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Abstract: In recent years, although deep neural networks have yielded immense success in
solving various recognition and classification problems, the exploration of deep neural networks in
recommender systems has received relatively less attention. Meanwhile, the inherent sparsity of data
is still a challenging problem for deep neural networks. In this paper, firstly, we propose a new CIDAE
(Continuous Imputation Denoising Autoencoder) model based on the Denoising Autoencoder to
alleviate the problem of data sparsity. CIDAE performs regular continuous imputation on the missing
parts of the original data and trains the imputed data as the desired output. Then, we optimize the
existing advanced NeuMF (Neural Matrix Factorization) model, which combines matrix factorization
and a multi-layer perceptron. By optimizing the training process of NeuMF, we improve the accuracy
and robustness of NeuMF. Finally, this paper fuses CIDAE and optimized NeuMF with reference
to the idea of ensemble learning. We name the fused model the I-NMF (Imputation-Neural Matrix
Factorization) model. I-NMF can not only alleviate the problem of data sparsity, but also fully exploit
the ability of deep neural networks to learn potential features. Our experimental results prove that
I-NMF performs better than the state-of-the-art methods for the public MovieLens datasets.

Keywords: recommender systems; denoising autoencoder; deep neural networks; data imputation;
matrix factorization; implicit feedback

1. Introduction

In the era of information explosion, big data exhibits a rich value and great potential, which brings
transformative development to human society, but it also generates the serious “information overload”
problem. Recommender systems are an effective way to alleviate the problem of “information
overload”, having been widely adopted by many online services, including E-commerce, online
news, and social media sites [1]. Recommender systems can help determine which information to
offer to individual consumers and allow online users to quickly find the personalized information
that fits their needs [2]. Collaborative Filtering (CF) is a successful approach commonly used by many
recommender systems [3]. CF [4,5] is based on the user’s past interaction records (such as ratings) to
simulate the user’s preferences for the item. The scarcity of original interaction records has always
been a difficult point for CF, which is the problem of data sparsity.

As the most popular approach among various CF techniques, Matrix Factorization (MF) [6,7], which
projects users and items into a shared latent space, using a vector of latent features to represent a user or an
item, has become a standard model for recommendation due to its scalability, simplicity, and flexibility [8,9].
Most previous research [3,7,10–15] on MF did not change the nature of linearity, such as integrating it
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with neighbor-based models [7], combining it with topic models of item content [3], and extending it to
factorization machines [15] for a generic modelling of features. Despite the effectiveness of MF for CF, such
a linear model is insufficient to understand the complex and non-linear relationship between users and
items [16]. Furthermore, the problem of data sparsity is difficult to solve in MF.

Of course, there has been some advanced research [1,2,17,18] on MF that essentially changed the
linear structure of MF by combining the idea of deep learning. The combination of deep learning
and MF mainly uses the implicit feedback data to learn the hidden vector of the user(item) by using
the deep learning method, thereby predicting the user’s preference for the item based on the hidden
vector. Among existing models, an outstanding performance was shown for the NeuMF (Neural
Matrix Factorization) model proposed in [1]. The NeuMF model combines matrix factorization and a
multi-layer perceptron to achieve a good performance.

MF based on deep learning can be regarded as a kind of nonlinear generalization of the traditional
hidden factor model. Its obvious advantage is the introduction of nonlinear feature transformations
in the process of learning the hidden vector of the user(item), which has a better performance than
traditional MF. However, this method still cannot improve the problem of data sparsity in MF.

In this paper, in order to alleviate the problem of data sparsity, we propose a new CIDAE
(Continuous Imputation Denoising Autoencoder) model based on the Denoising Autoencoder (DAE).
The CIDAE model performs regular continuous imputation for the missing parts of the original data
and trains the imputed data as the desired output, which is different from the DAE algorithm that
randomly adds noise to the input data. The advantage of CIDAE is that it alleviates the problem of
data sparsity by using the idea of imputation.

Then, this paper optimizes the advanced NeuMF model based on the training process. The NeuMF
model introduces the idea of deep neural networks into matrix factorization. The NeuMF model first
proposes the GMF (Generalized Matrix Factorization) model and then combines the GMF model with the
MLP (Multi-Layer Perceptron) model. We name the optimized NeuMF model the O-NeuMF-p model.
Additionally, our experimental results prove that the accuracy of O-NeuMF-p is higher than that of NeuMF.

Finally, we fuse CIDAE and O-NeuMF-p with reference to the idea of ensemble learning. We name
the fused model the I-NMF (Imputation-Neural Matrix Factorization) model, which combines the
advantages of CIDAE and O-NeuMF-p. The I-NMF model can not only alleviate the problem of
data sparsity, but also fully exploit the ability of deep neural networks to learn potential features,
and I-NMF is also robust. Furthermore, our experimental results confirm that the performance of
I-NMF is better than CIDAE, O-NeuMF-p, and current advanced recommendation algorithms for the
public MovieLens (ML) [19] datasets.

In summary, our main contributions of this work are outlined as follows:

• We propose a new CIDAE model based on DAE. The advantage of CIDAE is that it alleviates the
problem of data sparsity by using the idea of imputation.

• By optimizing the training process of the NeuMF model, we improve the accuracy and robustness
of NeuMF. We name the optimized NeuMF model the O-NeuMF-p model.

• We fuse CIDAE and O-NeuMF-p with reference to the idea of ensemble learning.
Additionally, we name the fused model the I-NMF model. The I-NMF model can not only alleviate the
problem of data sparsity, but also fully exploit the ability of deep neural networks to learn potential
features, and I-NMF is also robust.

