi ∈ ws which is an uncertain

operation. When an uncertain operation executes, it returns an

output set with multiple possible execution effects.

In the running example, there are six Web services, in-

cluding the Retailer R = {sendrequest}, the manufacturer

M1 = {receiverequest, checkavail M1}, the manufacturer

M2 = {receiverequest, checkavail M2}, the manufacturer

M3 = {receiverequest, checkavail M3}, Assemble A =
{packing}, Ship S = {deliver}, where the operation in

the manufacturer checkavail Mi (i = 1, 2) is an uncer-

tain operation with multiple possible execution effects, i.e.,

{available yes, available no}. Thus, the M1 and M2 are

uncertain Web services, while other services Retailer R, manu-

facturer M3, Assemble A and Ship S are certain Web services.

Definition 2 (Uncertain Web Service Repository). An

uncertain Web service repository, denoted as W =
{ws1, ws2, · · · }, is a set of available services, where ∃wsi ∈
W (i = 1, 2, · · ·), it is an uncertain Web service.

An uncertain Web service repository consists of all the

available services published by service providers on the In-

ternet, including uncertain Web services as well as those

certain ones. In the running example, it has six Web services,

W = {Retailer,M1,M2,M3, Assemble, Ship}.
Definition 3 (Uncertain Composition Request). A user’s

functionality composition request, R, is a two-tuple R =
{Rin, Rout}, where Rin = {r1in, r2in, · · · } is an interface

parameter set provided as request inputs, and Rout =
{r1out, r2out, · · · } is an uncertain goal specification provided as

desired results.

Note that Rout includes all possible execution output states,

e.g. success and failure execution states. In the running ex-

ample, we assume that a user sets an uncertain request R =
{{request}, {{ship yes}, {fail}}}, where Rin = {request}
is designated as initial state and Rout = {{ship yes}, {fail}}
points out all possible goal execution output results.

Definition 4 (U-WSC Problem). An uncertain Web service

composition problem, denoted as U-WSC, is defined as a

three-tuple < W,Rin, Rout >, where

(1) W = {ws1, ws2, · · · } is an uncertain Web service

repository;

(2) Rin = {r1in, r2in, · · · } is an input parameter set as the

initial state and presents an input request;

(3) Rout = {r1out, r2out, · · · } is an uncertain output param-

eter set including all possible goal specification states and

presents user’s expected goal.

532

Following the running example, we can define a un-

certain Web service composition problem as U -WSC =
{W,Rin, Rout}, where uncertain web service repository W =
{Retailer,M1,M2,M3, Assemble, Ship}, the input param-

eter set Rin = {request, productname, numbers} and

the user’s expected output parameter goal set Rout =
{ship yes, productname, numbers, price, date}.

A solution to a U-WSC problem involves all possible

execution paths which are invoked from the input initial state

to one of the desired goal execution output states. It is defined

as below.

Definition 5 (U-WSC Solution). Given a U-WSC problem

< W,Rin, Rout >, an uncertain composition solution consists

of a set of execution paths {∏1,
∏

2, · · · ,
∏

n}. For ∀∏i =
{op1, op2, · · · , opk}(1≤i≤n), it is a sequence of uncertain

Web service operations that can be executed from Rin to one

of the desired output state r ⊆ Rout.

Note that a composition solution to a U-WSC problem is an

ordered sequence of services choosen from an uncertain Web

service repository. With the combination of all the operation

sequences
∏

1,
∏

2, · · · ,
∏

n via these services, the solution

considers all the possible paths that start from initial state

Rin and leads to all the desired output goal states involved

in Rout. Thus, multiple execution paths may be composed

together as an uncertain composition solution to a U-WSC

problem. For instance, when Rin = {request} and Rout =
{ship yes}, there are several possible execution paths in the

running example.

(1)
∏

1={sendrequest, receiverequest, checkavail M1,
packing, deliver};

(2)
∏

2={sendrequest, receiverequest, checkavail M3,
packing, deliver};

(3)
∏

3={sendrequest, receiverequest, checkavail M1,
checkavail M3, packing, deliver};

With the consideration of execution paths above, the man-

ufacturer M1 is available in
∏

1, while it is unavailable in∏
3, because M1 is an uncertain service and the execution

output state of its uncertain operation checkavail M1 may

be available yes or available no.

