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Abstract. Tumor cells not only harbor genetic and epigenetic alterations, but
also are regulated by various epigenetic modifications. Identification of tumor
epigenetic similarities across different cancer types is useful for the discovery of
treatments that can be extended to different cancers. Nowadays, abundant epi-
genetic modification profiles have provided good opportunity to achieve this
goal. Here, we proposed a tri-clustering approach for integrative pan-cancer
epigenomic analysis, named TriPCE. We applied TriPCE to uncover epigenetic
mode among seven cancer types. This approach can identify significant cross-
cancer epigenetic modification similarities. The associated gene analysis
demonstrates strong relevance with cancer development and reveals consistent
tendency among cancer types.
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1 Introduction

Aberrant epigenetic modification is a critical factor involving human diseases [1].
Tumor cells usually exhibit epigenetic abnormalities and further routinely use epige-
netic processes to ensure their escape from various treatments [2]. Epigenetic modifi-
cation patterns that lead to the corresponding dysregulation in cancers have become a
critical research issue of cancer studies [3, 4].

BLUEPRINT, TCGA and the International Cancer Genome Consortium have
integrated many epigenetic maps in normal and cancerous tissues [5-7]. It is urgent to
decipher cancer common epigenetic patterns. Because DNA methylation in cancer is
addressed elsewhere [8, 9], we focus on covalent histone modifications in cancers.
Previous works mainly focus on identifying combinatorial epigenetic states. CoSBI
captures epigenetic patterns based on correlations of histone signals [10]. ChromHMM
and HiHMM apply a HMM model to annotate genomic sequences by co-occurrence of
multiple epigenetic marks [11, 12]. RFECS is developed based on random forests [13].
IDEAS jointly characterizes epigenetic landscapes in many cell types and detects
differential regulatory regions [14]. These methods successfully identify combinatorial
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epigenetic patterns among different cell types. However, the correlations among dif-
ferent regions are still need to be investigated.

Here, we proposed a tri-clustering approach TriPCE for integrative pan-cancer
epigenomic analysis. We applied TriPCE to various epigenomic maps of seven cancer
types and identified significant cross-cancer epigenetic modification similarities. Fur-
thermore, the associated gene function analysis demonstrates strong relevance with
cancer development and reveals consistent tendency among cancer types.

2 Materials and Methods

We analyzed the epigenomic maps of seven cancer types, including A549, K562,
HepG2, HCT116, Hela-S3, multiple myeloma-Cell Line, sporadic Burkitt lymphoma-
Cell Line. Totally, we obtained 42 datasets of six epigenetic modifications, including
H3K4mel, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3. RNA
expression profiles of the seven cancer types were also collected. These dataset were
downloaded from the website of NIH Roadmap Epigenome Project.

As shown in Fig. 1, the TriPCE model has three key components.

Step1. Preprocess the epigenetic modification data of different cancer types. Firstly,
the genome was represented as consecutive genomic segments with size 200 bps. For
each epigenetic mark, we computed the summary tag count of every segment. To
remove noise, raw read counts were normalized by the total number of reads followed
by arcsine transformation [15]. Further, the epigenetic profiles in the promoter regions
were extracted. Then, for each epigenetic mark, the epigenetic profiles of different
cancer types were represented as a matrix E; where k is the index of the epigenetic
mark ranging from 1 to K.

Step2. Identify BiClusters based on FP-growth algorithm for each epigenetic mark.
We computed correlation coefficients of any two cancer types at every region and
obtained a coefficient matrix. If the coefficient is higher than a given threshold, the
epigenetic modifications of these two cancer types are regarded as coherent. Then we
added the cancer type to the itemset. Based on the resulted itemset, we identified
coherent epigenetic patterns using FP-growth algorithm. FP-growth is a data mining
method that was originally developed for frequent itemset mining. Further, we inver-
sely identified the corresponding gene set and determined the BiClusters.

Step3. Mine TriClusters with coherent epigenetic patterns across different cancers.
Based on the BiClusters of each epigenetic mark, we enumerated the subsets of these
epigenetic marks to obtain TriClusters. Each TriCluster represents as a gene set with
similar epigenetic changes in different cancer types, which indicate conserved epige-
netic signatures that shared by multiple cancer types.



332 Y. Gan et al.

Stepl. preprocessing the epigenetic modification data of different tumors

Epigenetic mark 1 Epigenetic mark 2 Epigenetic mark K
Tumor type1l —i 5 ,4, St

Tumor type 2 l‘ TNAS ) ‘

Tumor type M 7«,5 i :‘ " TR L~

Region 1,2,***, n Region l,Z,A---, n Region 1,2,**, n
r N

t1 0O 8 0 -+ 0 26 i By

t2 27 9 6 12 32 R, = <t2) 3 Rp = (tz)

t, &

™M 92113 - 5 37

Step2. mining biclusters for each epigenetic mark

1 t, b, t3, ts, tyoe-
> [(ti = e )G — #t,)] 2 bt
cor(ty ) = 2
bt e b, bl
ooty

BiClusters for epigenetic mark ey
81,82 - 8i b, b, G5
8284, ----8j, b,y teo""

(590

£4,818,..., 8n, t, ta, tm, "

Step3. mining triclusters

TriClusters
(81,8 -.8) (. ta, b5 ) (€1, €. €6)

(81,82, 80 (b, ta""tw), (€3, €5, €1)

Fig. 1. The flowchart of the proposed TriPCE approach.