This paper is organized as follows. In Section 2, we present the architecture and details of the
CIDAE model. In Section 3, we briefly introduce the NeuMF model and explain in detail how we
optimize its training process. In Section 4, we propose the idea of fusing CIDAE and O-NeuMF-p,
and present the architecture and details of the I-NMF model. In Section 5, we evaluate all the models
mentioned above using the public MovieLens datasets, and compare the results with current advanced
recommendation algorithms. Concluding remarks with a discussion of some future work are in the
final section.
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2. CIDAE: Continuous Imputation Denoising Autoencoder

Our CIDAE consists of three parts: learning from the original data; continuous imputation for the
missing parts of the original data; and learning from the imputed data. Figure 1 shows the structure
of CIDAE.
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2.1. Part 1: Learning from the Original Data

In the first part, there are many existing models [10–14] to choose from for learning the original
data. In this paper, we chose the traditional autoencoder (AE) [20].

For each user ui, some items in the original data are of interest to ui, while the remaining items
are the missing parts of the original data. The goal is to predict the items that are of interest to ui from
the missing parts of the original data.

In this part, labels of the items that the ui is interested in are set to 1, and labels of the remaining
items are set to 0. Similar to [16,21], labels for all items constitute the initial value of the user vector ui
(uij = 0 or 1).

According to the AE, we use ui as the input and get the reconstructed ui by encoding and decoding.
The specific process is as follows:

Encoding: Map ui ∈ Rn to the d-dimensional hidden layer by encoding function f .

y = f (ui) = σ(Wui + b) (1)

where W ∈ Rd×n, b ∈ Rd, y ∈ Rd, n is the total number of items and σ is a non-linear mapping
function, e.g., a sigmoid function.

Decoding: Map y ∈ Rd to the n-dimensional space by decoding function g for reconstructing ui.
Let ũi denote the reconstructed vector of ui.

ũi = g(y) = σ
(
W′y + b′

)
(2)
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where W′ ∈ Rn×d, b′ ∈ Rn, ũi ∈ Rn. We hope that ũi and ui are as similar as possible, and the
minimum objective function of AE is as follows:

argmin
W,W′ ,b,b′

m

∑
i=1
L(ui, ũi) +

λ

2
(||W||2F + ||W′||

2
F + ||b||

2
F + ||b′||

2
F

)
(3)

L(ui, ũi) = −
1
n

n

∑
j=1

uijlogũij +
(
1− uij

)
log(1− ũij) (4)

where m is the total number of users and L is the loss function. Furthermore, we choose the cross
entropy as the loss function. λ is a regularization parameter to prevent overfitting. Just like the
traditional autoencoder, we optimize the objective function by using the gradient descent method.

2.2. Part 2: Continuous Imputation on the Missing Parts of the Original Data

In this part, CIDAE performs continuous imputation for the missing parts of the original data
by using ũi. Let ûi ∈ Rn denote the imputed vector of ui. For each ûij in ûi, we can use the following
formula to calculate:

ûij =

{
1, uij = 1

min
{

1, f
(
ũij
)}

, uij = 0
(5)

where f (x) can be any continuous function, and it can be a linear or nonlinear function; for example,
f (x) = kx or f (x) = ktanx, where k is a hyper-parameter. Obviously, the larger the value of k,
the larger the proportion of data that is imputed to 1. There are many choices for f (x), which shows
that CIDAE has great flexibility.

2.3. Part 3: Learning from the Imputed Data

The traditional Denoising Autoencoder (DAE) first adds noise to the input data and then
reconstructs the noise-added data. CIDAE performs regular imputation of the output data, which is
different from DAE.

The specific process is similar to the Part1, as we still choose ui ∈ Rn as the input and obtain the
reconstructed ui by encoding and decoding. In Part 3, let ui ∈ Rn denote the reconstructed vector of
ui. We want the value of ui to be as similar as possible to ûi, not ui, which is different from the Part1.
The minimum objective function of CIDAE is as follows:

argmin
W,W

′
,b,b

′

m

∑
i=1
L(ûi, ui) +

λ

2
(||W||2F + ||W

′ ||
2
F + ||b||

2
F + ||b

′ ||
2
F) (6)

L(ûi, ui) = −
1
n

n

∑
j=1

ûij log uij +
(
1− ûij

)
log
(
1− uij

)
(7)

Similar to [22], we introduce a hyper-parameter (α) in order to distinguish between the imputed
data and the original data. We can distinguish the reconstruction error between the imputed data and
the original data by using α as a weight. So, the final minimum objective function of CIDAE is as
follows:

argmin
W,W

′
,b,b

′

m

∑
i=1

K(ûi, ui) +
λ

2

(
||W||2F + ||W

′ ||
2
F + ||b||

2
F + ||b

′ ||
2
F

)
(8)

K(ûi, ui) = α

 ∑
{j|uij=0}

L
(
ûij, uij

)+

 ∑
{j|uij=1}

L
(
ûij, uij

) (9)
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In this way, CIDAE can adjust the loss weight of the imputed data through α. Just like the
traditional denoising autoencoder, we optimize the objective function of the CIDAE by using the
gradient descent method.

It is worth emphasizing that CIDAE trains the imputed data ûi as the desired output. On the one
hand, the imputation method can alleviate the sparseness of the original data. On the other hand,
a well-founded imputation is more meaningful than random noise. In addition, the CIDAE model,
like the DAE algorithm, can increase the robustness of the model by introducing disturbances.