Given an uncertain service composition problem <
W,Rin, Rout >, our objective is to find all the possible

execution paths and compose them together as a solution

to the U-WSC problem. When an uncertain Web service is

invoked and the output of its operation cannot lead to a path

to satisfy one of the desired goal state, our designed algorithms

should select another uncertain or certain Web service with the

same functionality to replace the failed uncertain Web service,

rather than like those traditional Web service composition

approaches that hold a strong assumption that they only reply

on predefined Web services without functional repetition.

IV. APPROACH

In this section, we first give the formulations of U-WSC

planning problem, and then propose two planning algorithms

for solving the U-WSC planning problem.

A. U-WSC planning formulation

To apply non-deterministic planning algorithm to solve a

U-WSC problem, we translate it into the U-WSC planning

problem using the transition strategies. Since we mainly fo-

cus on uncertain planning algorithms, the detailed transition

process is omitted here.

Definition 6 (U-WSC Action). It is formalized as a =
(name(a), pre(a), eff(a)), where name(a) is action name,

pre(a) is a set of propositions as action preconditions, and

eff(a) is a set of uncertain propositions as action effects.

A U-WSC action corresponds to an uncertain operation of

Web service in our U-WSC problem and its preconditions and

effects are translated from the input and output parameters

of the corresponding operation. As a result, a U-WSC action

has three kinds of execution effects, including certain effects,

uncertain effects, and conditional effects.

Definition 7 (Effects of Uncertainty). Given a U-WSC ac-

tion a, its uncertainty of effects is expressed as effs =
{C}or{U}or{L}, where C is a set of certain effects in a, U
is a set of uncertain effects in a, and L is a set of conditional

effects in a.

Following the running example, the operation

checkavail M1 in uncertain Web service manufacturer M1

is a U-WSC action. It has multiple possible execution output

effects which is a set of uncertain effects. Thus, its effects of

uncertainty can be denoted as effs(checkavail M1) = {U} =
{available yes, available no}. The operation packing in

Web service Assemble is a certain U-WSC action and has an

output effect. Its effect is a set of certain effects and can be

expressed as effs(packing) = {C} = {assemble yes}.
Definition 8 (U-WSC Planning Problem). A U-WSC planning

problem is defined as a five-tuple (S,A, γ, I, g), where S is a

finite set of states, A is a finite set of U-WSC actions, γ : S×
A→ 2S is the non-deterministic transition function between S
and A, I and g are initial state and desired goal specifications,

respectively.

A U-WSC planning problem can be seamlessly expressed

as a non-deterministic planning problem, which consists of

a planning domain D and a planning problem P . For a U-

WSC planning problem, the planning domain D includes all

the states, U-WSC actions and the preconditions and effects

of each U-WSC action. The planning problem P consists of

an initial state I and the desired goal specifications g.

B. UCLAO* algorithm

LAO* algorithm is a heuristic state-space search algorithm

for and-or graph, which searches for a cyclic solution to a

non-deterministic planning problem. However, a solution to an

uncertain Web service composition problem is inappropriate

with cyclic executions, since this kind of execution cannot

guarantee the termination of Web services with uncertainty.

With the extension of existing LAO* algorithm, we proposed

the UCLAO* algorithm for uncertain Web service composi-

tion, which avoids recursive action executions and consider

533

service replacement when an uncertain service fails to perform

a desired functionality.

Algorithm 1: UCLAO* planning algorithm

Input: a U-WSC planning domain D and a planning

problem P =< I, g >;

Output: an uncertain composition solution π;

1 G′ ←< I,∅ >;

2 if I ⊆ g then
3 Tag the initial node I as solved;

4 while I is not tagged as solved do
5 N ←Unexpandednongoal (G′);
6 if N
= ∅ then
7 foreach n ∈ N do
8 S ← Expand(n); //invoke algorithm 2

9 foreach s ∈ S do
10 if s ⊆ g then
11 Tag the node s as solved;

12 G′ ← S;

13 Z = Backwardreach(N);
14 Tag the nodes in the set G′;
15 Update node costs by value iteration in the set Z;

16 if I is tagged as solved then
17 π ← TraverseSolution(G′);
18 return π;

19 else
20 return failure;

Definition 9 (Implicit graph). An implicit graph G′ consists

of a set of vertices N and a set of edges E, G′ =< N,E >,

where N = {n1, n2, · · · }, ni is a vertice and represents a set

of states and E = {e1, e2, · · · } , ei is a edge and represents

the invoked relationships between vertices.

