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a b s t r a c t 

Identifying influential individuals who lead to faster and wider spreading of influence in social networks 

is of theoretical significance and practical value to either accelerating the speed of propagation in the 

case of product promotion, or hindering the pace of diffusion involved in rumors. Conventional methods, 

ranging from centrality indices to diffusion-based processes, already take into account the number and 

influences of followers, but fail to make full use of the characteristics of social media. A novel approach 

called PartitionRank for finding a pre-fixed number of influential individuals in microblogging scenarios 

is proposed in this study to maximize the impact; it combines interest similarity with social interac- 

tion between users via graph partitioning. Experimental results on artificial and real-world microblogging 

networks illustrate that our scheme outperforms the other state-of-the-art methods in effectiveness and 

efficiency. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

One main function of social networks is to propagate infor-

mation, ideas, reputations, and influences between any two users

( Kim & Song, 2011 ). The information can disseminate beyond the

direct followers, occasionally passing to a mass of individuals. In-

formation dissemination is a prevalent process that formally de-

scribes many dynamic network activities ( Keeling & Rohani, 2008;

Rogers, 1995 ). The knowledge of the roles that users play in the

dissemination process is crucial for exploiting efficient methods to

either accelerate or hinder dissemination. 

It is a fundamental problem to mine a tiny fraction of influen-

tial individuals from a social network such that they can transfer

information to the largest number of users ( Kimura, Saito, Nakano

et al., 2010; Kitsak, Gallos, Havlin et al., 2010 ). The solution to this

problem has broad application prospects ( Kaiser, Schlick, & Boden-

dorf, 2011; O’Mahony & Smyth, 2010 ). First, social media is a pow-

erful marketing platform. Targeting influential individuals can im-

prove the efficiency of marketing campaigns. Kempe et al. give a

vivid instance ( Kempe, Kleinberg, & Tardos, 2003 ): A company ini-
∗ Corresponding authors. 
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ially selects a small number of “influential” users in the social net-

ork by giving them free product samples and hopes that these

sers will recommend the product to their friends, and then influ-

nce their friends’ friends; many users will thus finally purchase

he new product through the powerful word-of-mouth effect. Sec-

nd, there are many applications that utilize social media to collect

pinions and information on special topics. Identifying influential

ndividuals can significantly raise the quality of the collected opin-

ons. 

Designed to solve complex problems by reasoning about knowl-

dge, after absorbing the technology of finding most influen-

ial people in social media, the expert systems have enlarged

he applicable area, such as recommender systems develop-

ent ( Morid, Shajari, & Hashemi, 2014 ), useful weblogs choosing

 Leskovec, Krause, Guestrin et al., 2007 ) and influential twitters

dentification ( Weng, Lim, Jiang et al., 2010 ). For example, the in-

elligent medical auxiliary system can concretely estimate disease

ategories and accurately recommend suitable hospitals and ex-

erts according to the description of symptoms and the location

oordinates of the patients. 

Social networks exhibit the property of modular structure

 Nguyen, Dinh, Xuan et al., 2011; Palla, Pollner, Barabási et al.,

009 ), i.e., they divide naturally into communities of vertices

ith denser connections inside each cluster and fewer connections

rossing clusters, where vertices and connections express network

https://doi.org/10.1016/j.eswa.2018.02.021
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sers and the social interactions among them, respectively. In this

aper, we analyze the effects of some popular approaches on iden-

ifying influential individuals in social networks, including degree

entrality, closeness centrality, betweenness centrality, and PageR-

nk. Sometimes these approaches are limited when applied to so-

ial networks as they ignore the networks’ community structure

nd do not identify the influential individuals from communities

n a relatively balanced way. For instance, the individuals with a

igh degree that are often treated as influential roles may all lie in

he same community with larger size such that they can only im-

act individuals in the same community ( Zhang, Zhu, Wang et al.,

013 ). In this paper, we propose a novel approach to identify influ-

ntial individuals in social networks. 

Microblogging is a new representative form of communication.

t allows users to release brief message updates (with a limit of

40 characters), which can be published in many different chan-

els, including the Web and mobile phones. 1 Microblogging also

rovides “social-networking” functionality. Unlike other social net-

orks that require users to grant permission to other users be-

riending them, microblogging adopts a social-networking model

alled “following”, in which each user is allowed to choose who

e/she wants to follow freely. Conversely, the user may also be fol-

owed by others without granting permission first. In an example

f a “following” relationship, the user who is following is named

he “follower”, while the one whose updates are being followed is

alled the “friend”. Microblogging has gained extensive popularity,

nd also has drawn huge interest from the research community. 

The “following” relationship is a potential indicator of topic

imilarity among users ( Weng et al., 2010 ). A user follows a friend

ecause he/she is interested in the topics that the friend re-

eases in microblogs, and the friend follows back because he/she

nds that they share similar topic interests. This phenomenon is

amed “homophily”, and it has emerged in many social networks

 McPherson, Smith-Lovin, & Cook, 2001 ). 

In this study, we measure the individual influence combining

he “following” relationship and the topical similarity among users.

irst, the interest interaction network is constructed through topic

istillation of microblogs. Second, all users in the network are di-

ided into a pre-fixed number of communities in a relatively size-

alanced way. Finally, the highest-ranked scorer in each commu-

ity is returned as a small subset of influential individuals. 

The main innovations and characteristics of this study are in-

luded as follows. 

• An interest interaction network is built taking both interaction

intimacy and interest similarity into account to depict the in-

formation spreading probabilities, which demonstrates as a di-

rected and weighted multi-dimension network. 
• Identifying influential individuals in social networks from the

aspect of communities, which gives a particular distance from

one another among spreading origins, can decrease and even

dissipate the overlap. 
• The modularity and size of communities are integrated to elim-

inate the negative effect in extremely unbalanced communities,

which can further increase the spreading effectiveness. 

The remainder of this paper is organized as follows. The re-

ated work on identifying influential individuals is summarized in

ection 2 . In Section 3 , we elaborate on the proposed approach,

hich detects the most influential individual from each user group.

he experimental evaluation on several computer-simulated and

eal-world networks is executed in Section 4 . Finally, we conclude

he paper and make suggestions for future research in Section 5 . 
1 http://en.wikipedia.org/wiki/Micro-blogging . 
. Related work 

It is well known that many mechanisms, such as spreading,

ascading and synchronizing, are highly impacted by a small sub-

et of influential individuals ( Zamora-López, Zhou, & Kurths, 2010 ).

ow to identify these influential individuals is of theoretical sig-

ificance and practical value. Moreover, detecting influential indi-

iduals is essential for design of effective information dissemina-

ion strategies in many fields, including rumor controlling, public

ealth practices, business management, and marketing campaigns. 