3. Optimization of the NeuMF Model

In this section, we briefly introduce the NeuMF model [1], and then explain in detail how to
optimize NeuMF from the training process. The NeuMF model consists of GMF (Generalized Matrix
Factorization) and MLP (Multi-Layer Perceptron). Figure 2 shows the structure of NeuMF.
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3.1. GMF (Generalized Matrix Factorization)

GMF has four layers: input layer, embedding layer, inner layer, and prediction layer (output layer).
The input to GMF is a sparse user ID and item ID. The embedding layer is a fully connected layer that can
project sparse vectors into dense vectors. The vector obtained by the embedding layer can be regarded as
the hidden vector of the user (item). The hidden vector of user u is denoted as pu, and the hidden vector of
the item v is denoted as qv. The mapping formula of the inner layer is as follows:

ϕpu, qv = pu � qv (10)

where � represents the element-wise product of vectors. The operation of the last prediction layer
(output layer) is

ŷuv = aout

(
hT(pu � qv)

)
(11)

aout = σ(x) =
1

(1 + e−x)
(12)

where aout is the activation function. According to the literature [1], we adopt the sigmoid function
σ(x) as aout. h is the weight of the prediction layer and is trained by the loss function.

3.2. MLP (Multi-Layer Perceptron)

MLP is designed to explore the interaction between users and items’ latent features. Different from
collaborative filtering of GMF, MLP is more flexible. MLP is not limited to the vector inner product,
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and can deeply learn the potential interaction between the user’s hidden vector pu and the item’s
hidden vector qv. The specific process of MLP is as follows:

z1 = φ1(pu, qv) =

[
pu
qv

]
φ2(z1) = a2

(
WT

2 z1 + b2
)

φL(zL−1) = aL
(
WT

LzL−1 + bL
)

ŷuv = σ
(

hTφL(zL−1)
) (13)

where Wx is the weight matrix of each layer, bx is the bias vector of each layer, and ax is the activation
function of each layer. According to the literature [1,23], we adopt the Rectifier (ReLU) as ax. The ŷuv

is the output of the last prediction layer and σ (sigmoid function) is the activation function of the
prediction layer. h is the weight of the prediction layer and is trained by the loss function. MLP selects
the four-layers (L = 4) tower structure, and halves the layer size for each successive higher layer.
Together with the final prediction layer, MLP has a total of five layers.

3.3. The NeuMF Model

NeuMF is a comprehensive model that combines GMF with MLP. NeuMF combines the training
of GMF and MLP by adding the “NeuMF layer”. The specific combination process is as follows:

φGMF = pG
u � qG

v

φMLP = aL

(
WT

L

(
aL−1

(
. . . a2

(
WT

2

[
pM

u
qM

v

]
+ b2

)
. . .

))
+ bL

)

ŷuv = σ

(
hT

[
φGMF

φMLP

]) (14)

where φGMF is the output result of the inner layer of GMF, and φMLP is the output of MLP after four
layers. The “NeuMF layer” can be understood as a combination of GMF and MLP from the prediction
layer. σ (sigmoid function) is the activation function of the “NeuMF layer”. h is the weight of the
“NeuMF layer” and is trained by the loss function.

3.4. The NeuMF-p Model

NeuMF-p(pre-training) refers to the model that initializes NeuMF. NeuMF is initialized by
pre-training GMF and MLP. The experiment in paper [1] shows that NeuMF-p is better than NeuMF.
The specific initialization process of NeuMF is described in the following.

Firstly, GMF and MLP are separately pre-trained. Pre-training at this time means that the
GMF(MLP) model is first randomly initialized, and the model is then trained by the loss function
until the model converges. Secondly, the parameters of the pre-trained GMF and the pre-trained MLP
are the initialization parameters of NeuMF-p. Finally, h is the weight of the “NeuMF layer”, and the
initialized value is as follows:

h←
[

γhGMF

(1− γ)hMLP

]
(15)

where hGMF is the weight of the prediction layer of GMF and hMLP is the weight of the prediction layer
of MLP. The γ is a hyper-parameter and the value of γ is set to 0.5 [1].
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Considering that the experiment [1] shows that NeuMF-p is better than NeuMF, this paper chooses
to optimize the training process of NeuMF-p directly. Here is a brief introduction to the loss function
of NeuMF-p and the original training process. The loss function of NeuMF-p is as follows:

L = − ∑
(u,v)∈y

log ŷuv − ∑
(u,v)∈y−

log(1− ŷuv)

= − ∑
(u,v)∈y∪y−

yuv log ŷuv + (1− yuv) log(1− ŷuv)
(16)

This is the loss function of NeuMF-p, also known as the log loss or binary cross-entropy loss,
which can be optimized by the SGD (Stochastic Gradient Descent) algorithm. The value of the target
yuv is 0 or 1, which can be regarded as a label. If yuv = 1, it means that there is an interaction between
user u and item v. If yuv = 0, it means that there is no interaction between user u and item v. By using
the sigmoid function as the activation function of the output layer, ŷuv can be controlled to output in
the range of (0, 1), where y represents the set of observed interactions in dataset Y and y− represents
the set of counterexamples in dataset Y. The counterexample in the original paper [1] refers to the data
of unobserved interactions in dataset Y.

3.5. The O-NeuMF-p Model

We name the optimized NeuMF-p model the O-NeuMF-p model. This paper optimizes the
training process of NeuMF-p from the counterexample label. The original paper [1] records the label
yuv in the counterexample set y− as 0, which we think is unreasonable. Recommender systems focus
on the data that has no interaction between users and items. This means that counterexamples are
the focus of the research. If the label of the counterexample is marked as 0 when training, it is not
conducive to learning the interaction in y−.

This paper refers to the idea of DAE, adding noise to the original data and reconstructing the data.
We change the label in the counterexample set y− from 0 to a random number. The specific change
formula is as follows:

i f (u, v) ∈ y−, yuv = random(0, r) (17)

where r is a hyper-parameter and can be an arbitrary number between [0, 1]. If r = 0, then
yuv = random(0, 0) = 0. In this case, it is back to the original situation, where the label yuv in
the counterexample set y− is marked as 0. If r = 1, then yuv = random(0, 1). This means that the label
yuv in y− is a random number from 0 to 1.