The implicit graph is an and-or graph, which has k-

connectors that connect a node to a set of k successor nodes.

The edges represent actions in U-WSC planning domain, in-

cluding certain actions and uncertain actions. The and-or graph

represents the relationships among nodes by actions. And-

nodes correspond to the uncertain actions which can generate

multiple possible output effects, while or-nodes correspond to

alternative actions that can be applied to the current state.

The UCLAO* algorithm is described in Algorithm 1. It

takes a U-WSC planning domain and a planning problem as

inputs. The planning state of the search is represented within

an and-or search implicit graph G′, which represents a search

space of states. The node in the implicit graph is a UCLAO*

node, including two state sets. The domain represents all the

states and their invocation relationships. In addition, each node

generated in the search process is associated with a ”label”. If

a node is labeled as solved, an execution plan that leads from

the node to the goal can be found. The algorithm outputs all

the possible execution plans as a composition solution which

starts from the initial node and leads to the desired goal nodes.

The algorithm first initializes the implicit search graph with

the initial node at line 1 and check if the empty plan is a

solution to the problem at lines 2-3. Then, the main loop is

entered at lines 4-15, where the graph is expanded until the

initial node is labeled as the status solved. The body of the

main loop proceeds by expanding the graph and updating state

and labeling the actions. With the first step in the loop, a node

which is non-terminal node is selected and expanded from the

implicit graph and added to a node set at line 5. At lines 6-

11, a node is expanded and labeled considering every possible

action, as described in Algorithm 2. Any new successor nodes

are added to the graph at line 12. With the second step in

the loop, at lines 13-15, the cost of each node in the explicit

graph is updated by value iteration with the selection strategy

of LAO* and the nodes in graph are tagged. After the loop

terminates, the solution plans is constructed by traversing the

whole implicit graph from initial node to goal node at lines

16-20.

Algorithm 2: UCLAO* node expansion

Input: a non-goal node n and a finite set of possible

actions A;

Output: a set of expanded nodes N ;

1 A′ ← ∅;

2 S ← ∅;

3 foreach a ∈ A do
4 if n ⊆ pre(a) then
5 A′ ← A′ ⋃ a;

6 foreach a ∈ A′ do
7 s← execute(n, a);
8 if s /∈ n then
9 S ← S

⋃
s;

10 foreach s ∈ S do
11 create a new node n;

12 n← s
⋃
n;

13 N ← N
⋃
n;

14 return N ;

In Algorithm 2, it takes a non-terminal node in implicit

graph as input and outputs a set of its successor nodes. The

algorithm first initializes an action set and a state set at lines

1-2. The all possible applicable actions are selected from the

planning domain for the specified non-terminal node at lines

3-5. After the execution of every action in A′, it generates

all the successor states and adds each state to S, which did

not appear in ancestor states, to the new states set. The new

successor nodes set is generated based on the new states set

at lines 10-14.

Following the motivating example, the input request, not
ship yes is as the initial node I. The algorithm expands the

initial node and executes the action select manufacturer. Then,

add new states check avail to the state space and check

whether the state belong to the goal state set ship yes. If the

result is yes, the algorithm will tag the node as solved and

backward to the initial node. Otherwise, the algorithm expands

534

the node unexpanded in implicit graph by iteration until the

initial node is tagged as solved.

A U-WSC planning problem can be effectively solved by

UCLAO* algorithm, which is based on LAO* state space

search via heuristic functions. It generates an uncertain com-

position solution to the problem with all the possible execution

plans, such that our algorithm can handle the service compo-

sition problem with uncertainty by the techniques of offline

service replacement.

C. BHUC Algorithm

Although UCLAO* can find a composition solution with all

possible execution plans, its time computation complexity is

high since there are redundant nodes expanded in the implicit

graph. To improve the efficiency of finding a composition

solution to an uncertain composition problem, a novel algo-

rithm with the idea of breadth heuristic search strategy, called

BHUC, is designed for solving a U-WSC planning problem.

Definition 10 (BHUC node). A BHUC node n is composed

of a set of states and a real number d, where d is the depth

of node n in implicit graph.

The set of states of a node is inherited from its ancestor.

The depth of a node is the depth of the node in implicit search

graph.

