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Identifying influential individuals who lead to faster and wider spreading of influence in social networks
is of theoretical significance and practical value to either accelerating the speed of propagation in the
case of product promotion, or hindering the pace of diffusion involved in rumors. Conventional methods,
ranging from centrality indices to diffusion-based processes, already take into account the number and
influences of followers, but fail to make full use of the characteristics of social media. A novel approach
called PartitionRank for finding a pre-fixed number of influential individuals in microblogging scenarios
is proposed in this study to maximize the impact; it combines interest similarity with social interac-
tion between users via graph partitioning. Experimental results on artificial and real-world microblogging
networks illustrate that our scheme outperforms the other state-of-the-art methods in effectiveness and

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

One main function of social networks is to propagate infor-
mation, ideas, reputations, and influences between any two users
(Kim & Song, 2011). The information can disseminate beyond the
direct followers, occasionally passing to a mass of individuals. In-
formation dissemination is a prevalent process that formally de-
scribes many dynamic network activities (Keeling & Rohani, 2008;
Rogers, 1995). The knowledge of the roles that users play in the
dissemination process is crucial for exploiting efficient methods to
either accelerate or hinder dissemination.

It is a fundamental problem to mine a tiny fraction of influen-
tial individuals from a social network such that they can transfer
information to the largest number of users (Kimura, Saito, Nakano
et al.,, 2010; Kitsak, Gallos, Havlin et al., 2010). The solution to this
problem has broad application prospects (Kaiser, Schlick, & Boden-
dorf, 2011; O’'Mahony & Smyth, 2010). First, social media is a pow-
erful marketing platform. Targeting influential individuals can im-
prove the efficiency of marketing campaigns. Kempe et al. give a
vivid instance (Kempe, Kleinberg, & Tardos, 2003): A company ini-
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tially selects a small number of “influential” users in the social net-
work by giving them free product samples and hopes that these
users will recommend the product to their friends, and then influ-
ence their friends’ friends; many users will thus finally purchase
the new product through the powerful word-of-mouth effect. Sec-
ond, there are many applications that utilize social media to collect
opinions and information on special topics. Identifying influential
individuals can significantly raise the quality of the collected opin-
ions.

Designed to solve complex problems by reasoning about knowl-
edge, after absorbing the technology of finding most influen-
tial people in social media, the expert systems have enlarged
the applicable area, such as recommender systems develop-
ment (Morid, Shajari, & Hashemi, 2014), useful weblogs choosing
(Leskovec, Krause, Guestrin et al., 2007) and influential twitters
identification (Weng, Lim, Jiang et al., 2010). For example, the in-
telligent medical auxiliary system can concretely estimate disease
categories and accurately recommend suitable hospitals and ex-
perts according to the description of symptoms and the location
coordinates of the patients.

Social networks exhibit the property of modular structure
(Nguyen, Dinh, Xuan et al., 2011; Palla, Pollner, Barabdsi et al.,
2009), i.e., they divide naturally into communities of vertices
with denser connections inside each cluster and fewer connections
crossing clusters, where vertices and connections express network
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users and the social interactions among them, respectively. In this
paper, we analyze the effects of some popular approaches on iden-
tifying influential individuals in social networks, including degree
centrality, closeness centrality, betweenness centrality, and PageR-
ank. Sometimes these approaches are limited when applied to so-
cial networks as they ignore the networks’ community structure
and do not identify the influential individuals from communities
in a relatively balanced way. For instance, the individuals with a
high degree that are often treated as influential roles may all lie in
the same community with larger size such that they can only im-
pact individuals in the same community (Zhang, Zhu, Wang et al.,
2013). In this paper, we propose a novel approach to identify influ-
ential individuals in social networks.

Microblogging is a new representative form of communication.
It allows users to release brief message updates (with a limit of
140 characters), which can be published in many different chan-
nels, including the Web and mobile phones.! Microblogging also
provides “social-networking” functionality. Unlike other social net-
works that require users to grant permission to other users be-
friending them, microblogging adopts a social-networking model
called “following”, in which each user is allowed to choose who
he/she wants to follow freely. Conversely, the user may also be fol-
lowed by others without granting permission first. In an example
of a “following” relationship, the user who is following is named
the “follower”, while the one whose updates are being followed is
called the “friend”. Microblogging has gained extensive popularity,
and also has drawn huge interest from the research community.

The “following” relationship is a potential indicator of topic
similarity among users (Weng et al., 2010). A user follows a friend
because he/she is interested in the topics that the friend re-
leases in microblogs, and the friend follows back because he/she
finds that they share similar topic interests. This phenomenon is
named “homophily”, and it has emerged in many social networks
(McPherson, Smith-Lovin, & Cook, 2001).

In this study, we measure the individual influence combining
the “following” relationship and the topical similarity among users.
First, the interest interaction network is constructed through topic
distillation of microblogs. Second, all users in the network are di-
vided into a pre-fixed number of communities in a relatively size-
balanced way. Finally, the highest-ranked scorer in each commu-
nity is returned as a small subset of influential individuals.

The main innovations and characteristics of this study are in-
cluded as follows.

¢ An interest interaction network is built taking both interaction

intimacy and interest similarity into account to depict the in-

formation spreading probabilities, which demonstrates as a di-

rected and weighted multi-dimension network.

Identifying influential individuals in social networks from the

aspect of communities, which gives a particular distance from

one another among spreading origins, can decrease and even

dissipate the overlap.

o The modularity and size of communities are integrated to elim-
inate the negative effect in extremely unbalanced communities,
which can further increase the spreading effectiveness.

The remainder of this paper is organized as follows. The re-
lated work on identifying influential individuals is summarized in
Section 2. In Section 3, we elaborate on the proposed approach,
which detects the most influential individual from each user group.
The experimental evaluation on several computer-simulated and
real-world networks is executed in Section 4. Finally, we conclude
the paper and make suggestions for future research in Section 5.

1 http://en.wikipedia.org/wiki/Micro-blogging.

2. Related work

It is well known that many mechanisms, such as spreading,
cascading and synchronizing, are highly impacted by a small sub-
set of influential individuals (Zamora-Lopez, Zhou, & Kurths, 2010).
How to identify these influential individuals is of theoretical sig-
nificance and practical value. Moreover, detecting influential indi-
viduals is essential for design of effective information dissemina-
tion strategies in many fields, including rumor controlling, public
health practices, business management, and marketing campaigns.