The idea of adding random numbers can make the label yuv in y− no longer equal to 0, which is
equivalent to adding a disturbance to the data of y−. On the one hand, O-NeuMF-p is more robust
than NeuMF-p. On the other hand, O-NeuMF-p is more focused on the learning of the y− data, which
is exactly what we want. In addition, our experimental results show that under the same dataset,
O-NeuMF-p has a higher recommendation accuracy and quality than NeuMF-p. This confirms the
advantage of introducing random numbers in O-NeuMF-p from the side.

4. I-NMF: Fusion of CIDAE and O-NeuMF-p

On the one hand, although O-NeuMF-p performs better than NeuMF-p, it still does not solve
the problem of data sparsity. On the other hand, although CIDAE can alleviate the problem of data
sparsity, CIDAE only utilizes the idea of a single-layer neural network(AE) and does not fully exploit
the ability of deep neural networks to learn potential features. Therefore, this paper fuses CIDAE
and O-NeuMF-p with reference to the idea of ensemble learning. We name the fused model the
I-NMF (Imputation-Neural Matrix Factorization) model, which combines the advantages of CIDAE
and O-NeuMF-p. The I-NMF model can not only alleviate the problem of data sparsity, but also
fully exploit the ability of deep neural networks to learn potential features, and I-NMF is also robust.
Figure 3 shows the structure of I-NMF.



Appl. Sci. 2019, 9, 54 8 of 19

Appl. Sci. 2018, 8, x FOR PEER REVIEW  7 of 16 

3.5. The O-NeuMF-p Model 

We name the optimized NeuMF-p model the O-NeuMF-p model. This paper optimizes the 
training process of NeuMF-p from the counterexample label. The original paper [1] records the label 𝑦  in the counterexample set 𝑦  as 0, which we think is unreasonable. Recommender systems focus 
on the data that has no interaction between users and items. This means that counterexamples are 
the focus of the research. If the label of the counterexample is marked as 0 when training, it is not 
conducive to learning the interaction in 𝑦 . 

This paper refers to the idea of DAE, adding noise to the original data and reconstructing the 
data. We change the label in the counterexample set 𝑦  from 0 to a random number. The specific 
change formula is as follows: 𝑖𝑓 (𝑢, 𝑣) ∈ 𝑦 , 𝑦 = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝑟) (17) 

where 𝑟 is a hyper-parameter and can be an arbitrary number between 0, 1 . If 𝑟 = 0, then 𝑦 =𝑟𝑎𝑛𝑑𝑜𝑚(0,0) = 0 . In this case, it is back to the original situation, where the label 𝑦  in the 
counterexample set 𝑦  is marked as 0. If 𝑟 = 1, then 𝑦 = 𝑟𝑎𝑛𝑑𝑜𝑚(0,1). This means that the label 𝑦  
in 𝑦  is a random number from 0 to 1. 

The idea of adding random numbers can make the label 𝑦  in 𝑦  no longer equal to 0, which is 
equivalent to adding a disturbance to the data of 𝑦 . On the one hand, O-NeuMF-p is more robust 
than NeuMF-p. On the other hand, O-NeuMF-p is more focused on the learning of the 𝑦  data, which 
is exactly what we want. In addition, our experimental results show that under the same dataset, O-
NeuMF-p has a higher recommendation accuracy and quality than NeuMF-p. This confirms the 
advantage of introducing random numbers in O-NeuMF-p from the side. 

4. I-NMF: Fusion of CIDAE and O-NeuMF-p 

On the one hand, although O-NeuMF-p performs better than NeuMF-p, it still does not solve 
the problem of data sparsity. On the other hand, although CIDAE can alleviate the problem of data 
sparsity, CIDAE only utilizes the idea of a single-layer neural network(AE) and does not fully exploit 
the ability of deep neural networks to learn potential features. Therefore, this paper fuses CIDAE and 
O-NeuMF-p with reference to the idea of ensemble learning. We name the fused model the I-NMF 
(Imputation-Neural Matrix Factorization) model, which combines the advantages of CIDAE and O-
NeuMF-p. The I-NMF model can not only alleviate the problem of data sparsity, but also fully exploit 
the ability of deep neural networks to learn potential features, and I-NMF is also robust. Figure 3 
shows the structure of I-NMF. 

 
Figure 3. The structure of I-NMF. 

It is worth noting that there was a paper [24] combining the AE algorithm and the MF algorithm. 
The paper [24] uses the AE’s feature layer as the initial value of the hidden vector of MF, but the 
combined model is still linear, like MF. The idea of this paper is not the combination of the feature 

𝑈𝑠𝑒𝑟 𝑢 , 𝑖 ∈ 1, 𝑚  

𝐼𝑛𝑝𝑢𝑡 𝒖𝒊 ∈ ℝ  𝑢 = 0 𝑜𝑟 1 

CIDAE 

𝑂𝑢𝑡𝑝𝑢𝑡 𝒖𝒊 ∈ ℝ  

𝐼𝑛𝑝𝑢𝑡 𝑢 , 𝑣  𝑗 ∈ 1, 𝑛  

O-NeuMF-p 

𝑂𝑢𝑡𝑝𝑢𝑡 𝑦 ∈ (0,1) 𝒚𝒊 ∈ ℝ  

𝒙𝒊 = 𝛽𝒚𝒊 + (1 − 𝛽)𝒖𝒊 
𝛽 1 − 𝛽 

Use 𝒙𝒊 to recommend 

Figure 3. The structure of I-NMF.