Definition 11 (BHUC queue). A queue Que is used to hold

the BHUC nodes set N = {n1, n2, · · · }, where ni ∈ N is a

BHUC node and a non-terminal node in implicit graph.

The queue is a set of BHUC nodes. The nodes have not

been expanded and they are not the goal nodes. Every node

in the queue would be expanded in the process of state space

search.

Algorithm 3: BHUC planning algorithm

Input: a U-WSC planning problem < D, I, g >;

Output: an uncertain composition solution π;

1 G′ ←< I,∅ >;

2 Que← I;

3 while Que
= ∅ do
4 n← Removefirst(Que);
5 if (n
⊂ g)∧(¬label(n,expanded)) then
6 N ←Expand(n); // invoke algorithm 4

7 if N
= ∅ then
8 Add N to the queue Que;

9 Expand the implicit graph with N ;

10 label(n,expanded);

11 if Que == ∅ then
12 π ← TraverseSolution(G′);

13 return π;

Given a U-WSC planning problem < D, I, g >, the BHUC

algorithm can find more efficiently generate a composition

solution with all possible execution plans. The main process is

shown in Algorithm 3. The algorithm has two main steps. (1)

Build the implicit search graph, including node expansion and

labeling at lines 1-10; (2) Traverse the implicit search graph

and generate the uncertain composition solution at lines 11-13.

The algorithm starts an implicit search graph with the initial

node which is added to the queue at lines 1-2. Then, the

main loop builds the implicit search graph where the node

is expanded in queue iteratively until the queue is empty at

lines 3-10. The body of the main loop proceeds by expanding

the successor nodes and pushing them in the queue. The first

node is selected and removed from the queue at line 4, and

then we check if the node is a goal node and expand the

node at lines 5-6. The node expansion process is shown in

Algorithm 4. At lines 7-9, the successor nodes are added

into the queue and implicit search graph. The ancestor node

is labeled as the status of “expanded” at line 10. After

the completion of implicit search graph at lines 11-13, an

composition solution with multiple possible execution plans

can be found by traversing the whole implicit graph from

initial state node to goal state node.

Algorithm 4: BHUC node expansion

Input: a non-goal node n and a finite set of possible

actions A;

Output: a set of expanded nodes N ;

1 A′ ← ∅;

2 foreach a ∈ A do
3 if applicable(n, a) then
4 h(a)← d;

5 A′ ← a
⋃
A′;

6 foreach a ∈ A′ do
7 Select the action a with maximum depth value in

action set A′;
8 N ← Execute(a);

9 return N ;

In Algorithm 4, an action set A′ is first initialized at line

1. Then, all possible applicable actions from action set A in

planning domain are selected and the function values of these

actions can be drawn from the depth of each node at lines

2-5. At line 7, the action with the maximum depth value is

chosen. Finally, the successor nodes set can be generated by

the execution of the actions at line 8.

Following the motivating example, the input request is as

the initial node I. The algorithm expands the initial node and

executes the action select manufacturer as same as UCLAO*

algorithm. Then, add the new states in the state space until the

BHUC queue is empty. Based on the current state space, the

algorithm will choose the action which has maximum depth

value,eg. the depth value of the action check avail is more than

select manufacturer’s until the BHUC node is not expanded.

As a result, compared to the UCLAO* algorithm, the BHUC

algorithm can more efficiently solve a U-WSC planning prob-

lem when finding an uncertain composition solution, because

it does not expand any redundant nodes during the process of

building implicit search graph. Different to dynamic program-

ming, the BHUC algorithm is based on forward breadth search

535

algorithm and we choose the depth value of the expanded

action as the heuristic function.

V. EXPERIMENTAL EVALUATION

A. Experimental setup

In order to validate the effectiveness of our proposed U-

WSC approaches and compare the efficiency with state-of-

the-art non-deterministic planning algorithms, we conducted

some empirical experiments on a PC with Intel Dual Core 2.8

GHZ processor and 3G RAM in Windows 7.

There are four different algorithms that are highly re-

lated to uncertain planning techniques, including AO*, LAO*,

UCLAO* and BHUC algorithms, have been applied for solv-

ing an uncertain service composition problem. Especially, the

AO* and LAO* algorithms are based on Zero-heuristic search

in myND planner [13], while UCLAO* and BHUC are the

two our proposed algorithms with heuristic state space search.