A variety of centrality indices have been proposed to solve
this problem, such as degree centrality, closeness central-
ity (Sabidussi, 1966), betweenness centrality (Freeman, 1979),
eigenvector centrality (Bonacich, 2007), k-shell decomposition
(Kitsak et al., 2010), and local proxy (Pei, Muchnik, Andrade et al.,
2014). Degree centrality is a simple and efficient metric, but it
lacks relevance. For instance, an individual lying in the center of
the network, which has a few highly influential followers, may be
more influential than an individual existing at the periphery of
the network and having a larger number of less influential follow-
ers. Closeness centrality, which can be referred to as a measure
of how long it takes to spread information from an individual to
all of the other individuals sequentially, may highlight the indi-
viduals located at the junction between communities. Betweenness
centrality is defined as the fraction of the shortest paths between
pairs that cross through the individual of interest. Individuals with
high betweenness often act as intermediaries in transferring infor-
mation, such that they play pivotal roles in information dissemi-
nation between communities rather than as initial spreaders, and
they cannot satisfy the application requirements in large-scale so-
cial networks for their high computational complexity. Eigenvector
centrality has limitations for directed and weighted networks of
social media, since it only targets the undirected networks. The k-
shell decomposition approach does not always work well, as some-
times the individuals in the core occupy a high proportion of the
network, such that the influential individuals cannot be detected.
Local proxy for individuals’ influence - the sum of the nearest
neighbors’ degrees, can be further improved effectiveness by tak-
ing into account more factors, such as the clustering coefficient of
nodes (Chen, Gao, Lii et al., 2013).

With the explosive growth of network data, a number of
random-walk-based algorithms have been designed. The repre-
sentative methods include the well-known PageRank (Brin &
Page, 1998) and TunkRank,> as well as some recently proposed
approaches, including LeaderRank (Li, Zhou, Lii et al., 2014; L,
Zhang, Yeung et al., 2011) and TwitterRank (Weng et al., 2010). All
of these algorithms assume that an individual is supposed to be
of high influence if it is pointed to by many highly influential fol-
lowers. It has been demonstrated that these approaches are supe-
rior to centrality-based methods in terms of ranking effectiveness.
They may adapt to find the original influential promulgators only
when the spreading originates in a single active individual. For
a spreading process originating in many active individuals simul-
taneously, spreading origins located at a particular distance from
each other must be confirmed, to avoid or reduce the repeated
impact on many of the same individuals and extend the influence
scope. However, these classic approaches may detect influential in-
dividuals who do not lie far enough away, since they do not take
into account the community structure that is ubiquitous in social
networks.

Inspired by humanities science, two well-known influence max-
imization models are suggested (Kempe et al., 2003) and they
have been adopted to derive many different approaches, including

2 http://thenoisychannel.com/2009/01/13/atwitter-analog- to- pagerank.
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Fig. 1. System architecture of proposed approach.

the ComPath algorithm (Rahimkhani, Aleahmad, Rahgozar et al.,
2015) based on the linear threshold model and a Monte-Carlo-
simulation-based method (Ohsaka, Akiba, Yoshida et al., 2014) us-
ing the independent cascade model. The ComPath scheme provides
a good balance between effectiveness and execution time to find
the top-k most influential people in social networks. The Monte-
Carlo-simulation-based algorithm exploits the existence of a hub
in social networks to accelerate breadth-first searches for captur-
ing solutions of high quality with a theoretical guarantee. All of
these initiatives try to maximize the impact under stochastic sim-
ulation models, failing to combine the interest similarity between
users for characterizing the influence spread in social networks.

3. Proposed approach

In this study, we select Chinese microblogging as the bench-
mark research platform. However, slight modification of the pro-
posed approach can be adopted to any microblogging scenario in
other languages, and even any social media.

3.1. Framework of proposed approach

For the purpose of clearly depicting the characteristics and con-
tent of the proposed approach, the detailed overall framework is
displayed in Fig. 1. The proposed approach consists of five cru-
cial steps, including topic distillation, interest similarity calcula-
tion, interest interaction network construction, graph partitioning,
and sorting by LeaderRank, where the collection of microblogging
data has been plugged in as the foundation. First, the topics of mi-
croblogs for each user are extracted using the Latent Dirichlet Al-
location (LDA) model (Blei, Ng, & Jordan, 2003; Heinrich, 2008).
Then, Pearson correlation coefficient is applied to calculate the in-
terest similarity between each friend and follower pair. Next, we
build a probability network for information transmission taking
into account the social relationship, the interest similarity, and the
user activity level. The directed and weighted network is then di-
vided into a pre-fixed number of communities by the spectral clus-
tering algorithm. Finally, the most influential user in each commu-
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Fig. 2. Graphical illustration of LDA model.

nity is detected to form the influential individual set. In the fol-
lowing subsections, we describe each component in detail.

3.2. Topic distillation

The purpose of topic distillation is to automatically identify the
topics that users are interested in based on the microblogs they
have released. The LDA model, an unsupervised machine learning
technique to mine the latent topic information from a large docu-
ment set, is adopted to achieve this goal. It treats each document
as a “bag of words”, so each document emerges as a probability
distribution over some topics, and each topic emerges as a prob-
ability distribution over a lot of words. The generative process for
each document is as follows.

(1) For each document, choose a topic from its distribution over
topics.

(2) Take a word from the distribution over the words associated
with the picked topic.

(3) Repeat steps (1) and (2) until all of the words in the docu-
ment are sampled.

This generative process is graphically illustrated using univer-
sal plate notation in Fig. 2. Each of a collection of D documents is
related to a multinomial distribution over T topics, which is rep-
resented as 6. Each topic is related to a multinomial distribution
over a lot of words, represented as ¢. 6 and ¢ have Dirichlet priors
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with hyper-parameters « and B, respectively. In this figure, dual-
circular and single-circular plates denote observed and latent vari-
ables separately. A directed edge corresponds to a conditional de-
pendency between two variables, and boxes denote repeated sam-
plings, with the number of times given by the variable at the bot-
tom right of the corresponding box. In addition, z is a topic taken
from the multinomial distribution 6 associated with the document,
w denotes a word sampled from the multinomial distribution ¢ as-
sociated with the topic, and Ny stands for the number of words in
the document.

In this study, Gibbs sampling is then adopted to estimate the
model parameters from the data, i.e., the document-topic distribu-
tions 6 and the T topic-word distributions ¢.