It is worth noting that there was a paper [24] combining the AE algorithm and the MF algorithm.
The paper [24] uses the AE’s feature layer as the initial value of the hidden vector of MF, but the
combined model is still linear, like MF. The idea of this paper is not the combination of the feature
layer, but purely the combination of the prediction layer, which guarantees the integrity of CIDAE and
O-NeuMF-p, so that both models can play their own advantages.

Specific Fusion Process

In data set O, m is the total number of users, and n is the total number of items.
Additionally, the data of O is divided into a training set X and test set T .

On the one hand, the input of CIDAE trained with X is ui(ui ∈ Rn, i ∈ [1, m]), and the output is
ui. On the other hand, the input of O-NeuMF-p trained with X is a group of user IDs and item IDs
(
(
ui, vj

)
(i ∈ [1, m], j ∈ [1, n])), and the output is the predicted value ŷuivj(ŷuivj ∈ (0, 1)).

For each user ui inO, taking the top-N recommendation as an example, our goal is to use only the
data in X and recommend the top-N items that may be of interest in the missing data. The accuracy
and quality of the top-N recommendation is calculated by a comparison with the data in T .

For each user ui, firstly, we use the trained CIDAE to get the vector ui(ui ∈ Rn) of the user ui.
Then, we use the trained O-NeuMF-p to get n predicted values ŷuivj(j ∈ [1, n]) of the user ui. The vector
consisting of these n predicted values is denoted as yi(yi ∈ Rn). In this way, we have the prediction
vectors ui and yi corresponding to these two models for each user ui. The prediction vector for each
user ui in I-NMF is denoted as xi(xi ∈ Rn). The value of xi is determined by the prediction vectors ui
and yi, and the specific formula is as follows:

xi = βyi + (1− β)ui (18)

where β is a hyper-parameter, and β ∈ [0, 1]. The introduction of β can adjust the fusion ratio of CIDAE
and O-NeuMF-p. When β = 0, CIDAE is used for recommendation alone. Conversely, when β = 1,
O-NeuMF-p is used for recommendation alone.

We give the recommended top-N items based on the ranking of the value of xi in the missing data
of the training set X . It is worth noting that the range of the value of xi is not necessarily between 0 and
1, but this does not affect the resolution of the top-N recommendation. Since our goal is to recommend
top-N items, we only need to care about the ranking of the value of xi.

Our experimental results show that the accuracy and quality of the top-N recommendation of
I-NMF is higher than that of CIDAE and O-NeuMF-p, and is also better than some of the current
advanced recommendation algorithms. This confirms from the side that I-NMF can combine the
advantages of the two models, and I-NMF achieves good recommendation results by using the idea of
ensemble learning.
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5. Experiments

There are three sets of experiments in this paper. They are the experiment of CIDAE,
the experiment of O-NeuMF-p, and the experiment of I-NMF. In this section, we answer the following
questions through the three sets of experiments:

• Q1: Is CIDAE better than DAE and AE in the top-N recommendation?
• Q2: Is O-NeuMF-p better than NeuMF-p in terms of the accuracy and quality of the recommended

results? What is the degree of optimization of NeuMF-p?
• Q3: Is I-NMF better than CIDAE and O-NeuMF-p in terms of the accuracy and quality of the

recommended results?
• Q4: Is I-NMF better than some of the current advanced recommendation models?

5.1. Experimental Datasets

We evaluate all models using the public MovieLens (ML) [19] datasets. We specifically select the
ML-100K dataset and the ML-1M dataset in MovieLens (ML). These two datasets are commonly used
for evaluating the performance of recommender systems [25,26]. The specific information of the two
datasets is shown in Table 1. It is worth emphasizing that our experiments rely very little on datasets.
Specifically, we only use user IDs, item IDs, and ratings.

Table 1. Statistics of the evaluation datasets.

Datasets Ratings Items Users Sparsity

ML-100K 100,000 1682 943 93.70%
ML-1M 1,000,209 3706 6040 95.53%

Each rating in the two datasets is an integer from 1 to 5. Since this paper discusses the top-N
recommendation, we only need to focus on whether the user is interested in the item. So, similar
to [1,16], we convert the rating to 0 or 1, indicating whether the user has rated the item.

5.2. Performance Metrics

We use Hit Ratio (HR), Normalized Discounted Cumulative Gain (NDCG) [27], and Mean
Average Precision (MAP) to evaluate the performance of models. The value of HR can directly reflect
the accuracy of the ranking. The larger the HR value, the higher the accuracy of the ranking. NDCG can
account for the position of the hit by assigning higher scores to hits at top ranks [1]. The larger the
NDCG value, the higher the ranking quality [2]. Mean average precision calculates the mean of users’
average precision. The larger the MAP value, the better the effect of the model.

For each model, we calculate HR@N (N = 5, 10, 15), NDCG@N (N = 5, 10, 15), and MAP@N (N = 5,
10, 15) for each test user and report the average score. It is worth noting that N can be any value. In our
paper, the reason we set the value of N to 5, 10, and 15 is to have a span to show the recommended
effect of our model under different values of N.

5.3. Experimental Method

To ensure the reliability of the experimental data, we introduce five-fold cross-validation.
In five-fold cross-validation, the original sample is randomly partitioned into five equal sized
subsamples. Of the five subsamples, a single subsample is retained as the validation data for testing
the model, and the remaining four subsamples are used as training data. The cross-validation process
is then repeated five times, with each of the five subsamples used exactly once as the validation data.
The five results can then be averaged to produce a single estimation. The advantage of this method
over repeated random sub-sampling is that all observations are used for both training and validation,
and each observation is used for validation exactly once.
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We use five-fold cross-validation for all algorithms (including comparison algorithms) on the
ML-100K dataset and the ML-1M dataset. Therefore, the experimental results of each algorithm are the
average of five-fold cross-validation. It is worth noting that all our models’ parameter experiments are
performed only in a certain fold cross-validation process to avoid overfitting.