We evaluate all the uncertain planning algorithms from

three performance criteria. (1) The feasibility of finding a

solution. Given a set of uncertain services in a Web service

repository and an uncertain composition request, whether these

algorithms can find a composition solution with all the possible

execution plans. (2) Response time. If an algorithm can

generate a composition solution, we calculate the cost of its

time consumption. (3) Scalability. Along with the increasing

number of Web services, whether they can still effectively

and efficiently solve the problem of uncertain Web service

composition.

B. Finding an uncertain composition solution

We solve the U-WSC problem on the running example

using the four algorithms, including AO*, LAO*, UCLAO*

and BHUC, respectively. We analyze them from three aspects:

finding a solution, generating all the possible execution paths,

and satisfying a composition request. The experimental results

are shown in the following Table I.

Table I
THE EXPERIMENTAL RESULTS OF FINDING AN UNCERTAIN COMPOSITION

SOLUTION

Basic activity AO* LAO* UCLAO* BHUC

Finding a solution N Y Y Y

Generating execution paths N Y Y Y

Satisfying composition request N N Y Y

Response time – 9ms 11ms 3ms

From the experimental results in Table 1, we can find

that AO* algorithm cannot find a solution for the running

example. Although LAO* can find a composition solution to

the problem, it still cannot satisfy the uncertain composition

request, since there are cyclic actions when the execution

output effects are uncertain. Our proposed two uncertain

planning algorithms, UCLAO* and BHUC, can both find all

the possible execution paths without any cyclic actions that

are composed together as a composition solution.

From the results in table 1, the response time of LAO* al-

gorithm, UCLAO* algorithm and BHUC algorithm consumes

9ms, 11ms and 3ms, respectively. On one hand, we can con-

clude that our proposed uncertain planning algorithm BHUC

performs best, because it does not produce redundant planning

states during the process of node expansion. On the other

hand, although the response time of LAO* algorithm is a little

bit shorter than that of our proposed UCLAO* algorithm, its

composition solution cannot satisfy the U-WSC composition

request, since there are cyclic execution paths that violate

the uncertainty of Web services. As a result, our proposed

algorithms can effectively and efficiently find an uncertain

composition solution with all multiple execution paths, such

that service requesters can choose an appropriate algorithm

that can satisfy their preferences between effectiveness and

efficiency.

C. Response time and scalability

As an important evaluation criterion, the response time

determines whether an uncertain composition solution can be

rapidly returned to the users within a short period of time.

To verify the scalability of the two proposed algorithms for

uncertain Web service composition problem, we dynamically

adjust the number of Web services in the running example

service repository and check the search time of finding the

composition solutions. We test our algorithms on different

groups of Web service repositories which contain 60,000

services. The service repositories can be divided into four

groups, including different numbers of uncertain Web service.

The numbers of services in every group are from 1,000 to

5,000. Along with the increasing number of Web services, the

empirical results of the search time are illustrated in Fig.2.

For the results of response time, all of them take longer to

find a composition solution when the number of Web services

in a service repository becomes larger and larger, which ranges

from 1000 to 5000. The observation from the experimental

results is three-fold:

(1) The response time of two algorithms UCLAO* and

BHUC increases linearly along with the increasing number

of certain Web services. Thus, our two proposed approaches

of Web service composition are linear algorithms with the

number of certain services in a Web service repository when

the number of uncertain services does not change.

(2) Along with the increasing number of uncertain Web

services, the response time of finding an uncertain composition

solution using BHUC algorithm increases much slower than

that of UCLAO*. In other words, the gap of response time

between two algorithms becomes more and more remarkable

as the number of uncertain Web services changes in different

service repositories, which is shown in Fig.2. More specif-

ically, along with the increasing number of uncertain Web

services in four different service repositories, BHUC algorithm

takes response time spanning from 1.19 seconds to 10.824

seconds, while UCLAO* algorithm consumes time from 1.254

seconds to 162.017 seconds. Thus, the BHUC algorithm is

536

(a) The number of uncertain Web services = 3 (b) The number of uncertain Web services = 4

(c) The number of uncertain Web services = 5 (d) The number of uncertain Web services = 6

Figure 2. The response time of finding a composition solution along with the increasing number of Web services.

faster enough to find an uncertain composition solution with

better scalability than UCLAO*.