The result is represented in two matrices:

(1) A D x T matrix, denoted DT, where D is the number of users
and T is the number of topics. DT;; represents the number
of times a word in user s;’s microblogs has been assigned to
topic ¢;.

(2) A Wx T matrix, denoted WT, where W is the number of
unique words in all of the microblogs and T is the number
of topics. WTj; contains the number of times a unique word
w; has belonged to topic ;.

Since the purpose is to identify the topics that each user is
interested in rather than the topic that each single microblog is
about, we assemble the microblogs released by the same user into
a document, and then Chinese word segmentation® is executed for
each document.

3.3. Interest similarity calculation

For the purpose of measuring interest similarity, matrix DT is
then row-normalized as DT’ such that ||DT ||, = 1 for each row DT;.
Each row of matrix DT’ is essentially the probability distribution of
user s;'s interest over the T topics, i.e., each element DT’ indicates
the probability that user s; is interested in topic ;.

Several measurement criteria have been proposed in the litera-
ture for the sake of calculating the interest similarity between in-
dividuals, among which the Pearson correlation coefficient is most
popular. Given this, a modified version of the Pearson correlation
coefficient is employed to measure the interest similarity between
users with a “following” relationship as follows.

Definition 1 (Interest similarity measure). Interest similarity be-
tween two microblog users s, and s, can be calculated as

> 1:(DT"y — DT’,) (DTt — DT'))

teT (1)
S r:(DT'y — DT7y)" Y. 1:(DT"y — DT7,)°

teT teT

sim(u,v) =

where T stands for the set of all topics in microblogs and DT,
denotes the mean interest degree of user u on these topics. r¢s
are set as the probabilities of different topics’ presence, which are
computed according to the number of times unique words have
been allocated to corresponding topics as expressed in matrix WT.
In this case, the measure of interest similarities basically remains
consistent with the topics’ general influence. In the case of sim(u,
v) <0, we set sim(u,v) =0 to avoid assigning a negative value to
an edge of the network that is outside the scope of the research.

In this study, only the interest similarity between each friend
and follower pair needs to be calculated, since the information can
only spread from friend to follower, thus significantly reducing the
time complexity and meeting the demands of practical application.

3 http://nlp.stanford.edu/software/segmenter.shtml.

3.4. Interest interaction network construction

A directed network D(V, E) is first constructed with the users
and the friends/followers relationships among them. V denotes the
vertex set, which contains all of the microblog users. E repre-
sents the edge set. Consistent with previous work (Page, Brin, Mot-
wani et al., 1999), there is an edge between two users if there ex-
ists a “following” relationship between them and the arrow points
from follower to friend.

The “surfer” randomly visits each user with a certain probability
by following the corresponding edge in D, which is also regarded
as the transmission probability of related information dissemina-
tion, since it reflects the influence of friend on follower. The proba-
bility matrix for information transmission, represented as P, is de-
fined as follows.

Definition 2 (Transmission probability). Each element of matrix P,
i.e. the transmission probability from follower s, to friend s, of the
random “surfer”, is given by

log(|My| + 1)
Y. log(IMy|+1)

sy follows s

P (u,v) = = sim(u, v), (2)

where |M,| denotes the number of microblogs released by s,, and
sim(u, v) stands for the interest similarity between users s, and sy,
with details as shown in Eq. (1).

This definition captures two intuitions. First is the assumption
that user s, follows many friends. Those friends release different
numbers of microblogs, all of which will be directly visible to sy.
The more that friend s, releases, the greater the portion of mi-
croblogs that s, reads from s,. Consequently, this brings about
a higher influence on s,, which results in a higher transmission
probability from s, to s,. However, if user s, publishes a large
number of microblogs, it would create a subconscious boredom,
which leads to the transmission probability being not linear with
the number of microblogs. In this study, we adopt the logarithmic
function to depict this relationship, as shown in the first term on
the right-hand side (RHS) of Eq. (2).

Second, as implied by the homophily phenomenon discussed in
Weng et al. (2010), sy’s influence on s, is also related to the inter-
est similarity between them; the greater the similarity, the greater
the influence. Row-normalized matrix DT’ is the result of topic dis-
tillation. Row DT, represents the probability of user s,’s interest
in different topics. The interest similarity between s, and s, can
be calculated by the resemblance between the probability distri-
butions, as illustrated in the second term on the RHS of Eq. (2).

3.5. Graph partitioning

Supposing that we are given the structure of an interest inter-
action network and there exist some isolated vertices and/or small
groups of a few members, we then kick them out of the network
since these communities formed by one or several users clearly
cannot tell us anything of any worth.

Newman proposes a metric named modularity to evaluate the
quality of graph partitioning (Newman, 2004, 2006). The modular-
ity of a weighted network is defined as the sum of the weights
of all of the edges included within subgraphs (after partitioning)
subtracted by the expected edge weight sum under condition that
edges were placed at random. A positive modularity implies a pos-
sible graph partitioning.

Leicht extends modularity to directed networks (Leicht & New-
man, 2008). We can define user u;’s out-degree as di("”[) =Y jep Wij
and in-degree as di(m) = > jep Wji, where wy; captures the weight of
an edge directed from vertex i to j in network D. The sum of all of
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the edge weights is defined as m = Y, d{™ or m = Y., d™.
The modularity of the partitioning is computed thusly

Fou[) (jn)

1 id;
Q= 2 (Wi =

ij

8(Gi, Gy, (3)

where §(C;, C;) represents an impulse function. If vertices i and
j are in the same community, i.e., G =C;, then §(G.,C;) =1; and
3(G;, Cj) = 0 otherwise.

Since the only contributions to the sum come from vertex pairs
falling within the same cluster, we can combine these contribu-
tions and rewrite the sum over the clusters instead of the vertex
pairs as

ne 1 d(out)d(in)
5547
c=1

Here, n. is the number of clusters, I denotes the weight sum of
edges connecting vertices within cluster c, dé"“t) stands for the sum
of the out-degrees of the vertices in ¢, and déi”) represents the sum
of the in-degrees.

In a network with extremely unbalanced communities, selecting
an influential individual from each community would reduce the
propagation effectiveness due to the extremely unbalanced sizes
of the communities. To solve this problem, we introduce the size-
balanced increment of modularity into the graph-partitioning pro-
cess to balance community sizes as follows.