A variety of centrality indices have been proposed to solve

his problem, such as degree centrality, closeness central-

ty ( Sabidussi, 1966 ), betweenness centrality ( Freeman, 1979 ),

igenvector centrality ( Bonacich, 2007 ), k -shell decomposition

 Kitsak et al., 2010 ), and local proxy ( Pei, Muchnik, Andrade et al.,

014 ). Degree centrality is a simple and efficient metric, but it

acks relevance. For instance, an individual lying in the center of

he network, which has a few highly influential followers, may be

ore influential than an individual existing at the periphery of

he network and having a larger number of less influential follow-

rs. Closeness centrality, which can be referred to as a measure

f how long it takes to spread information from an individual to

ll of the other individuals sequentially, may highlight the indi-

iduals located at the junction between communities. Betweenness

entrality is defined as the fraction of the shortest paths between

airs that cross through the individual of interest. Individuals with

igh betweenness often act as intermediaries in transferring infor-

ation, such that they play pivotal roles in information dissemi-

ation between communities rather than as initial spreaders, and

hey cannot satisfy the application requirements in large-scale so-

ial networks for their high computational complexity. Eigenvector

entrality has limitations for directed and weighted networks of

ocial media, since it only targets the undirected networks. The k -

hell decomposition approach does not always work well, as some-

imes the individuals in the core occupy a high proportion of the

etwork, such that the influential individuals cannot be detected.

ocal proxy for individuals’ influence – the sum of the nearest

eighbors’ degrees, can be further improved effectiveness by tak-

ng into account more factors, such as the clustering coefficient of

odes ( Chen, Gao, Lü et al., 2013 ). 

With the explosive growth of network data, a number of

andom-walk-based algorithms have been designed. The repre-

entative methods include the well-known PageRank ( Brin &

age, 1998 ) and TunkRank, 2 as well as some recently proposed

pproaches, including LeaderRank ( Li, Zhou, Lü et al., 2014; Lü,

hang, Yeung et al., 2011 ) and TwitterRank ( Weng et al., 2010 ). All

f these algorithms assume that an individual is supposed to be

f high influence if it is pointed to by many highly influential fol-

owers. It has been demonstrated that these approaches are supe-

ior to centrality-based methods in terms of ranking effectiveness.

hey may adapt to find the original influential promulgators only

hen the spreading originates in a single active individual. For

 spreading process originating in many active individuals simul-

aneously, spreading origins located at a particular distance from

ach other must be confirmed, to avoid or reduce the repeated

mpact on many of the same individuals and extend the influence

cope. However, these classic approaches may detect influential in-

ividuals who do not lie far enough away, since they do not take

nto account the community structure that is ubiquitous in social

etworks. 

Inspired by humanities science, two well-known influence max-

mization models are suggested ( Kempe et al., 2003 ) and they

ave been adopted to derive many different approaches, including
2 http://thenoisychannel.com/2009/01/13/atwitter- analog- to- pagerank . 

http://en.wikipedia.org/wiki/Micro-blogging
http://thenoisychannel.com/2009/01/13/atwitter-analog-to-pagerank
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Fig. 1. System architecture of proposed approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Graphical illustration of LDA model. 
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the ComPath algorithm ( Rahimkhani, Aleahmad, Rahgozar et al.,

2015 ) based on the linear threshold model and a Monte-Carlo-

simulation-based method ( Ohsaka, Akiba, Yoshida et al., 2014 ) us-

ing the independent cascade model. The ComPath scheme provides

a good balance between effectiveness and execution time to find

the top- k most influential people in social networks. The Monte-

Carlo-simulation-based algorithm exploits the existence of a hub

in social networks to accelerate breadth-first searches for captur-

ing solutions of high quality with a theoretical guarantee. All of

these initiatives try to maximize the impact under stochastic sim-

ulation models, failing to combine the interest similarity between

users for characterizing the influence spread in social networks. 

3. Proposed approach 

In this study, we select Chinese microblogging as the bench-

mark research platform. However, slight modification of the pro-

posed approach can be adopted to any microblogging scenario in

other languages, and even any social media. 

3.1. Framework of proposed approach 

For the purpose of clearly depicting the characteristics and con-

tent of the proposed approach, the detailed overall framework is

displayed in Fig. 1 . The proposed approach consists of five cru-

cial steps, including topic distillation, interest similarity calcula-

tion, interest interaction network construction, graph partitioning,

and sorting by LeaderRank, where the collection of microblogging

data has been plugged in as the foundation. First, the topics of mi-

croblogs for each user are extracted using the Latent Dirichlet Al-

location (LDA) model ( Blei, Ng, & Jordan, 20 03; Heinrich, 20 08 ).

Then, Pearson correlation coefficient is applied to calculate the in-

terest similarity between each friend and follower pair. Next, we

build a probability network for information transmission taking

into account the social relationship, the interest similarity, and the

user activity level. The directed and weighted network is then di-

vided into a pre-fixed number of communities by the spectral clus-

tering algorithm. Finally, the most influential user in each commu-
ity is detected to form the influential individual set. In the fol-

owing subsections, we describe each component in detail. 

.2. Topic distillation 

The purpose of topic distillation is to automatically identify the

opics that users are interested in based on the microblogs they

ave released. The LDA model, an unsupervised machine learning

echnique to mine the latent topic information from a large docu-

ent set, is adopted to achieve this goal. It treats each document

s a “bag of words”, so each document emerges as a probability

istribution over some topics, and each topic emerges as a prob-

bility distribution over a lot of words. The generative process for

ach document is as follows. 

(1) For each document, choose a topic from its distribution over

topics. 

(2) Take a word from the distribution over the words associated

with the picked topic. 

(3) Repeat steps (1) and (2) until all of the words in the docu-

ment are sampled. 

This generative process is graphically illustrated using univer-

al plate notation in Fig. 2 . Each of a collection of D documents is

elated to a multinomial distribution over T topics, which is rep-

esented as θ . Each topic is related to a multinomial distribution

ver a lot of words, represented as φ. θ and φ have Dirichlet priors
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ith hyper-parameters α and β , respectively. In this figure, dual-

ircular and single-circular plates denote observed and latent vari-

bles separately. A directed edge corresponds to a conditional de-

endency between two variables, and boxes denote repeated sam-

lings, with the number of times given by the variable at the bot-

om right of the corresponding box. In addition, z is a topic taken

rom the multinomial distribution θ associated with the document,

 denotes a word sampled from the multinomial distribution φ as-

ociated with the topic, and N d stands for the number of words in

he document. 

In this study, Gibbs sampling is then adopted to estimate the

odel parameters from the data, i.e., the document-topic distribu-

ions θ and the T topic-word distributions φ. 

The result is represented in two matrices: 

(1) A D × T matrix, denoted DT , where D is the number of users

and T is the number of topics. DT ij represents the number

of times a word in user s i ’s microblogs has been assigned to

topic t j . 

(2) A W × T matrix, denoted WT , where W is the number of

unique words in all of the microblogs and T is the number

of topics. WT ij contains the number of times a unique word

w i has belonged to topic t j . 