(3) From the perspective of realistic application, we con-

clude that although our proposed algorithms can always find a

composition solution with all the possible execution plans that

can satisfy a composition request, BHUC algorithm is more

suitable for the problem of Web service composition with un-

certainty in realistic application because of its completeness of

finding an uncertain composition solution and good scalability,

along with the increasing number of both certain and uncertain

Web services in a real-world service repository.

D. Discussion

Based on the experimental results, the comparisons and

analysis are summarized among our U-WSC planning algo-

rithms, AO* and LAO* with regard to effectiveness, efficiency

and scalability.

(1) Effectiveness. In terms of finding a composition solution,

AO* algorithm cannot find a solution, while LAO* algorithm

can find an uncertain loop solution but it cannot satisfy a ser-

vice composition request with uncertain application demands.

Therefore, when there are uncertain Web services registered

by service providers in a service repository, current non-

deterministic planning algorithms cannot be directly applied

to solve a U-WSC problem. To tackle this challenge, only our

two proposed algorithms, UCLAO* and BHUC, can be both

exploited to effectively solve a U-WSC planning problem. The

found uncertain composition solution include all the possible

execution plans without any cyclic actions.

(2) Efficiency. By comparing the response time between

our proposed two algorithms, BHUC algorithm is significantly

faster than UCLAO*. The major reason is that BHUC algo-

rithm reduces the state search space when expanding nodes

for constructing an implicit search graph. However, the two

algorithms can find a composition solution within a very

short period of time in our empirical experiments for running

example.

(3) Scalability. The fact is that all of the uncertain planning

algorithms take much longer time to solve a composition

problem along with the increasing number of Web services.

However, the response time taken by BHUC algorithm rises

obviously slower than that taken by UCLAO* algorithm, as the

number of both certain and uncertain Web services changes.

Thus, our proposed BHUC algorithm has better scalability for

solving a U-WSC planning problem. Consequently, BHUC

algorithm is potentially applied in real-world applications.

537

VI. RELATED WORK

There are some researches about the uncertainty of Web

service in Web service composition. Hoffmann et al. presented

a conformant planning-based approach to formalize a spe-

cial case WSC problem [7]. Based on integrity constrains,

a WSC problem is translated into a conformant planning

problem under uncertainty with multiple possible initial states.

The planning problem is solved by Conformant-FF planner.

However, it only considers the initial uncertainty rather than

uncertain effects of actions. After that, Bertoli et al. modeled

a WSC problem as a partially observable non-deterministic

planning problem [8], that is fed into a planner called Model

Based Planner (MBP) to find a composition solution. Although

it realizes the interactions between Web services by belief

states and STS, this approach has a disadvantage that it

heavily replies on the specific information about the numbers

of services and the services’ functionality that decreases the

automation of uncertain composition of Web services. Re-

cently, H.wang et al. solve a web service composition using

single agent or multi-agent reinforcement learning [14][15]

and develop Adaptive Service Composition.

To solve this problem, in our recent work we developed an

efficient approach for automatic composition of Web service

with uncertainty using contingencies [16]. We translate a Web

service composition problem as a WSC planning problem

in PDDL, where some of contingent actions are taken into

account for the uncertainty of stateful Web services. However,

we only create artificial actions for several limited uncertain

conditional effects of Web services.

Based on above investigations, we propose two algorithms

to solve the U-WSC planning problem translated from a

U-WSC problem. The proposed algorithms can effectively

and efficiently find a composition solution to an uncertain

composition problem with good scalability.

VII. CONCLUSION AND FUTURE WORK

This paper presents a novel approach for uncertain compo-

sition of Web services using non-deterministic planning. We

model a U-WSC problem into a U-WSC planning problem.

Then, two novel algorithms with heuristic state space search,

UCLAO* and BHUC, are proposed to solve the U-WSC

planning problem. The two algorithms can find a composition

solution with all the possible execution paths. Finally, we have

conducted empirical experiments on the running example in

an E-commerce application. Compared with the existing non-

deterministic planning algorithms, the experimental results

demonstrate that the proposed uncertain planning algorithms

can effectively and efficiently generate a composition solution

with better scalability.

As for future work, we plan to combine the functional

properties of Web services with those non-functionality criteria

in uncertain Web service composition problem. Based on the

QoS values of Web services, we make further extension on

this work and design new algorithms to solve uncertain service

composition problem with the optimal solution.