Definition 3 (Size-balanced increment of modularity). The size-
balanced increment of modularity obtained by dividing cluster ¢
into two subgraphs is described as

lC déaut)dgin)

Qc = o (5)
AQc=Q, +Q, — Q.. (6)
AQ/. =logs. * AQ., (7)

where c; and c, represent the two sub-modules of ¢, and s. de-
notes the number of individuals within c.

In a subgraph, the number of individuals shows an exponential
increase with the path length of information spreading, which is
exactly depicted using a logarithmic function in Eq. (7). For con-
venience, the number 10 is selected as the base of the logarithmic
function.

The purpose here is to divide D into a pre-fixed number of sub-
graphs such that Q' is maximized. Leicht has proposed a very ef-
ficient and intuitive spectral-graph-theory-based approach to solve
this optimization problem (Leicht & Newman, 2008). It first con-
structs a modularity matrix (D’’) of the graph D, whose elements
are described as

d(out)d(in)
D'jj=Dj— ——1—.

(8)

m

D' =D + (D), 9)

where D;; denotes an adjacency matrix element of graph D. Eigen-
analysis is then executed on the symmetric matrix D" to calcu-
late its largest eigenvalue and the corresponding eigenvector ().
Finally, D"’ is divided into two subgraphs based on the plus-minus
signs of the elements in 7.

To obtain the best possible modularity value, it is a common
strategy in standard graph-partitioning issues to use spectral par-
titioning based on the graph Laplacian to gain an initial broad di-
vision of a network into two subnets, and then refine that parti-
tioning by using the Kernighan-Lin approach. Each iteration of the

fine-tuning algorithm in this study consists of the following steps:
(i) Construct a list as a candidate vertex set by selecting among
the vertices the ones that, when moved to the other subgraph,
will give an increase in the modularity of the complete network.
(ii) Repeatedly delete the vertex with largest modularity increase
from the list and remove it to the other community. The process is
executed until no further improvement in the modularity is pos-
sible. By building the candidate set, the computational complexity
decreases significantly, since the search range is reduced consider-
ably in each iteration.

It is important to note that it is incorrect, after first partitioning
a network into two subgraphs, to simply delete the edges located
between the two parts and then apply the approach again to each
subgraph. This is because the degrees presenting in the definition,
Eq. (3), of the modularity will decrease if edges are removed; thus,
any subsequent maximization of modularity would maximize the
wrong equation. Instead, the right way is to write the modularity
matrix of a subgroup g with size sz as

D" = D" = 8 ) D' ilicg jeg: 1o
keg

where §; denotes the Kronecker §-symbol, and D" (® stands for the
Sg x g matrix with elements retrieved by the labels i and j of ver-
tices in group g.

The spectral approach is then recursively applied to each of
the subgraphs to further partition them into smaller ones un-
til the number of subgraphs satisfies the application requirement.
In a real-world application, the number of influential individuals
needed to be selected from the social media is always less than
the actual number of communities in the social network; thus, no
such situation exists in which the network is indivisible during the
graph partitioning.

The main task of computation in this portion is to find the
largest eigenvalues and the corresponding eigenvectors of the
modularity matrices. This can be efficiently completed by the
power iteration (Ipsen & Wills, 2006), the repeated multiplication
of the matrix into a trial vector, which is able to scale up with the
increase of the number of microblog users.

The partitioning process of the sparse symmetric modularity
matrix D is elaborated in Algorithm 1.

3.6. Sorting by LeaderRank

In our proposed approach, size-balanced communities are first
detected from the directed and weighted network, and we then
select the most influential individual from each community by the
modified LeaderRank algorithm.

LeaderRank is a random-walk-based ranking method (Lii et al.,
2011). On the basis of PageRank, LeaderRank introduces a ground
vertex g, which has two directed edges e, and ej; connecting to
every vertex i in the original network. For simplicity, the weights
of eg; and e;g are set to the average weight of all of the edges in the
original network. The rank score rj(t) of vertex j at discrete time t
is given by (basing on a purely random walk process)

n+1 Dij

i=1 i

Initially, r;(0) = 0 for the ground vertex g, and r;(0) =1 for ev-
ery other vertex i. At steady-state conditions, the rank score of the
ground vertex is equally transferred to all of the other vertices
to conserve scores without “following” edges. Therefore, the final
score of vertex j is computed thusly

rg(too)

rj= r]'(too)—F n (12)
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Algorithm 1: Graph-partitioning process.

Input: D", k; [*k is the pre-fixed number of influential
individuals.*/
Qutput: CS; [*CS is the set of individual communities after
graph partitioning.*/

-

calculate the community modularity of D" as Qp;

split D” into D" and D", by the spectral method with

further fine-tuning, and then calculate the community

modularity of D”; and D", as Qp» , and Qpy,, respectively.

size-balanced modularity increment

incpr = logspr * (Qpy, + Qpr, — Qpr), map D" (as the key)

into incp, (as the value) to build a new element of collection

MC; [*MC is a mapping collection with each element

containing a key and the corresponding value.*/

while |MC| < k do

5 remove an element with the maximum value from MC,
denote its key as DM;

6 divide DM into DM; and DM, by the spectral approach
with fine-tuning strategy;

7 put DM; and DM, (with their size-balanced modularity
increments) into MC as two new elements;

s end

9 get all elements of MC, return their keys as set CS;

N

w

N

Here, rj(t~) represents the rank score of vertex j in the stationary
state.

Although LeaderRank is analogous to PageRank, it is more ro-
bust to attacks and more stable to noise than PageRank. More re-
markably, LeaderRank is a parameter-free ranking algorithm.

3.7. Computation complexity

The most time-consuming process of our approach is the solu-
tion of the leading eigenvector of the modularity matrix. At first
glance, it appears that the power iteration executes very slowly,
taking O(n?) operations in each iteration because the modularity
matrices are dense. However, we can subtly perform them much
faster by taking full advantage of the particular structure of the
matrix.