Since the purpose is to identify the topics that each user is

nterested in rather than the topic that each single microblog is

bout, we assemble the microblogs released by the same user into

 document, and then Chinese word segmentation 

3 is executed for

ach document. 

.3. Interest similarity calculation 

For the purpose of measuring interest similarity, matrix DT is

hen row-normalized as DT ′ such that ‖ DT ′ 
i ·‖ 1 = 1 for each row DT ′ 

i ·.
ach row of matrix DT ′ is essentially the probability distribution of

ser s i ’s interest over the T topics, i.e., each element DT ′ ij indicates

he probability that user s i is interested in topic t j . 

Several measurement criteria have been proposed in the litera-

ure for the sake of calculating the interest similarity between in-

ividuals, among which the Pearson correlation coefficient is most

opular. Given this, a modified version of the Pearson correlation

oefficient is employed to measure the interest similarity between

sers with a “following” relationship as follows. 

efinition 1 (Interest similarity measure) . Interest similarity be-

ween two microblog users s u and s v can be calculated as 

im (u, v ) = 

∑ 

t∈ T 
r t (D T ′ ut − D T ′ u )(D T ′ v t − D T ′ v ) √ ∑ 

t∈ T 
r t (D T ′ ut − D T ′ u ) 

2 ∑ 

t∈ T 
r t (D T ′ v t − D T ′ v ) 

2 
, (1)

here T stands for the set of all topics in microblogs and D T ′ u 
enotes the mean interest degree of user u on these topics. r t s

re set as the probabilities of different topics’ presence, which are

omputed according to the number of times unique words have

een allocated to corresponding topics as expressed in matrix WT .

n this case, the measure of interest similarities basically remains

onsistent with the topics’ general influence. In the case of sim ( u,

 ) < 0, we set sim (u, v ) = 0 to avoid assigning a negative value to

n edge of the network that is outside the scope of the research. 

In this study, only the interest similarity between each friend

nd follower pair needs to be calculated, since the information can

nly spread from friend to follower, thus significantly reducing the

ime complexity and meeting the demands of practical application.
3 http://nlp.stanford.edu/software/segmenter.shtml . 

m

a  

a  
.4. Interest interaction network construction 

A directed network D ( V, E ) is first constructed with the users

nd the friends/followers relationships among them. V denotes the

ertex set, which contains all of the microblog users. E repre-

ents the edge set. Consistent with previous work ( Page, Brin, Mot-

ani et al., 1999 ), there is an edge between two users if there ex-

sts a “following” relationship between them and the arrow points

rom follower to friend. 

The “surfer” randomly visits each user with a certain probability

y following the corresponding edge in D , which is also regarded

s the transmission probability of related information dissemina-

ion, since it reflects the influence of friend on follower. The proba-

ility matrix for information transmission, represented as P t , is de-

ned as follows. 

efinition 2 (Transmission probability) . Each element of matrix P t ,

.e. the transmission probability from follower s v to friend s u of the

andom “surfer”, is given by 

 t (u, v ) = 

log (| M u | + 1) ∑ 

s v f ol l ows s w 

log ( | M w 

| + 1) 
∗ sim ( u, v ) , (2)

here | M u | denotes the number of microblogs released by s u , and

im ( u, v ) stands for the interest similarity between users s u and s v ,

ith details as shown in Eq. (1) . 

This definition captures two intuitions. First is the assumption

hat user s v follows many friends. Those friends release different

umbers of microblogs, all of which will be directly visible to s v .

he more that friend s u releases, the greater the portion of mi-

roblogs that s v reads from s u . Consequently, this brings about

 higher influence on s v , which results in a higher transmission

robability from s u to s v . However, if user s u publishes a large

umber of microblogs, it would create a subconscious boredom,

hich leads to the transmission probability being not linear with

he number of microblogs. In this study, we adopt the logarithmic

unction to depict this relationship, as shown in the first term on

he right-hand side (RHS) of Eq. (2) . 

Second, as implied by the homophily phenomenon discussed in

eng et al. (2010) , s u ’s influence on s v is also related to the inter-

st similarity between them; the greater the similarity, the greater

he influence. Row-normalized matrix DT ′ is the result of topic dis-

illation. Row DT ′ u · represents the probability of user s u ’s interest

n different topics. The interest similarity between s u and s v can

e calculated by the resemblance between the probability distri-

utions, as illustrated in the second term on the RHS of Eq. (2) . 

.5. Graph partitioning 

Supposing that we are given the structure of an interest inter-

ction network and there exist some isolated vertices and/or small

roups of a few members, we then kick them out of the network

ince these communities formed by one or several users clearly

annot tell us anything of any worth. 

Newman proposes a metric named modularity to evaluate the

uality of graph partitioning ( Newman, 2004, 2006 ). The modular-

ty of a weighted network is defined as the sum of the weights

f all of the edges included within subgraphs (after partitioning)

ubtracted by the expected edge weight sum under condition that

dges were placed at random. A positive modularity implies a pos-

ible graph partitioning. 

Leicht extends modularity to directed networks ( Leicht & New-

an, 2008 ). We can define user u i ’s out-degree as d (out) 
i 

= 

∑ 

j∈ D w i j 

nd in-degree as d (in ) 
i 

= 

∑ 

j∈ D w ji , where w ij captures the weight of

n edge directed from vertex i to j in network D . The sum of all of

http://nlp.stanford.edu/software/segmenter.shtml
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the edge weights is defined as m = 

∑ 

i ∈ D d 
(out) 
i 

or m = 

∑ 

i ∈ D d 
(in ) 
i 

.

The modularity of the partitioning is computed thusly 

Q = 

1 

m 

∑ 

i j 

( 

w i j −
d (out) 

i 
d (in ) 

j 

m 

) 

δ( C i , C j ) , (3)

where δ( C i , C j ) represents an impulse function. If vertices i and

j are in the same community, i.e., C i = C j , then δ( C i , C j ) = 1 ; and

δ( C i , C j ) = 0 otherwise. 

Since the only contributions to the sum come from vertex pairs

falling within the same cluster, we can combine these contribu-

tions and rewrite the sum over the clusters instead of the vertex

pairs as 

Q = 

n c ∑ 

c=1 

(
l c 

m 

− d (out) 
c d (in ) 

c 

m 

2 

)
. (4)

Here, n c is the number of clusters, l c denotes the weight sum of

edges connecting vertices within cluster c , d (out) 
c stands for the sum

of the out-degrees of the vertices in c , and d (in ) 
c represents the sum

of the in-degrees. 

In a network with extremely unbalanced communities, selecting

an influential individual from each community would reduce the

propagation effectiveness due to the extremely unbalanced sizes

of the communities. To solve this problem, we introduce the size-

balanced increment of modularity into the graph-partitioning pro-

cess to balance community sizes as follows. 