ACKNOWLEDGMENT

This work was partially supported by National Natural

Science Foundation of China (61303096, 61300100), Shanghai

Natural Science Foundation (13ZR1454600, 13ZR1451000),

Chen Guang project supported by Shanghai Municipal Edu-

cation Commission, the Fundamental Research Funds for the

Central Universities (16D111208), and an Innovation Program

of Shanghai Municipal Education Commission (14YZ017).
We thank Robert Mattmuller, Manuela Ortlieb and Malte

Helmert for their open sources of AI planner myND planner.

We would like to appreciate the anonymous reviewers for their

insightful suggestions and constructive comments.

REFERENCES

[1] G. Zou, Q. Lu, Y. Chen, R. Huang, Y. Xu, and Y. Xiang, “Qos-
aware dynamic composition of web services using numerical temporal
planning,” IEEE Transactions on Services Computing (TSC), vol. 7,
no. 1, pp. 18–31, 2014.

[2] R. Aggarwal, K. Verma, J. Miller, and W. Milnor, “Constraint driven
web service composition in meteor-s,” in Proceedings of the IEEE
International Conference on Services Computing (SCC), 2004, pp. 23–
30.

[3] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,” IEEE
Transactions on Software Engineering (TSE), vol. 30, no. 5, pp. 311–
327, 2004.

[4] Y. Li and C. Lin, “Qos-aware service composition for workfow-based
data-intensive applications,” in Proceeding of the International Confer-
ence on Web Services (ICWS), 2011, pp. 452–459.

[5] W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z. Liu, “Qsynth:
A tool for qos-aware automatic service composition,” in Proceedings of
the IEEE International Conference on Web Services (ICWS), 2010, pp.
42–49.

[6] S. C. Oh, D. Lee, and S. R. T. Kumara, “Web Service Planner
(WSPR): An effective and scalable Web service composition algorithm,”
International Journal of Web Services Research (JWSR), vol. 4, no. 1,
pp. 1–22, 2007.

[7] J. Hoffmann, P. Bertoli, M. Helmert et al., “Message-based Web service
composition, integrity constraints, and planning under uncertainty: A
new connection,” Journal of Artificial Intelligence Research (JAIR),
vol. 35, no. 1, pp. 49–117, 2009.

[8] P. Bertoli, M. Pistore, and P. Traverso, “Automated composition of Web
services via planning in asynchronous domains,” Artificial Intelligence
(AIJ), vol. 174, no. 3, pp. 316–361, 2010.

[9] E. A. Hansen and S. Zilberstein, “Lao∗: A heuristic search algorithm
that finds solutions with loops,” Artificial Intelligence (AIJ), vol. 129,
no. 1, pp. 35–62, 2001.

[10] O. Sapena and E. Onaindia, “Planning in highly dynamic environments:
an anytime approach for planning under time constraints,” Applied
Intelligence (AI), vol. 29, no. 1, pp. 90–109, 2008.

[11] B. Bonet and H. Geffner, “Action selection for mdps: Anytime ao* vs.
uct,” in Proceedings of the National Conference on Artificial Intelligence
(AAAI), 2012, pp. 1749–1755.

[12] A. Cimatti, M. Pistore, M. Roveri, and P. Traverso, “Weak, strong,
and strong cyclic planning via symbolic model checking,” Artificial
Intelligence(AIJ), vol. 147, no. 1, pp. 35–84, 2003.

[13] R. Mattmüller, M. Ortlieb, M. Helmert, and P. Bercher, “Pattern database
heuristics for fully observable nondeterministic planning,” in Twenti-
eth International Conference on Automated Planning and Scheduling
(ICAPS), 2010, pp. 105–112.

[14] X. C. Q. Y. Hongbing Wang, Qin Wu, “Integrating gaussian process with
reinforcement learning for adaptive service composition,” in Proceed-
ings of the 13th International Conference Service-Oriented Computing
(ICSOC), 2015, pp. 203–217.

[15] H. Wang, X. Wang, X. Zhang, Q. Yu, and X. Hu, “Effective service
composition using multi-agent reinforcement learning,” Knowledge-
Based Systems, vol. 92, pp. 151–168, 2016.

[16] G. Zou, Y. Chen, Y. Xu et al., “Towards automated choreographing of
Web services using planning,” in Proceedings of the National Conference
on Artificial Intelligence (AAAI), 2012, pp. 178–184.

538