In the modularity matrix definition Eqgs. (8) and (9), D’ =D —
d@0 (@) ym and D” =D’ + (D')", where D denotes the adja-
cency matrix, and d°4) and d™ are the out-degree and in-degree
vectors. The product of D’/ multiplying an arbitrary vector can be
written as

d(out)((d(in))Tx) d(in)((d(out))Tx>
+

D'x= (D +D")x —
m m

(13)

The first term on the RHS is a standard sparse matrix-vector mul-
tiplication taking time O(m + n). The inner products (d™)Tx and
(d©u)YTx take time O(n) to execute the vector-vector multiplica-
tion. Thus, the time taken to complete the multiplication in each
round is O(m+n), and generally O(n) such multiplications are
needed to obtain the leading eigenvector. Typically, the social net-
work in which spammers have been eliminated is a sparse graph
with mon.

In conclusion, the overall running time of our proposed ap-
proach becomes O(n2).

According to the distributed computation (Sarma, Molla,
Pandurangan et al, 2015) and the incremental computation
(Bahmani, Chowdhury, & Goel, 2011) of PageRank, the itera-

tive matrix-vector multiplication method can be performed dis-
tributively or incrementally for large-scale evolving networks.
Sarma et al. (2015) provide a fast algorithm that takes O(,/logn/¢)
rounds in undirected graphs, where n represents the network size
and ¢ denotes a fixed constant. Therefore, our approach can fur-
ther accelerate the convergence if we implement the iterative
matrix-vector multiplication procedure distributively or incremen-
tally, which is planned future work.

4. Experimental evaluation

In this study, we compare our proposed approach with three
other existing state-of-the-art methods, namely k-medoid, Twitter-
Rank, and ClusterRank, respectively, on some synthetic networks
generated by the Lancichinetti-Fortunato-Radicchi (LFR) model and
a real-world microblogging network.

For ease of presentation, our proposed approach is annotated as
PartitionRank throughout the comparisons in experiments.

4.1. Three compared methods

4.1.1. k-medoid

A novel approach is proposed by Zhang et al. (2013) to identify
influential vertices in complex networks with community struc-
ture. The detailed process is as follows:

(i) An n x n information transfer probability matrix M on net-
work G = (V,E,W) is constructed, where n stands for the
number of vertices in G, and element m; of M represents
the information transfer probability through all paths from
vertex i to j.

(ii) k medoids are then detected as k influential vertices
by adopting the k-medoid clustering algorithm (Park &
Jun, 2009) on M, which can be referred as a similarity ma-
trix.

The time complexity is O(n3), where n denotes the number of
vertices in the network.

4.1.2. TwitterRank

Weng et al. (2010) measure the influences of users in Twitter
taking both the topic interest similarity between users and the fol-
lowing network into account.

The specific process of this method is as follows. First, topics
that twitterers are interested in are extracted automatically by an-
alyzing the content of their tweets. Second, a topic-specific social
network among twitterers is constructed. Finally, the TwitterRank
algorithm, an extension of PageRank, is applied to evaluate the in-
fluences of twitterers.

To keep analysis simple in this study, we construct the general
influence topic-specific social network to perform the comparisons
with our approach.

The computing time complexity is O(n?); here, n stands for the
number of twitterers in the network.

4.1.3. ClusterRank

A local ranking algorithm called ClusterRank is proposed by
Chen et al. (2013) that takes into account not only the number
of followers and the followers’ influences, but also the clustering
coefficient.

Formally, the ClusterRank score s; of vertex i is computed as

si=fc) Y (d™ +1). (14)
JjeTi

Here, I'; contains all of the followers of i, dj(.i”) denotes the in-
degree of vertex j, the term “+1” accounts for the contribution
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of j itself, and the term f{c;) corresponds to the effect of i’s local
clustering. The local clustering plays a negative role in information
spreading, so f(c;) is adopted as a decreasing function of clustering
coefficient ¢;, namely f(c;) = 107€.

The time complexity is O(m + n), where m and n represent the
numbers of edges and vertices in the network, respectively.

4.2. Evaluation metrics

The influence maximization issue is tested on a directed and
weighted network G = (V,E,W). V and E are the sets of all of the
individuals and links in the network, separately. n and m represent
the numbers of items in V and E, respectively. W is the correspond-
ing weight set of E, i.e., each link (u, v)eE from individual v to u
corresponds to weight wy, e W.

4.2.1. Independent cascade model

To study the propagation process, we adopt a widely used in-
formation diffusion model, the independent cascade (IC) model
(Kimura et al., 2010; Morid et al., 2014).

In the IC model, each link (u, v)e€E is assigned a real value
A €0, 1] that is regarded as the probability of information dis-
semination through link (u, v), as illustrated in

Ay =1—(1=2)", (15)

where A €(0, 1) denotes a specially designed propagation probabil-
ity and wy, captures the weight of link (u, v). Thus, the propaga-
tion probability A,y of each link (u, v) can be computed based on
A and wyy.

In the IC model, some assumptions are brought forward: (1)
The state of an individual is either active or inactive; an individ-
ual is active if he/she has taken the information. (2) Individuals
can convert from being inactive to being active, but cannot con-
vert from being active to being inactive. (3) Information spreading
occurs only in discrete time steps t> 0. At time t = 0, the individ-
uals in an initial set IA first become active, and all of the other
individuals remain in the inactive state.

The propagation process of the IC model is formally described
in Algorithm 2.

Algorithm 2: Independent cascade model.
Input: network G = (V,E,W), A and IA;
Output: AS; [*AS is the set of active individuals at the end of
the propagation process.*/

1 AS =1A;

2 CA =IA; [*CA is the set of active individuals in the current
time step.”/

NA = @; [*NA is the set of active individuals in the next time
step.*/

4 while CA # 2 do

5 foreach individual u € CA do

6

7

w

foreach individual v € F(u) /*F(u) = {x|(u,x) € E}."/ do
if v takes information from u with probability Ayy
and v ¢ AS, v ¢ NA then

8 | NA=NAUw;

9 end

10 end

1 end

12 CA =NA; AS=ASUNA; NA = &;
13 end

14 return AS;

4.2.2. Measures of information dissemination effects

In this paper, four measures of information diffusion effects are
defined.

The first metric is the average number of active individuals
(except initially active ones) at the end of the propagation pro-
cess, denoted by o(A), which has been used in previous research
(Kempe et al., 2003; Kitsak et al., 2010). o(A) is presented as

o(A) = 3 IAS )] (16)
i=1

where A represents a set of initially active individuals, AS;(A) indi-
cates the output set of active individuals (excluding initially active
ones) at the end of the ith propagation process of the IC model,
|AS;(A)| denotes the number of individuals in AS;(A), and n captures
the number of independent spreading simulations of the IC model.