Definition 3 (Size-balanced increment of modularity) . The size-

balanced increment of modularity obtained by dividing cluster c

into two subgraphs is described as 

Q c = 

l c 

m 

− d (out) 
c d (in ) 

c 

m 

2 
. (5)

�Q c = Q c 1 + Q c 2 − Q c . (6)

�Q 

′ 
c = log s c ∗ �Q c , (7)

where c 1 and c 2 represent the two sub-modules of c , and s c de-

notes the number of individuals within c . 

In a subgraph, the number of individuals shows an exponential

increase with the path length of information spreading, which is

exactly depicted using a logarithmic function in Eq. (7) . For con-

venience, the number 10 is selected as the base of the logarithmic

function. 

The purpose here is to divide D into a pre-fixed number of sub-

graphs such that Q 

′ is maximized. Leicht has proposed a very ef-

ficient and intuitive spectral-graph-theory-based approach to solve

this optimization problem ( Leicht & Newman, 2008 ). It first con-

structs a modularity matrix ( D 

′ ′ ) of the graph D , whose elements

are described as 

D 

′ 
i j = D i j −

d (out) 
i 

d (in ) 
j 

m 

. (8)

D 

′′ = D 

′ + ( D 

′ ) T , (9)

where D ij denotes an adjacency matrix element of graph D . Eigen-

analysis is then executed on the symmetric matrix D 

′ ′ to calcu-

late its largest eigenvalue and the corresponding eigenvector ( � v ).
Finally, D 

′ ′ is divided into two subgraphs based on the plus-minus

signs of the elements in 

�
 v . 

To obtain the best possible modularity value, it is a common

strategy in standard graph-partitioning issues to use spectral par-

titioning based on the graph Laplacian to gain an initial broad di-

vision of a network into two subnets, and then refine that parti-

tioning by using the Kernighan–Lin approach. Each iteration of the
ne-tuning algorithm in this study consists of the following steps:

i) Construct a list as a candidate vertex set by selecting among

he vertices the ones that, when moved to the other subgraph,

ill give an increase in the modularity of the complete network.

ii) Repeatedly delete the vertex with largest modularity increase

rom the list and remove it to the other community. The process is

xecuted until no further improvement in the modularity is pos-

ible. By building the candidate set, the computational complexity

ecreases significantly, since the search range is reduced consider-

bly in each iteration. 

It is important to note that it is incorrect, after first partitioning

 network into two subgraphs, to simply delete the edges located

etween the two parts and then apply the approach again to each

ubgraph. This is because the degrees presenting in the definition,

q. (3) , of the modularity will decrease if edges are removed; thus,

ny subsequent maximization of modularity would maximize the

rong equation. Instead, the right way is to write the modularity

atrix of a subgroup g with size s g as 

 

′′ (g) 
i j = D 

′′ 
i j − δi j 

∑ 

k ∈ g 
D 

′′ 
ik | i ∈ g, j∈ g , (10)

here δij denotes the Kronecker δ-symbol, and D 

′ ′ ( g ) stands for the

 g × s g matrix with elements retrieved by the labels i and j of ver-

ices in group g . 

The spectral approach is then recursively applied to each of

he subgraphs to further partition them into smaller ones un-

il the number of subgraphs satisfies the application requirement.

n a real-world application, the number of influential individuals

eeded to be selected from the social media is always less than

he actual number of communities in the social network; thus, no

uch situation exists in which the network is indivisible during the

raph partitioning. 

The main task of computation in this portion is to find the

argest eigenvalues and the corresponding eigenvectors of the

odularity matrices. This can be efficiently completed by the

ower iteration ( Ipsen & Wills, 2006 ), the repeated multiplication

f the matrix into a trial vector, which is able to scale up with the

ncrease of the number of microblog users. 

The partitioning process of the sparse symmetric modularity

atrix D 

′ ′ is elaborated in Algorithm 1 . 

.6. Sorting by LeaderRank 

In our proposed approach, size-balanced communities are first

etected from the directed and weighted network, and we then

elect the most influential individual from each community by the

odified LeaderRank algorithm. 

LeaderRank is a random-walk-based ranking method ( Lü et al.,

011 ). On the basis of PageRank, LeaderRank introduces a ground

ertex g , which has two directed edges e gi and e ig connecting to

very vertex i in the original network. For simplicity, the weights

f e gi and e ig are set to the average weight of all of the edges in the

riginal network. The rank score r j ( t ) of vertex j at discrete time t

s given by (basing on a purely random walk process) 

 j (t) = 

n +1 ∑ 

i =1 

D i j 

d (out) 
i 

r i (t − 1) . (11)

Initially, r g (0) = 0 for the ground vertex g , and r i (0) = 1 for ev-

ry other vertex i . At steady-state conditions, the rank score of the

round vertex is equally transferred to all of the other vertices

o conserve scores without “following” edges. Therefore, the final

core of vertex j is computed thusly 

 j = r j ( t ∞ 

) + 

r g ( t ∞ 

) 
. (12)
n 
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Algorithm 1: Graph-partitioning process. 

Input : D 

′′ , k ; /* k is the pre-fixed number of influential 

individuals.*/ 

Output : C S; /* C S is the set of individual communities after 

graph partitioning.*/ 

1 calculate the community modularity of D 

′′ as Q D ′′ ; 
2 split D 

′′ into D 

′′ 
1 and D 

′′ 
2 by the spectral method with 

further fine-tuning, and then calculate the community 

modularity of D 

′′ 
1 and D 

′′ 
2 as Q D ′′ 1 and Q D ′′ 2 , respectively. 

3 size-balanced modularity increment 

in c D ′′ = log s D ′′ ∗ ( Q D ′′ 1 + Q D ′′ 2 − Q D ′′ ) , map D 

′′ (as the key) 

into in c D ′′ (as the value) to build a new element of collection 

M C; /* M C is a mapping collection with each element 

containing a key and the corresponding value.*/ 

4 while | MC| < k do 

5 remove an element with the maximum value from MC, 

denote its key as DM; 

6 divide DM into D M 1 and D M 2 by the spectral approach 

with fine-tuning strategy; 

7 put D M 1 and D M 2 (with their size-balanced modularity 

increments) into MC as two new elements; 

8 end 

9 get all elements of MC, return their keys as set CS; 
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ere, r j ( t ∞ 

) represents the rank score of vertex j in the stationary

tate. 

Although LeaderRank is analogous to PageRank, it is more ro-

ust to attacks and more stable to noise than PageRank. More re-

arkably, LeaderRank is a parameter-free ranking algorithm. 

.7. Computation complexity 

The most time-consuming process of our approach is the solu-

ion of the leading eigenvector of the modularity matrix. At first

lance, it appears that the power iteration executes very slowly,

aking O ( n 2 ) operations in each iteration because the modularity

atrices are dense. However, we can subtly perform them much

aster by taking full advantage of the particular structure of the

atrix. 