In order to prove that our algorithm is statistically better than other algorithms, rather than the
result of experimental fluctuations, we compare the relative increase rate of the experimental results
with the standard deviation of the five-fold cross-validation of our algorithm. For a more intuitive
expression, we record the increase rate of the A algorithm relative to the B algorithm as A%B (specific
calculation method is (A − B)/B). Furthermore, we record the standard deviation of the five-fold
cross-validation of the A algorithm as A-SD. If the relative increase rate (A%B) is greater than the
standard deviation (A-SD), our algorithm (A) is statistically superior to another algorithm (B).

5.4. Performance Comparison

The models used for comparison are as follows:

• ItemPop: This model judges the popularity of the item by calculating the number of interactions,
and then recommends items with high popularity. ItemPop is a non-personalized recommendation
model [28].

• ItemKNN [4]: This model is a standard item-based collaborative filtering model. The item
recommended by this model is similar to the item that the user once liked.

• BPR [28]: BPR is the state-of-the-art method for recommendation based on implicit feedback.
This model optimizes the MF model based on Bayesian theory and gives personalized rankings.
It is a highly competitive baseline for item recommendation.

• WRMF [12,29]: WRMF is a recommendation algorithm based on weight matrix, and it is an
optimization algorithm of the MF model. The characteristic of this model is that it assigns
different weights to the positive sample and the negative sample.

• CDAE [30]: It is a collaborative denoising autoencoder for collaborative filtering with implicit feedback.
CDAE additionally plugs a user node to the input of autoencoders for reconstructing the user’s ratings.

• ExpoMF [31]: Exposure MF (abbreviated as ExpoMF) is a new probabilistic approach that directly
incorporates user exposure to items into collaborative filtering. The exposure is modeled as a
latent variable and the model infers its value from data.

5.5. Experiment of the CIDAE Model

In this part, firstly, we compare the CIDAE model with the DAE algorithm and the AE algorithm
on the ML-100K dataset and the ML-1M dataset. Then, we analyze the influence of parameters of
CIDAE on experimental results using the ML-100K dataset.

Table 2 shows that the performance of the CIDAE model is better than the DAE algorithm and the
AE algorithm on both datasets. Additionally, it can be found in Table 2 that CIDAE performs better on
the ML-1M dataset. Compared with the AE algorithm, the advantage of CIDAE is that it can alleviate
the problem of data sparsity by using the idea of imputation. Compared with the DAE algorithm,
CIDAE does not add noise randomly, but performs regular continuous imputation on the output data.
Therefore, the recommended ranking of CIDAE achieves a higher accuracy and better quality.

We also analyze the influence of parameters of CIDAE on experimental results on the ML-100K
dataset. The specific parameters are as follows:

1. f (x): Imputation function;
2. k: Hyper-parameter in imputation function f (x);
3. Ni: Number of iterations;
4. d: Number of hidden nodes;
5. α: The loss weight of the imputed data.
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Table 2. Performance comparison of CIDAE, DAE, and AE based on HR@N, NDCG@N, and MAP@N. (N = 5, 10, 15).

Datasets Models HR@5 HR@10 HR@15 NDCG@5 NDCG@10 NDCG@15 MAP@5 MAP@10 MAP@15

ML-100K

CIDAE 0.421306 0.355360 0.314747 0.447365 0.392567 0.356907 0.339666 0.255331 0.210620
DAE 0.381883 0.326142 0.291124 0.402781 0.356766 0.326358 0.297374 0.223106 0.184123
AE 0.386891 0.327394 0.292639 0.409233 0.360020 0.329322 0.300240 0.223058 0.183858

CIDAE%AE 0.088952 0.085419 0.075549 0.093179 0.090405 0.083765 0.131316 0.144688 0.145561
CIDAE-SD 0.007510 0.004360 0.003198 0.008413 0.005948 0.004636 0.006023 0.002972 0.002202

ML-1M

CIDAE 0.402267 0.344528 0.309183 0.423420 0.375963 0.345131 0.322861 0.247092 0.206846
DAE 0.348828 0.304988 0.276929 0.364341 0.328476 0.304359 0.269107 0.207003 0.174379
AE 0.350492 0.304143 0.275353 0.368488 0.330032 0.304874 0.270459 0.205960 0.172438

CIDAE%AE 0.147721 0.132783 0.122857 0.149075 0.139169 0.132046 0.193753 0.199708 0.199540
CIDAE-SD 0.001563 0.001495 0.001195 0.001480 0.001417 0.001243 0.001452 0.001454 0.001150
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Figure 4 uses NDCG@10 as an indicator to show the performance of various parameters on
CIDAE in the ML-100K dataset. Specifically, Figure 4a shows that different imputation functions f (x)
have different experimental results, but the difference is not obvious. So, we finally chose f (x) = kx
because its form is relatively simple. Conversely, the value of k can significantly affect the experimental
results and we finally chose f (x) = 1.4x because it works best. Figure 4b shows that when the number
of iterations is 400, the accuracy of CIDAE is converged. Figure 4c shows that CIDAE achieves the
highest accuracy when the number of hidden nodes is 200. So, we finally chose Ni = 400 and d = 200.
Figure 4d shows that when α = 0.1, CIDAE shows the highest accuracy. In addition, we can see that
the accuracy is the worst when α = 1. This confirms that it is meaningful to calculate the loss of the
imputed data separately with the weight α.
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5.6. Experiment of the O-NeuMF-p Model

In this part, firstly, we compare O-NeuMF-p with NeuMF-p on the ML-100K dataset and the
ML-1M dataset. Then, we count the degree of optimization of NeuMF-p. Finally, we analyze the
influence of the parameter of O-NeuMF-p on experimental results on both datasets.