3 Results

3.1 Identifying Similar Epigenetic Patterns Across Different Cancer
Types

We developed a tri-clustering approach, TriPCE, to capture similar epigenetic patterns
among different cancer types. For each epigenetic mark, TriPCE first groups the
regions based on the epigenetic modification profiles among different cancer types.
Figure 2 shows a typical BiCluster of epigenetic mark H3K4mel, a gene set with
similar modification pattern in cancer type Hela-S3, HepG2, K562 and A549. From this
figure, we notice that the epigenetic profiles of these genes are similar in these cell
types. Meanwhile, different cancers share similar epigenetic patterns. For examples,
cancers (HepG2 and HCT116) are clustered together and share larger number of epi-
genetic marks, implying that they share more similar epigenetic regulation mecha-
nisms. To get significant modification patterns, we set the minima support as 10% of
the investigated genes. With diverse correlation coefficient thresholds, we respectively
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gained different numbers of BiClusters for the epigenetic marks. Among these epige-
netic marks, H3K4me3 and H3K9me3 vary most. On the contrary, there are more
similar epigenetic patterns of H3K4mel and H3k27me3. This result is consistent with
previous finding that H3K9me3/me2 and H3K36me3/me2 frequently observed in
breast cancer [16], esophageal cancer [17] and MALT lymphoma [18]. As the threshold
slightly affects the trend among different epigenetic marks, we chose the BiClusters
with threshold 0.7 for further analysis.
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Fig. 2. Profiles of epigenetic modification H3K4me3 in a typical BiCluster display a similar
pattern in four cancer types, including Hela-S3, HepG2, K562 and A549.

3.2 Identifying Coherent Patterns Among Different Epigenetic Marks

To identify conserved epigenetic states, we further clustered epigenetic marks based on
the identified BiClusters. The TriClusters are represented as triples (‘genomic regions’,
‘tumor types’, ‘epigenetic marks’). Initially, we obtained 175 TriClusters. Figure 3
shows the epigenetic marks, cancer types and supports of 15 typical clusters. There
exist coherent epigenetic states across different cancers types. For example, the vari-
ation pattern of H3K4mel, H3K9me3, H3kK27me3 and H3K36me3 is shared in A549,
HepG2 and K562. On the contrary, there are some epigenetic patterns are only coherent
in certain cell types. We observed similar patterns of H3K36me3, H3K27ac and
H3K27me3 among HepG2 and sporadic Burkitt lymphoma-Cell Line.



334 Y. Gan et al.

Cluster 1
Cluster2
Cluster3
Cluster 4
Cluster5
Cluster6
Cluster 7
Cluster8
Cluster9
Cluster 10
Cluster 11
Cluster 12
Cluster 13
Cluster 14
Cluster 15 & 2> @ o
o4& o
O GRS

TP X

Low

o
p o P & @ &
& & O S e
&p‘o R QS’ le & FOSRN

] ‘]
&

‘{Pso ¢
L

Fig. 3. Typical epigenetic TriClusters. (A) The epigenetic marks (column) in each cluster (row).
(B) The cancer types (column) in each cluster (row).

3.3 Analyzing the Potential Roles of Associated Genes

To examine the potential functions of these genes, we performed systematic gene
ontology enrichment analysis using DAVID tools. Overall, we found that the TriClusters
enriched genes exhibited enrichment for cancer-related functions. Table 1 lists the result
of a typical TriCluster (P value < 0.05). In this TriCluster, these genes exhibit coherent
epigenetic pattern of H3K4mel, H3K4me3, H3K9me3, H3K27ac, H3K27me3 for
HeLa-S3, HepG2, Multiple myeloma-Cell Line and Sporadic Burkitt lymphoma-Cell
Line. In the table, term ‘positive regulation of cell proliferation’ and ‘negative regulation
of apoptotic process’ are enriched in these gene sets. This result implies that the identified
gene sets in the TriCluster are essential for cell proliferation and apoptotic process.
Meanwhile, term ‘negative regulation of gene transcription’ is also enriched in the gene
set, indicating these genes perform important regulation role in these cancers.

Table 1. Functional enrichment of genes in the identified TriClusters.

Term | Term name P-value Term | Term name P-value
type type
BP positive regulation of cell |2.84E — 06 | MF | glutathione binding 7.85E — 04
proliferation
BP protein targeting to Golgi |8.87E — 05 | MF | glutathione transferase | 8.00E — 03
activity
BP nitrobenzene metabolic 1.14E — 04 MF | histone binding 1.16E — 02
process
BP xenobiotic catabolic 1.00E — 03 | MF | peptidyl-prolyl cis- 1.35E — 02
process trans isomerase
activity
BP negative regulation of gene | 1.39E — 03 | MF | protein 3.32E - 02
expression, epigenetic heterodimerization
activity
BP negative regulation of 1.88E — 03 | CC extracellular exosome | 1.13E — 02
apoptotic process
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4 Discussion

Identifying epigenetic pattern is important to understand epigenetic mechanisms in
various cancers. Our knowledge about the patterns of epigenetic modification and the
cause and consequence of them are still limited. Computational approach that exploits
the complex epigenomic landscapes and discovers significant signatures out of them
are required. In this paper, we developed a tri-clustering approach for integrative pan-
cancer epigenomic analysis, named TriPCE. We applied TriPCE to uncover epigenetic
patterns of six epigenetic marks among seven cancer types. This approach identifies
significant cross-cancer epigenetic modification similarities. The associated gene
analysis demonstrates strong relevance with cancer development and reveals consistent
tendency among cancer types. Different from existing methods, our approach enable
researchers to explore the epigenetic patterns among different cancer types as well as
the combinational mode of multiple epigenetic marks.
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