In the modularity matrix definition Eqs. (8) and (9) , D 

′ = D −
 

(out) ( d (in ) ) 
T 
/m and D 

′′ = D 

′ + (D 

′ ) T , where D denotes the adja-

ency matrix, and d ( out ) and d ( in ) are the out-degree and in-degree

ectors. The product of D 

′ ′ multiplying an arbitrary vector can be

ritten as 

 

′′ x = (D + D 

T ) x −

⎛ 

⎝ 

d (out) 

(
( d (in ) ) 

T 
x 

)
m 

+ 

d (in ) 

(
( d (out) ) 

T 
x 

)
m 

⎞ 

⎠ . 

(13) 

he first term on the RHS is a standard sparse matrix-vector mul-

iplication taking time O (m + n ) . The inner products ( d ( in ) ) T x and

 d ( out ) ) T x take time O ( n ) to execute the vector-vector multiplica-

ion. Thus, the time taken to complete the multiplication in each

ound is O (m + n ) , and generally O ( n ) such multiplications are

eeded to obtain the leading eigenvector. Typically, the social net-

ork in which spammers have been eliminated is a sparse graph

ith m ∝ n . 

In conclusion, the overall running time of our proposed ap-

roach becomes O ( n 2 ). 

According to the distributed computation ( Sarma, Molla,

andurangan et al., 2015 ) and the incremental computation

 Bahmani, Chowdhury, & Goel, 2011 ) of PageRank, the itera-
ive matrix-vector multiplication method can be performed dis-

ributively or incrementally for large-scale evolving networks.

arma et al. (2015) provide a fast algorithm that takes O ( 
√ 

log n /ε)

ounds in undirected graphs, where n represents the network size

nd ε denotes a fixed constant. Therefore, our approach can fur-

her accelerate the convergence if we implement the iterative

atrix-vector multiplication procedure distributively or incremen-

ally, which is planned future work. 

. Experimental evaluation 

In this study, we compare our proposed approach with three

ther existing state-of-the-art methods, namely k -medoid, Twitter-

ank, and ClusterRank, respectively, on some synthetic networks

enerated by the Lancichinetti-Fortunato-Radicchi (LFR) model and

 real-world microblogging network. 

For ease of presentation, our proposed approach is annotated as

artitionRank throughout the comparisons in experiments. 

.1. Three compared methods 

.1.1. k-medoid 

A novel approach is proposed by Zhang et al. (2013) to identify

nfluential vertices in complex networks with community struc-

ure. The detailed process is as follows: 

(i) An n × n information transfer probability matrix M on net-

work G = (V, E, W ) is constructed, where n stands for the

number of vertices in G , and element m ij of M represents

the information transfer probability through all paths from

vertex i to j . 

(ii) k medoids are then detected as k influential vertices

by adopting the k -medoid clustering algorithm ( Park &

Jun, 2009 ) on M , which can be referred as a similarity ma-

trix. 

The time complexity is O ( n 3 ), where n denotes the number of

ertices in the network. 

.1.2. TwitterRank 

Weng et al. (2010) measure the influences of users in Twitter

aking both the topic interest similarity between users and the fol-

owing network into account. 

The specific process of this method is as follows. First, topics

hat twitterers are interested in are extracted automatically by an-

lyzing the content of their tweets. Second, a topic-specific social

etwork among twitterers is constructed. Finally, the TwitterRank

lgorithm, an extension of PageRank, is applied to evaluate the in-

uences of twitterers. 

To keep analysis simple in this study, we construct the general

nfluence topic-specific social network to perform the comparisons

ith our approach. 

The computing time complexity is O ( n 2 ); here, n stands for the

umber of twitterers in the network. 

.1.3. ClusterRank 

A local ranking algorithm called ClusterRank is proposed by

hen et al. (2013) that takes into account not only the number

f followers and the followers’ influences, but also the clustering

oefficient. 

Formally, the ClusterRank score s i of vertex i is computed as 

 i = f ( c i ) 
∑ 

j∈ 	i 

(
d (in ) 

j 
+ 1 

)
. (14) 

ere, 	i contains all of the followers of i , d (in ) 
j 

denotes the in-

egree of vertex j , the term “+ 1” accounts for the contribution
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of j itself, and the term f ( c i ) corresponds to the effect of i ’s local

clustering. The local clustering plays a negative role in information

spreading, so f ( c i ) is adopted as a decreasing function of clustering

coefficient c i , namely f ( c i ) = 10 −c i . 

The time complexity is O (m + n ) , where m and n represent the

numbers of edges and vertices in the network, respectively. 

4.2. Evaluation metrics 

The influence maximization issue is tested on a directed and

weighted network G = (V, E, W ) . V and E are the sets of all of the

individuals and links in the network, separately. n and m represent

the numbers of items in V and E , respectively. W is the correspond-

ing weight set of E , i.e., each link ( u, v ) ∈ E from individual v to u

corresponds to weight w uv ∈ W . 

4.2.1. Independent cascade model 

To study the propagation process, we adopt a widely used in-

formation diffusion model, the independent cascade (IC) model

( Kimura et al., 2010; Morid et al., 2014 ). 

In the IC model, each link ( u, v ) ∈ E is assigned a real value

λuv ∈ [0, 1] that is regarded as the probability of information dis-

semination through link ( u, v ), as illustrated in 

λu v = 1 − (1 − λ) 
w u v , (15)

where λ∈ (0, 1) denotes a specially designed propagation probabil-

ity and w uv captures the weight of link ( u, v ). Thus, the propaga-

tion probability λuv of each link ( u, v ) can be computed based on

λ and w uv . 

In the IC model, some assumptions are brought forward: (1)

The state of an individual is either active or inactive; an individ-

ual is active if he/she has taken the information. (2) Individuals

can convert from being inactive to being active, but cannot con-

vert from being active to being inactive. (3) Information spreading

occurs only in discrete time steps t ≥ 0. At time t = 0 , the individ-

uals in an initial set IA first become active, and all of the other

individuals remain in the inactive state. 

The propagation process of the IC model is formally described

in Algorithm 2 . 

Algorithm 2: Independent cascade model. 

Input : network G = (V, E, W ) , λ and IA ; 

Output : AS; /* AS is the set of active individuals at the end of 

the propagation process.*/ 

1 AS = IA ; 

2 CA = IA ; /* CA is the set of active individuals in the current 

time step.*/ 

3 NA = ∅ ; /* NA is the set of active individuals in the next time 

step.*/ 

4 while CA 	 = ∅ do 

5 foreach individual u ∈ CA do 

6 foreach individual v ∈ F (u ) /* F (u ) = { x | (u, x ) ∈ E} . */ do 

7 if v takes information from u with probability λu v 
and v / ∈ AS, v / ∈ NA then 

8 NA = NA ∪ v ; 
9 end 

10 end 

11 end 

12 CA = NA ; AS = AS ∪ NA ; NA = ∅ ; 

13 end 

14 return AS; 
.2.2. Measures of information dissemination effects 

In this paper, four measures of information diffusion effects are

efined. 