Table 3 shows that the performance of O-NeuMF-p is better than NeuMF-p on both datasets.
Furthermore, it can be found in Table 3 that the optimization effect of NeuMF-p is more obvious on
the ML-1M dataset. The O-NeuMF-p model is more focused on the learning of counterexamples than
the NeuMF-p model, and is more robust. Additionally, the experimental results confirm that the idea of
introducing random numbers into the label yuv in y− is beneficial and improves the accuracy of NeuMF-p.
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Table 3. Performance comparison of O-NeuMF-p and NeuMF-p based on HR@N, NDCG@N, and MAP@N. (N = 5, 10, 15).

Datasets Models HR@5 HR@10 HR@15 NDCG@5 NDCG@10 NDCG@15 MAP@5 MAP@10 MAP@15

ML-100K

O-NeuMF-p 0.403139 0.341947 0.304335 0.427511 0.375740 0.342528 0.324252 0.244377 0.202115
NeuMF-p 0.390153 0.332802 0.297135 0.412432 0.364942 0.333371 0.308308 0.233447 0.193468

O-NeuMF-p
%NeuMF-p 0.033284 0.027478 0.024231 0.036562 0.029586 0.027469 0.051713 0.046820 0.044698

O-NeuMF-p
-SD 0.006162 0.002480 0.002021 0.006155 0.003796 0.002892 0.007397 0.004844 0.003379

ML-1M

O-NeuMF-p 0.401836 0.349859 0.315786 0.420715 0.377941 0.348670 0.321740 0.250935 0.212394
NeuMF-p 0.376824 0.332281 0.302629 0.392953 0.356452 0.331099 0.294546 0.230894 0.196529

O-NeuMF-p
%NeuMF-p 0.066374 0.052902 0.043474 0.070650 0.060286 0.053067 0.092326 0.086797 0.080725

O-NeuMF-p-
SD 0.005920 0.005609 0.005026 0.005747 0.005484 0.005080 0.005579 0.004942 0.004452



Appl. Sci. 2019, 9, 54 14 of 19

We also analyze the effect of the hyper-parameter r controlling the range of random numbers on
the accuracy of O-NeuMF-p. It is worth noting that when r = 0, the O-NeuMF-p model is transformed
into the NeuMF-p model.

Figure 5a shows that when r = 0.7, O-NeuMF-p achieves the highest accuracy on the ML-100K
dataset. Figure 5b shows that when r = 0.6, O-NeuMF-p achieves the highest accuracy on the
ML-1M dataset. Furthermore, it can be seen that on the ML-1M dataset, the value of r has little
effect on the value of NDCG@10. It is worth emphasizing that for all values of r, the value of
NDCG@10 of O-NeuMF-p is higher than that of NeuMF-p on the ML-100K dataset and the ML-1M
dataset. This proves that O-NeuMF-p is more accurate than NeuMF-p on both datasets.
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5.7. Experiment of the I-NMF Model

In this part, firstly, we test the performance of I-NMF and compare it with CIDAE and O-NeuMF-p
on the ML-100K dataset and the ML-1M dataset. Then, we analyze the influence of the parameter of
I-NMF on the experimental results on both datasets. Finally, we compare I-NMF with current advanced
recommendation algorithms on both datasets. The experimental results prove that our I-NMF model
performs better. In addition, we also count the running time of I-NMF and comparison algorithms.

Table 4 shows that the performance of I-NMF is better than CIDAE and O-NeuMF-p on both
datasets. On the one hand, the imputation ability of CIDAE can alleviate the sparseness of the original
data. On the other hand, O-NeuMF-p uses the learning ability of deep neural networks to learn the
interaction between users and items. Moreover, both CIDAE and O-NeuMF-p have a good robustness.
It can be seen from the experimental results that CIDAE and O-NeuMF-p can complement each other
to achieve a higher accuracy. Additionally, it is worth discussing that although CIDAE performs
better on the ML-100K dataset, O-NeuMF-p performs better on the ML-1M dataset. This confirms the
advantage of the powerful learning ability of deep neural networks for large datasets. In addition, this
paper provides a new fusion idea; not only the combination of CIDAE and O-NeuMF-p, but also the
combination of different types of recommendation algorithms.
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We also analyze the effect of the hyper-parameter β controlling the fusion ratio on the accuracy of
I-NMF. When β = 0, CIDAE is used for recommendation alone. Conversely, when β = 1, O-NeuMF-p
is used for recommendation alone. Figure 6a shows that when β = 0.6, I-NMF achieves the highest
accuracy on the ML-100K dataset. At this time, I-NMF is better than CIDAE and O-NeuMF-p. Figure 6b
shows that when β = 0.8, I-NMF achieves the highest accuracy on the ML-1M dataset. It is worth
emphasizing that for all values of β, I-NMF is better than CIDAE and O-NeuMF-p on the ML-1M
dataset. This also confirms that CIDAE and O-NeuMF-p can complement each other very well.
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Finally, we compare I-NMF with current advanced recommendation algorithms on both datasets.
Table 5 shows that the performance of I-NMF is best on both datasets. On the ML-100K dataset,
compared to the state-of-the-art method of ExpoMF, on average, I-NMF obtains 6.8%, 6.9%, and 9.1%
relative improvements in HR, NDCG, and MAP metrics, respectively. On the ML-1M dataset, compared
to the state-of-the-art method of ExpoMF, on average, I-NMF obtains 5.4%, 5.3%, and 6.0% relative
improvements in HR, NDCG, and MAP metrics, respectively. These prove that the accuracy of our
I-NMF model is very high.