The second criterion is the average scope of active individuals
(not including initially active ones) at the end of multiple diffusion
processes indicated as ¢(A), which is computed in

H
o) = 1 3 Y 0w S(p.A)). (17)
h=1 veV

where H stands for the number of experimental groups, each group
contains p independent spreading simulations of the IC model, V
denotes the set of individuals in the network, and Sy(p, A) rep-
resents the union of the output sets of active individuals (except
initially active ones) in the p independent propagation processes
of the hth experimental group. If v e Sy(p, A), then w(v, S, (p,A)) =
1; otherwise, w(v, S;(p,A)) = 0. With multiple spreading process
simulations, increasing ¢(A) can ensure that the scope of informa-
tion dissemination is more likely to be larger.

The third standard is the probability of an individual (not ini-
tially active) v € V taking the information, illustrated as

q
IPy(A) = % > w(v,ASi(A)), (18)
i=1

where A is an initial set of active individuals, AS;(A) stands for
the output set of active individuals (not containing initially active
ones) at the end of the ith propagation process of the IC model,
and g denotes the number of independent diffusing simulations.
w(,AS;(A)) =1 if veAS;(A), and w (v, AS;(A)) = 0 otherwise.

The fourth measure is the amount of diffused words at the
end of the spreading process denoted by /(A), which is computed
thusly

IT|

YA =Y Y 0w.s;A) [T, (19)

j=1 veV

where T stands for the set of short texts posted initially by an ini-
tial set of active individuals, |T| represents the number of items
in T, V is the set of individuals in the network, |Tj| captures the
number of words of the jth text in T, and S;(A) denotes the output
set of active individuals who adopt the jth text. If veS;(A), then
(v,S;(A)) = 1; otherwise, w(v, S;(A)) = 0.

4.3. Experiments on artificial networks

4.3.1. LFR graphic generation model

In this study, we construct some artificial networks using
the LFR model (Chen, Lii, Shang et al., 2012; Jiang, Perc, Wang
et al.,, 2011) to evaluate the influential individual identification ap-
proaches. In the LFR model, both the individual degree and the
community size follow the power-law distributions with exponents
y and 7, separately. The number of individuals and the average de-
gree are set to N and (k), respectively. The implementation steps of
the LFR model are described in details as follows.
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(C) TwitterRank

( d) ClusterRank

Fig. 3. Effect comparison of four influential vertex identification methods on LFR-SU network. Built-in communities are represented by different shapes. Red marks detected
influential vertices, green (from dark to light) denotes information adoption probabilities IP,(A) (Eq. (18)) (from high to low) of vertices, and blue indicates those in which
IP,(A) = 0. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(1) Each individual is assigned a degree taken from a power-law

—

~

~

—

=

distribution with exponent y. The extreme degrees k,,;, and
kmax are restricted so that the average degree equals (k).
The configuration model (Molloy & Reed, 1998) is adopted to
connect the individuals so as to keep the degree sequence.
Each individual connects a fraction 1 — u of its links with
the other individuals of its community and a fraction u with
the rest of the individuals; u is referred to as the mixing
parameter.

The sizes of the communities follow a power law with ex-
ponent 7, so that all of the sizes sum up to the number
N. The minimal and maximal community sizes S, and
Smax are selected so to keep the constraints Sy, > kpnin and
Smax > kmax, which guarantees that an individual of any de-
gree can be included in at least one community.

At first, all of the individuals are homeless, i.e., they do not
belong to any community. In the first iteration, an individual
is given to a randomly chosen community; if the number of
its neighbors inside its community exceeds the community
size, it remains homeless. In subsequent iterations, we as-
sign a homeless individual to a randomly chosen commu-
nity; if the latter is overloaded, we remove a randomly se-
lected individual from the community and it becomes home-
less. The procedure proceeds until there are no more home-
less individuals.

Several rewiring processes are conducted, to ensure the re-
striction on the fraction of internal neighbors expressed by
the mixing parameter u, such that the degrees of all of the
individuals are kept the same, and only the split between
internal and external degree is changed.

Each link in the original network is doubled with two
different-direction arrows assigned to the new links, to gen-
erate the corresponding directed network. For each individ-

~

ual, half of the links pointing to it are then randomly chosen
and deleted from the network, such that the degrees of all of
the individuals remain about the same, and there may exist
a multi-dimensional relationship between any two individu-
als.

In order to construct a weighted network, each link is as-
signed to a positive real number. Two parameters, o and [y,
are needed in this process. The parameter « is adopted to
assign a strength s, to each individual u: s, = (ky)“. The pa-
rameter uy is used to allocate the internal strength: sf,'") =
(1 - pw)su-

Lancichinetti et al. devised the corresponding software package*

of the LFR model in the C++ programming language. In this study,
many artificial networks are built according to the experimental
requirements using this package.

4.3.2. Artificial networks construction

Three categories of artificial networks are generated through

the LFR model to compare our PartitionRank approach with the
other three methods.

(1) LFR-SU

A small unweighted (SU) and directed network. The number
of vertices is 400; the average degree is 15; the maximum
degree is 20; the degree distribution exponent is —1.8; the
community sizes are between 20 and 60; the community
size distribution exponent is —1.2; the mixing parameter is
0.1; and the number of communities is 8.

(2) LFR-LU

A large unweighted (LU) and directed network. The number
of vertices is 2000; the average degree is 30; the maximum

4 http://santo.fortunato.googlepages.com/benchmark.tgz.
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Fig. 4. Mean adopting probability of all of the vertices for four influential vertex
identification approaches on LFR-SU network. Here, PartitionRank, k-medoid, Twit-
terRank and ClusterRank are abbreviated as PR, K-M, TR and CR, respectively.

degree is 40; the degree distribution exponent is —1.8; the
community sizes are between 40 and 100; the community
size distribution exponent is —1.2; the mixing parameters
are 0.1, 0.3 and 0.5, respectively; and the number of com-
munities is 28.
(3) LFR-LW

A large weighted (LW) and directed network. The number
of vertices is 2000; the average degree is 30; the maximum
degree is 40; the degree distribution exponent is —1.8; the
community sizes are between 40 and 100; the community
size distribution exponent is —1.2; the strength assignment
parameter is 0.25; the internal strength parameters are 0.3
and 0.5 separately; and the number of communities is 28.