The first metric is the average number of active individuals

except initially active ones) at the end of the propagation pro-

ess, denoted by σ ( A ), which has been used in previous research

 Kempe et al., 2003; Kitsak et al., 2010 ). σ ( A ) is presented as 

(A ) = 

1 

n 

n ∑ 

i =1 

| A S i (A ) | , (16)

here A represents a set of initially active individuals, AS i ( A ) indi-

ates the output set of active individuals (excluding initially active

nes) at the end of the i th propagation process of the IC model,

 AS i ( A )| denotes the number of individuals in AS i ( A ), and n captures

he number of independent spreading simulations of the IC model.

The second criterion is the average scope of active individuals

not including initially active ones) at the end of multiple diffusion

rocesses indicated as ϕ( A ), which is computed in 

(A ) = 

1 

H 

H ∑ 

h =1 

∑ 

v ∈ V 
ω(v , S h (p, A )) , (17)

here H stands for the number of experimental groups, each group

ontains p independent spreading simulations of the IC model, V

enotes the set of individuals in the network, and S h ( p, A ) rep-

esents the union of the output sets of active individuals (except

nitially active ones) in the p independent propagation processes

f the h th experimental group. If v ∈ S h ( p, A ), then ω(v , S h (p, A )) =
 ; otherwise, ω(v , S h (p, A )) = 0 . With multiple spreading process

imulations, increasing ϕ( A ) can ensure that the scope of informa-

ion dissemination is more likely to be larger. 

The third standard is the probability of an individual (not ini-

ially active) v ∈ V taking the information, illustrated as 

P v (A ) = 

1 

q 

q ∑ 

i =1 

ω(v , A S i (A )) , (18)

here A is an initial set of active individuals, AS i ( A ) stands for

he output set of active individuals (not containing initially active

nes) at the end of the i th propagation process of the IC model,

nd q denotes the number of independent diffusing simulations.

(v , A S i (A )) = 1 if v ∈ AS i ( A ), and ω(v , A S i (A )) = 0 otherwise. 

The fourth measure is the amount of diffused words at the

nd of the spreading process denoted by ψ( A ), which is computed

husly 

(A ) = 

| T | ∑ 

j=1 

∑ 

v ∈ V 
ω(v , S j (A )) ∗ | T j | , (19)

here T stands for the set of short texts posted initially by an ini-

ial set of active individuals, | T | represents the number of items

n T, V is the set of individuals in the network, | T j | captures the

umber of words of the j th text in T , and S j ( A ) denotes the output

et of active individuals who adopt the j th text. If v ∈ S j ( A ), then

(v , S j (A )) = 1 ; otherwise, ω(v , S j (A )) = 0 . 

.3. Experiments on artificial networks 

.3.1. LFR graphic generation model 

In this study, we construct some artificial networks using

he LFR model ( Chen, Lü, Shang et al., 2012; Jiang, Perc, Wang

t al., 2011 ) to evaluate the influential individual identification ap-

roaches. In the LFR model, both the individual degree and the

ommunity size follow the power-law distributions with exponents

and η, separately. The number of individuals and the average de-

ree are set to N and 〈 k 〉 , respectively. The implementation steps of

he LFR model are described in details as follows. 
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(b) k -medoid
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(c) TwitterRank
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(d) ClusterRank

Fig. 3. Effect com parison of four influential vertex identification methods on LFR-SU network. Built-in communities are represented by different shapes. Red marks detected 

influential vertices, green (from dark to light) denotes information adoption probabilities IP v ( A ) ( Eq. (18) ) (from high to low) of vertices, and blue indicates those in which 

I P v (A ) = 0 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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(1) Each individual is assigned a degree taken from a power-law

distribution with exponent γ . The extreme degrees k min and

k max are restricted so that the average degree equals 〈 k 〉 .
The configuration model ( Molloy & Reed, 1998 ) is adopted to

connect the individuals so as to keep the degree sequence. 

(2) Each individual connects a fraction 1 − μ of its links with

the other individuals of its community and a fraction μ with

the rest of the individuals; μ is referred to as the mixing

parameter. 

(3) The sizes of the communities follow a power law with ex-

ponent η, so that all of the sizes sum up to the number

N . The minimal and maximal community sizes S min and

S max are selected so to keep the constraints S min > k min and

S max > k max , which guarantees that an individual of any de-

gree can be included in at least one community. 

(4) At first, all of the individuals are homeless, i.e., they do not

belong to any community. In the first iteration, an individual

is given to a randomly chosen community; if the number of

its neighbors inside its community exceeds the community

size, it remains homeless. In subsequent iterations, we as-

sign a homeless individual to a randomly chosen commu-

nity; if the latter is overloaded, we remove a randomly se-

lected individual from the community and it becomes home-

less. The procedure proceeds until there are no more home-

less individuals. 

(5) Several rewiring processes are conducted, to ensure the re-

striction on the fraction of internal neighbors expressed by

the mixing parameter μ, such that the degrees of all of the

individuals are kept the same, and only the split between

internal and external degree is changed. 

(6) Each link in the original network is doubled with two

different-direction arrows assigned to the new links, to gen-

erate the corresponding directed network. For each individ-
ual, half of the links pointing to it are then randomly chosen

and deleted from the network, such that the degrees of all of

the individuals remain about the same, and there may exist

a multi-dimensional relationship between any two individu-

als. 

(7) In order to construct a weighted network, each link is as-

signed to a positive real number. Two parameters, α and μw 

,

are needed in this process. The parameter α is adopted to

assign a strength s u to each individual u : s u = ( k u ) 
α

. The pa-

rameter μw 

is used to allocate the internal strength: s (in ) 
u =

(1 − μw 

) s u . 

Lancichinetti et al. devised the corresponding software package 4 

f the LFR model in the C++ programming language. In this study,

any artificial networks are built according to the experimental

equirements using this package. 

.3.2. Artificial networks construction 

Three categories of artificial networks are generated through

he LFR model to compare our PartitionRank approach with the

ther three methods. 

(1) LFR-SU 

A small unweighted (SU) and directed network. The number

of vertices is 400; the average degree is 15; the maximum

degree is 20; the degree distribution exponent is −1 . 8 ; the

community sizes are between 20 and 60; the community

size distribution exponent is −1 . 2 ; the mixing parameter is

0.1; and the number of communities is 8. 

(2) LFR-LU 

A large unweighted (LU) and directed network. The number

of vertices is 20 0 0; the average degree is 30; the maximum
4 http://santo.fortunato.googlepages.com/benchmark.tgz . 

http://santo.fortunato.googlepages.com/benchmark.tgz
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Fig. 4. Mean adopting probability of all of the vertices for four influential vertex 

identification approaches on LFR-SU network. Here, PartitionRank, k -medoid, Twit- 

terRank and ClusterRank are abbreviated as PR, K-M, TR and CR, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Execution time of different influential vertex identification algorithms on 

LFR-SU network. Here, we separately abbreviate PartitionRank, k -medoid, Twitter- 

Rank and ClusterRank by PR, K-M, TR and CR. 
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degree is 40; the degree distribution exponent is −1 . 8 ; the

community sizes are between 40 and 100; the community

size distribution exponent is −1 . 2 ; the mixing parameters

are 0.1, 0.3 and 0.5, respectively; and the number of com-

munities is 28. 