4.3.3. Results on artificial networks

In this study, when the average number of active individuals
o(A) (Eq. (16)) and the adopting probability IP,(A) (Eq. (18)) are
calculated, the number of simulations of information dissemina-
tion is 100,000 for all of the experiments. When the average scope
of active individuals ¢(A) (Eq. (17)) is calculated, 100 groups of ex-
periments are implemented and each group consists of 1000 inde-
pendent spreading simulations.

For the LFR-SU network, we set k = 8 according to the actual
number of communities. The TwitterRank and ClusterRank meth-
ods choose influential vertices only from five and three of eight
communities separately, such that some vertices in the communi-
ties with no influential vertices can only obtain the information
with a probability of approximately zero under condition A = 0.1
(Fig. 3(c) and 3(d)). The PartitionRank and k-medoid approaches,
however, almost detect an influential vertex from each community
(Fig. 3(a) and 3(b)). With an initially active vertex located in the
vital position of each module, the remaining members would max-
imize the probability for acquiring information, which leads to the
highest performance of the PartitionRank algorithm on valuation
standard IP,(A) (Eq. (18)). Exceptionally, the adopting probability of
the vertex labeled with number 164 always equals O for all identi-
fication algorithms since dﬁgﬁ’[) =0.

Fig. 4 illustrates the mean adopting probability of all of the ver-
tices for different identification methods on the LFR-SU network,
from which we can conclude that the PartitionRank and k-medoid
schemes are vastly superior to the other two approaches.

As for the time-consumption aspect, the k-medoid algorithm
runs particularly slowly compared with the other three methods
on the LFR-SU network (Fig. 5).

In the LFR-LU networks, k is initially set equal to 8, and then
gradually increases with a step size of 10 until reaching 28. Fig. 6
compares the information spreading effects of these methods on
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Fig. 5. Execution time of different influential vertex identification algorithms on
LFR-SU network. Here, we separately abbreviate PartitionRank, k-medoid, Twitter-
Rank and ClusterRank by PR, K-M, TR and CR.

the LFR-LU networks by the average number of active vertices o (A)
(Eq. (16)) and the average active scope ¢(A) (Eq. (17)) at differ-
ent mixing parameters us (stated in Section 4.3.1) and propaga-
tion probabilities As (Eq. (15)). For all of the different us and As,
the PartitionRank algorithm gains the highest values of o(A) and
@©(A) despite the fact that it only has a small advantage over the
k-medoid method. However, as the w and A values increase, which
means that the community structure grows ever more obscure, the
differences become small.

Table 1 demonstrates the execution efficiencies of these four
algorithms on the LFR-LU networks, where the k-medoid scheme
consumes the most time, as expected. It is worth noting that
the time consumption of running the LDA procedure is deducted,
since the synthetic networks are generated without performing
the topic distillation in this study. Nevertheless, upon compar-
ison with the overall execution time complexity of O(n?), the
required time to perform the LDA process with the complex-
ity of O(n) can be ignored in the PartitionRank and Twitter-
Rank approaches, where n denotes the number of vertices in the
network.

In Fig. 7, we assess the performance of the four algorithms
employed on the LFR-LW networks at different internal strength
parameters (yS (see Section 4.3.1) and propagation probabilities
As (Eq. (15)). For all of the different uys and As, the o(A) and
©(A) values of the PartitionRank and k-medoid algorithms are still
higher than those of the TwitterRank and ClusterRank methods,
wherein the scheme proposed in this study achieves the highest
performance. However, as the u, and A values increase, the per-
formance gap becomes small in the same way.

As displayed in Table 2, the k-medoid approach remains the
most time-consuming of all of the compared methods on the LFR-
LW networks.

Experimental results on artificial networks with various set-
tings demonstrate that our algorithm almost always produces the
best solution in comparable time among state-of-the-art methods,
which means that the PartitionRank approach can satisfy the ap-
plication requirements of large-scale expert and intelligent systems
under the independent cascade model.

4.4. Experiments on real-world network

4.4.1. Network construction of microblogging

Tencent microblogging, similar to Twitter, adopts a social-
networking model named “following”, in which each user can “fol-
low” anyone from whom he/she wants to receive microblogs with-
out permission. Through the end of 2012, the number of regis-
tered users on the Tencent microblogging platform has exceeded
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Table 1
Execution time of different influential vertex identification methods on LFR-LU networks
(not including LDA process time consumption).

Parameters Time (s)
I s k PartitionRank  k-medoid TwitterRank  ClusterRank
0.1 0.005 8 13,487 55,025 968 227
18 14,595 55,058 975 239
28 14,663 56,909 982 257
0.01 8 13,487 81,459 968 227
18 14,595 82,228 975 239
28 14,663 82,696 982 257
0.05 8 13,487 832,025 968 227
18 14,595 866,543 975 239
28 14,663 893,566 982 257
0.1 8 13,487 208,978,733 968 227
18 14,595 212,110,411 975 239
28 14,663 227,410,462 982 257
03 0.005 8 13,569 55,910 819 230
18 15396 56,197 832 242
28 15310 57,039 841 259
0.01 8 13,569 81,876 819 230
18 15396 82,610 832 242
28 15310 82,884 841 259
0.05 8 13,569 854,872 819 230
18 15396 879,032 832 242
28 15310 896,964 841 259
0.1 8 13,569 214,307,601 819 230
18 15,396 219,783,575 832 242
28 15310 229,133,579 841 259
0.5 0005 8 15,146 56,714 677 247
18 16,569 56,908 681 258
28 16,687 57,225 691 265
0.01 8 15,146 82,105 677 247
18 16,569 82,683 681 258
28 16,687 82,942 691 265
0.05 8 15,146 862,299 677 247
18 16,569 892,087 681 258
28 16,687 907,808 691 265
0.1 8 15,146 219,854,799 677 247
18 16,569 223,206,054 681 258
28 16,687 238,730,887 691 265
Table 2

Execution time of different influential vertex identification approaches on LFR-LW net-
works (not including LDA process time consumption).

Parameters Time (s)
Hw A k PartitionRank k-medoid TwitterRank ClusterRank
03 004 8 17,576 52,886 1001 260
18 18,748 53,490 1013 271
28 18,885 54,172 1050 281
008 8 17,576 83,997 1001 260
18 18,748 85,038 1013 271
28 18,885 85,904 1050 281
0.4 8 17,576 2,073,651 1001 260
18 18,748 2,136,160 1013 271
28 18,885 2,152,149 1050 281
0.5 8 17,576 94,758,742 1001 260
18 18,748 97,147,645 1013 271
28 18,885 97,673,281 1050 281
05 004 8 21,661 55,547 665 271
18 22,350 56,012 697 280
28 22,565 57,203 707 290
0.08 8 21,661 85,157 665 271
18 22,350 86,271 697 280
28 22,565 87,068 707 290
0.4 8 21,661 2,145,169 665 271
18 22350 2,239,384 697 280
28 22,565 2,276,103 707 290
0.5 8 21,661 101,331,382 665 271
18 22,350 101,972,710 697 280

28 22,565 102,230,236 707 290
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Fig. 8. Effect comparison of three influential individual identification algorithms on
real microblogging network.

540 million. In the meantime, the number of daily active users
has reached up to 100 million. Furthermore, Tencent microblog-
ging has provided a uniform free application program interface
(API°) for developers to acquire the full user data. Given the advan-
tages above, Tencent microblogging is employed as the experimen-
tal platform for the performance assessment on real-world social
media in this study.

On average, there are dozens of friends on the entire site for
each user. If we stochastically select some users to build the “fol-
lowing” network, then it cannot accurately depict the social re-
lationships of these users. Therefore, we begin with a specified
user who is identified as the initial individual of the “follow-
ing” network, and then all of the followers of this user are re-
cruited into the network. After that, we add all of the followers
of these newcomers in the same way, until the number of in-
dividuals in the network satisfies the experimental requirement.
Meanwhile, those users having more than 1000 friends or follow-
ers are eliminated, since we regard them as friendship abusers
or stars.

We perform the experiments with two batches of microblog
data related to the same 12,746 users, which are collected in June
and August 2015 for influential individuals identification and per-
formance verification, respectively. There exist 83,809 “following”
relationships among these users in June.

The LDA model is conditioned on three parameters, i.e., topic
number T and Dirichlet hyper-parameters & and $. In this study,
they are set as T =100, o =50/T, and B =0.1. The different
choice of these parameters has implications for the results of the
topic distillation. Nevertheless, it is not investigated since the fo-
cus of this study is how to identify the influential individuals in
microblogging networks. Indeed, the results and perspective of this
study are not limited by the very specific values of these three pa-
rameters.

4.4.2. Results on microblogging platform

For the experiments on a real-world network, the numbers of
identified influential individuals ks are set to 20, 30 and 40 sepa-
rately. In this case, the k-medoid approach is dismissed since the
required memory exceeds the maximum allowed by our system,
which is 16 GB.

Fig. 8 compares the information spreading effects of the re-
maining three compared methods on the microblogging network
by the active vertex number o (A) (Eq. (16)) and the amount of dif-
fused words ¥(A) (Eq. (19)). From the results of all of the different
ks, one can draw a conclusion that our scheme outperforms the
other methods in o (A) values; in particular, our approach gains the
highest 1(A) values with significant superiority.

Similarly, Fig. 9 shows the execution efficiencies of these related
algorithms. Note that our proposed approach can satisfy the needs
of practical applications, although it is significantly slower than the
other two methods.

5 http://dev.t.qq.com.
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Fig. 9. Execution time of different influential individual identification approaches
on real microblogging network. Here, PR, TR and CR are abbreviations of Partition-
Rank, TwitterRank and ClusterRank, respectively.

According to the experimental results on the microblogging
site, which are independent of any simulation model, we can con-
clude that the PartitionRank approach significantly outperforms
the other compared methods within acceptable time. In other
words, our scheme illustrates broad prospects for intelligent appli-
cations in social media similar to microblogging, including opinion
propagation, guidance of political movements, and acceptance of
technologies.

4.5. Experimental results discussion

Consistent with the experimental results above, we further
carry out a deep analysis and discussion of the results of compar-
ing our approach to the other three methods.

For the k-medoid method, the transmission probability and
spreading mechanism that can impact the spreading effects are
taken into account, but the computation cost is particularly high,
so that it cannot adapt to large-scale social networks. In contrast,
our approach first partitions the propagation probability network
into a pre-fixed number of size-balanced communities, and then
identifies the most influential vertex from each community as the
result set, which obviously can reduce the time complexity. Mean-
while, the spreading mechanism and propagation probability are
implicitly included in the graph-partitioning process. In addition,
our method even accounts for the interest similarity among users
of social media, which further improves its performance in influ-
ential individuals identification.

The TwitterRank method is a PageRank-like algorithm, in which
the interest similarities on different topics between each pair of
friend and follower are considered to measure the topic-sensitive
influences of twitterers. However, the identified influential individ-
uals may be distributed in the communities with large sizes, and
can only influence vertices of the same communities in a short
time span when the propagation probability is small. Through
graph partitioning, our algorithm can select influential individuals
from different communities in a balanced way. Thus, the influen-
tial individuals detected by the PartitionRank approach can diffuse
more information than the TwitterRank method.

The ClusterRank method emphasizes the negative effects of the
local clustering on spreading dynamics, and fails to separate the
influential individuals by a distance to avoid repeatedly influenc-
ing the same vertices. On contrary, in addition to the interest sim-
ilarity calculation, our method identifies only the most influential
individual from each size-balanced community, which can reduce
or even eliminate the overlapping effects to achieve a wider range
of information dissemination.
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5. Conclusions and future work

In this study, we propose an overall approach named Parti-
tionRank for influential individual identification in microblogging
networks with some advantages. On the one hand, in accordance
with the “homophily” phenomenon, the topical similarities among
users complement the interaction relationships to construct the in-
terest interaction network that can accurately simulate the infor-
mation propagation probability. On the other hand, the proposed
scheme detects the most influential individual from each of a pre-
fixed number of communities in a balanced way, which can influ-
ence many more users of the social networks. Differing from or-
dinary community detection methods, we introduce the size bal-
ance model into the graph partitioning, which further improves the
spreading effectiveness.

The current design of our algorithm only accounts for the num-
ber of microblogs a user releases in the transmission probability
estimation process. In the future, we intend to improve this by in-
corporating more interactions between users, e.g., mention/reply.
In addition, the computation cost of our approach mainly depends
on the graph-partitioning part; therefore, developing a top-down
community detection method with low time complexity is another
object of future research. Last but not least, we plan to further val-
idate the performance of the proposed approach in large-scale mi-
croblogging datasets.
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