(3) LFR-LW 

A large weighted (LW) and directed network. The number

of vertices is 20 0 0; the average degree is 30; the maximum

degree is 40; the degree distribution exponent is −1 . 8 ; the

community sizes are between 40 and 100; the community

size distribution exponent is −1 . 2 ; the strength assignment

parameter is 0.25; the internal strength parameters are 0.3

and 0.5 separately; and the number of communities is 28. 

4.3.3. Results on artificial networks 

In this study, when the average number of active individuals

σ ( A ) ( Eq. (16) ) and the adopting probability IP v ( A ) ( Eq. (18) ) are

calculated, the number of simulations of information dissemina-

tion is 10 0,0 0 0 for all of the experiments. When the average scope

of active individuals ϕ( A ) ( Eq. (17) ) is calculated, 100 groups of ex-

periments are implemented and each group consists of 10 0 0 inde-

pendent spreading simulations. 

For the LFR-SU network, we set k = 8 according to the actual

number of communities. The TwitterRank and ClusterRank meth-

ods choose influential vertices only from five and three of eight

communities separately, such that some vertices in the communi-

ties with no influential vertices can only obtain the information

with a probability of approximately zero under condition λ = 0 . 1

( Fig. 3 (c) and 3 (d)). The PartitionRank and k -medoid approaches,

however, almost detect an influential vertex from each community

( Fig. 3 (a) and 3 (b)). With an initially active vertex located in the

vital position of each module, the remaining members would max-

imize the probability for acquiring information, which leads to the

highest performance of the PartitionRank algorithm on valuation

standard IP v ( A ) ( Eq. (18) ). Exceptionally, the adopting probability of

the vertex labeled with number 164 always equals 0 for all identi-

fication algorithms since d (out) 
164 

= 0 . 

Fig. 4 illustrates the mean adopting probability of all of the ver-

tices for different identification methods on the LFR-SU network,

from which we can conclude that the PartitionRank and k -medoid

schemes are vastly superior to the other two approaches. 

As for the time-consumption aspect, the k -medoid algorithm

runs particularly slowly compared with the other three methods

on the LFR-SU network ( Fig. 5 ). 

In the LFR-LU networks, k is initially set equal to 8, and then

gradually increases with a step size of 10 until reaching 28. Fig. 6

compares the information spreading effects of these methods on
he LFR-LU networks by the average number of active vertices σ ( A )

 Eq. (16) ) and the average active scope ϕ( A ) ( Eq. (17) ) at differ-

nt mixing parameters μs (stated in Section 4.3.1 ) and propaga-

ion probabilities λs ( Eq. (15) ). For all of the different μs and λs,

he PartitionRank algorithm gains the highest values of σ ( A ) and

( A ) despite the fact that it only has a small advantage over the

 -medoid method. However, as the μ and λ values increase, which

eans that the community structure grows ever more obscure, the

ifferences become small. 

Table 1 demonstrates the execution efficiencies of these four

lgorithms on the LFR-LU networks, where the k -medoid scheme

onsumes the most time, as expected. It is worth noting that

he time consumption of running the LDA procedure is deducted,

ince the synthetic networks are generated without performing

he topic distillation in this study. Nevertheless, upon compar-

son with the overall execution time complexity of O ( n 2 ), the

equired time to perform the LDA process with the complex-

ty of O ( n ) can be ignored in the PartitionRank and Twitter-

ank approaches, where n denotes the number of vertices in the

etwork. 

In Fig. 7 , we assess the performance of the four algorithms

mployed on the LFR-LW networks at different internal strength

arameters μw 

s (see Section 4.3.1 ) and propagation probabilities

s ( Eq. (15) ). For all of the different μw 

s and λs, the σ ( A ) and

( A ) values of the PartitionRank and k -medoid algorithms are still

igher than those of the TwitterRank and ClusterRank methods,

herein the scheme proposed in this study achieves the highest

erformance. However, as the μw 

and λ values increase, the per-

ormance gap becomes small in the same way. 

As displayed in Table 2 , the k -medoid approach remains the

ost time-consuming of all of the compared methods on the LFR-

W networks. 

Experimental results on artificial networks with various set-

ings demonstrate that our algorithm almost always produces the

est solution in comparable time among state-of-the-art methods,

hich means that the PartitionRank approach can satisfy the ap-

lication requirements of large-scale expert and intelligent systems

nder the independent cascade model. 

.4. Experiments on real-world network 

.4.1. Network construction of microblogging 

Tencent microblogging, similar to Twitter, adopts a social-

etworking model named “following”, in which each user can “fol-

ow” anyone from whom he/she wants to receive microblogs with-

ut permission. Through the end of 2012, the number of regis-

ered users on the Tencent microblogging platform has exceeded
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Fig. 6. Effect comparison of four influential vertex identification approaches on LFR-LU networks. 
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Fig. 7. Effect comparison of four influential vertex identification algorithms on LFR-LW networks. 
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Table 1 

Execution time of different influential vertex identification methods on LFR-LU networks 

(not including LDA process time consumption). 

Parameters Time (s) 

μ λ k PartitionRank k -medoid TwitterRank ClusterRank 

0.1 0.005 8 13,487 55,025 968 227 

18 14,595 55,058 975 239 

28 14,663 56,909 982 257 

0.01 8 13,487 81,459 968 227 

18 14,595 82,228 975 239 

28 14,663 82,696 982 257 

0.05 8 13,487 832,025 968 227 

18 14,595 866,543 975 239 

28 14,663 893,566 982 257 

0.1 8 13,487 208,978,733 968 227 

18 14,595 212,110,411 975 239 

28 14,663 227,410,462 982 257 

0.3 0.005 8 13,569 55,910 819 230 

18 15,396 56,197 832 242 

28 15,310 57,039 841 259 

0.01 8 13,569 81,876 819 230 

18 15,396 82,610 832 242 

28 15,310 82,884 841 259 

0.05 8 13,569 854,872 819 230 

18 15,396 879,032 832 242 

28 15,310 896,964 841 259 

0.1 8 13,569 214,307,601 819 230 

18 15,396 219,783,575 832 242 

28 15,310 229,133,579 841 259 

0.5 0.005 8 15,146 56,714 677 247 

18 16,569 56,908 681 258 

28 16,687 57,225 691 265 

0.01 8 15,146 82,105 677 247 

18 16,569 82,683 681 258 

28 16,687 82,942 691 265 

0.05 8 15,146 862,299 677 247 

18 16,569 892,087 681 258 

28 16,687 907,808 691 265 

0.1 8 15,146 219,854,799 677 247 

18 16,569 223,206,054 681 258 

28 16,687 238,730,887 691 265 

Table 2 

Execution time of different influential vertex identification approaches on LFR-LW net- 

works (not including LDA process time consumption). 

Parameters Time (s) 

μw λ k PartitionRank k -medoid TwitterRank ClusterRank 

0.3 0.04 8 17,576 52,886 1001 260 

18 18,748 53,490 1013 271 

28 18,885 54,172 1050 281 

0.08 8 17,576 83,997 1001 260 

18 18,748 85,038 1013 271 

28 18,885 85,904 1050 281 

0.4 8 17,576 2,073,651 1001 260 

18 18,748 2,136,160 1013 271 

28 18,885 2,152,149 1050 281 

0.5 8 17,576 94,758,742 1001 260 

18 18,748 97,147,645 1013 271 

28 18,885 97,673,281 1050 281 

0.5 0.04 8 21,661 55,547 665 271 

18 22,350 56,012 697 280 

28 22,565 57,203 707 290 

0.08 8 21,661 85,157 665 271 

18 22,350 86,271 697 280 

28 22,565 87,068 707 290 

0.4 8 21,661 2,145,169 665 271 

18 22,350 2,239,384 697 280 

28 22,565 2,276,103 707 290 

0.5 8 21,661 101,331,382 665 271 

18 22,350 101,972,710 697 280 

28 22,565 102,230,236 707 290 
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40 million. In the meantime, the number of daily active users

as reached up to 100 million. Furthermore, Tencent microblog-

ing has provided a uniform free application program interface

API 5 ) for developers to acquire the full user data. Given the advan-

ages above, Tencent microblogging is employed as the experimen-

al platform for the performance assessment on real-world social

edia in this study. 

On average, there are dozens of friends on the entire site for

ach user. If we stochastically select some users to build the “fol-

owing” network, then it cannot accurately depict the social re-

ationships of these users. Therefore, we begin with a specified

ser who is identified as the initial individual of the “follow-

ng” network, and then all of the followers of this user are re-

ruited into the network. After that, we add all of the followers

f these newcomers in the same way, until the number of in-

ividuals in the network satisfies the experimental requirement.

eanwhile, those users having more than 10 0 0 friends or follow-

rs are eliminated, since we regard them as friendship abusers

r stars. 

We perform the experiments with two batches of microblog

ata related to the same 12,746 users, which are collected in June

nd August 2015 for influential individuals identification and per-

ormance verification, respectively. There exist 83,809 “following”

elationships among these users in June. 

The LDA model is conditioned on three parameters, i.e., topic

umber T and Dirichlet hyper-parameters α and β . In this study,

hey are set as T = 100 , α = 50 /T , and β = 0 . 1 . The different

hoice of these parameters has implications for the results of the

opic distillation. Nevertheless, it is not investigated since the fo-

us of this study is how to identify the influential individuals in

icroblogging networks. Indeed, the results and perspective of this

tudy are not limited by the very specific values of these three pa-

ameters. 

.4.2. Results on microblogging platform 

For the experiments on a real-world network, the numbers of

dentified influential individuals k s are set to 20, 30 and 40 sepa-

ately. In this case, the k -medoid approach is dismissed since the

equired memory exceeds the maximum allowed by our system,

hich is 16 GB. 

Fig. 8 compares the information spreading effects of the re-

aining three compared methods on the microblogging network

y the active vertex number σ ( A ) ( Eq. (16) ) and the amount of dif-

used words ψ( A ) ( Eq. (19) ). From the results of all of the different

 s, one can draw a conclusion that our scheme outperforms the

ther methods in σ ( A ) values; in particular, our approach gains the

ighest ψ( A ) values with significant superiority. 

Similarly, Fig. 9 shows the execution efficiencies of these related

lgorithms. Note that our proposed approach can satisfy the needs

f practical applications, although it is significantly slower than the

ther two methods. 
5 http://dev.t.qq.com . 

i  

o  

o

According to the experimental results on the microblogging

ite, which are independent of any simulation model, we can con-

lude that the PartitionRank approach significantly outperforms

he other compared methods within acceptable time. In other

ords, our scheme illustrates broad prospects for intelligent appli-

ations in social media similar to microblogging, including opinion

ropagation, guidance of political movements, and acceptance of

echnologies. 

.5. Experimental results discussion 

Consistent with the experimental results above, we further

arry out a deep analysis and discussion of the results of compar-

ng our approach to the other three methods. 

For the k -medoid method, the transmission probability and

preading mechanism that can impact the spreading effects are

aken into account, but the computation cost is particularly high,

o that it cannot adapt to large-scale social networks. In contrast,

ur approach first partitions the propagation probability network

nto a pre-fixed number of size-balanced communities, and then

dentifies the most influential vertex from each community as the

esult set, which obviously can reduce the time complexity. Mean-

hile, the spreading mechanism and propagation probability are

mplicitly included in the graph-partitioning process. In addition,

ur method even accounts for the interest similarity among users

f social media, which further improves its performance in influ-

ntial individuals identification. 

The TwitterRank method is a PageRank-like algorithm, in which

he interest similarities on different topics between each pair of

riend and follower are considered to measure the topic-sensitive

nfluences of twitterers. However, the identified influential individ-

als may be distributed in the communities with large sizes, and

an only influence vertices of the same communities in a short

ime span when the propagation probability is small. Through

raph partitioning, our algorithm can select influential individuals

rom different communities in a balanced way. Thus, the influen-

ial individuals detected by the PartitionRank approach can diffuse

ore information than the TwitterRank method. 

The ClusterRank method emphasizes the negative effects of the

ocal clustering on spreading dynamics, and fails to separate the

nfluential individuals by a distance to avoid repeatedly influenc-

ng the same vertices. On contrary, in addition to the interest sim-

larity calculation, our method identifies only the most influential

ndividual from each size-balanced community, which can reduce

r even eliminate the overlapping effects to achieve a wider range

f information dissemination. 
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5. Conclusions and future work 

In this study, we propose an overall approach named Parti-

tionRank for influential individual identification in microblogging

networks with some advantages. On the one hand, in accordance

with the “homophily” phenomenon, the topical similarities among

users complement the interaction relationships to construct the in-

terest interaction network that can accurately simulate the infor-

mation propagation probability. On the other hand, the proposed

scheme detects the most influential individual from each of a pre-

fixed number of communities in a balanced way, which can influ-

ence many more users of the social networks. Differing from or-

dinary community detection methods, we introduce the size bal-

ance model into the graph partitioning, which further improves the

spreading effectiveness. 

The current design of our algorithm only accounts for the num-

ber of microblogs a user releases in the transmission probability

estimation process. In the future, we intend to improve this by in-

corporating more interactions between users, e.g., mention/reply.

In addition, the computation cost of our approach mainly depends

on the graph-partitioning part; therefore, developing a top-down

community detection method with low time complexity is another

object of future research. Last but not least, we plan to further val-

idate the performance of the proposed approach in large-scale mi-

croblogging datasets. 
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