In addition, we also count the running time (a fold cross-validation process) of I-NMF and
comparison algorithms in Table 6. It is worth noting that our experiment is run under the CPU
(Processor Intel Core i7-6700k, Memory 16GB), and if it can use the GPU to run, it may be faster.

Some parameters of our I-NMF model can affect the running time, such as: Ni (Number of
iterations) and d (Number of hidden nodes) in CIDAE, the number of layers of MLP in O-NeuMF-p,
and so on. But the hyper-parameters β (controlling the fusion ratio), r (controlling the range of
random numbers), and α (the loss weight of the imputed data), and so on, do not affect the runtime.
The training time in our model is relatively large. However, during prediction, the running time
is negligible, where it only takes 18.2 s for the ML-100K dataset and 2 min for the ML-1M dataset.
In addition to this, we can optimize the training time in the future.
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Table 4. Performance comparison of I-NMF, CIDAE, and O-NeuMF-p based on HR@N, NDCG@N, and MAP@N. (N = 5, 10, 15).

Datasets Models HR@5 HR@10 HR@15 NDCG@5 NDCG@10 NDCG@15 MAP@5 MAP@10 MAP@15

ML-100K

I-NMF 0.437091 0.368832 0.324451 0.463643 0.406837 0.368565 0.359102 0.271408 0.224247
CIDAE 0.421306 0.355360 0.314747 0.447365 0.392567 0.356907 0.339666 0.255331 0.210620

O-NeuMF-p 0.403139 0.341947 0.304335 0.427511 0.375740 0.342528 0.324252 0.244377 0.202115
I-NMF%CIDAE 0.037467 0.037911 0.030830 0.036388 0.036349 0.032663 0.057221 0.062963 0.064696

I-NMF-SD 0.005536 0.002196 0.002866 0.005829 0.003351 0.003575 0.004329 0.001878 0.001698

ML-1M

I-NMF 0.422925 0.365302 0.328502 0.442975 0.396000 0.364304 0.343087 0.267112 0.225634
CIDAE 0.402267 0.344528 0.309183 0.423420 0.375963 0.345131 0.322861 0.247092 0.206846

O-NeuMF-p 0.401836 0.349859 0.315786 0.420715 0.377941 0.348670 0.321740 0.250935 0.212394
I-NMF%

O-NeuMF-p 0.052483 0.044140 0.040269 0.052909 0.047784 0.044839 0.066348 0.064468 0.062334

I-NMF-SD 0.003211 0.003311 0.002990 0.003393 0.003400 0.003020 0.003694 0.003469 0.002841

Table 5. Performance comparison of I-NMF and advanced recommendation algorithms based on HR@N, NDCG@N, and MAP@N. (N = 5, 10, 15).

Datasets Models HR@5 HR@10 HR@15 NDCG@5 NDCG@10 NDCG@15 MAP@5 MAP@10 MAP@15

ML-100K

I-NMF 0.437091 0.368832 0.324451 0.463643 0.406837 0.368565 0.359102 0.271408 0.224247
ItemPop 0.213072 0.189456 0.168726 0.222822 0.203229 0.186199 0.141576 0.104503 0.084945

BPR 0.252880 0.217062 0.194386 0.265752 0.236420 0.216823 0.180987 0.131805 0.107027
ItemKNN 0.353631 0.293864 0.256773 0.378404 0.328200 0.295540 0.279124 0.204424 0.165260

WRMF 0.358073 0.306407 0.274969 0.379183 0.336027 0.308229 0.276228 0.207112 0.171358
CDAE 0.381714 0.325527 0.290687 0.402744 0.356477 0.326134 0.297378 0.223183 0.184031
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Table 6. Running time of I-NMF and comparison algorithms.

Datasets Time I-NMF ItemPop BPR ItemKNN WRMF CDAE ExpoMF

ML-100K
Train Time 2.4 min 1 s 11 min 5 s 5.5 s 1.3 min 2.2 min
Test Time 18.2 s 1 s 2.6 s 36.7 s 2.5 s 1.4 min 2.7 s

ML-1M
Train Time 51.3 min 5 s 111 min 1.4 min 1.2 min 26.6 min 16.4 min
Test Time 2 min 28 s 40 s 25 min 40 s 66 min 38 s

6. Conclusions and Future Work

Firstly, we propose a new CIDAE model based on DAE. The advantage of CIDAE is that it
alleviates the problem of data sparsity by using the idea of imputation. Additionally, our experimental
results show that CIDAE is more accurate than the AE algorithm and the DAE algorithm.

Then, we optimize the advanced NeuMF model based on the training process. O-NeuMF-p
is more focused on the learning of counterexamples than NeuMF-p, and is more robust.
Furthermore, the experimental results confirm that the idea of introducing random numbers into the
label yuv in y− is beneficial and improves the accuracy of NeuMF-p.

Finally, this paper fuses CIDAE and O-NeuMF-p with reference to the idea of ensemble learning.
I-NMF can not only alleviate the problem of data sparsity, but also fully exploit the ability of deep
neural networks to learn potential features, and I-NMF is also robust. It can be seen from the
experimental results that CIDAE and O-NeuMF-p can complement each other to achieve a higher
accuracy. Moreover, our experimental results prove that I-NMF performs better than current advanced
recommendation algorithms on both datasets.

It is worth emphasizing that this paper provides a new fusion idea; not only the combination of
CIDAE and O-NeuMF-p, but also the combination of different types of recommendation algorithms.

In the future, there are two directions to extend our work. On the one hand, we can try more
ways to combine different kinds of recommendation algorithms to achieve a better accuracy. On the
other hand, we can try to incorporate auxiliary extra data into recommender systems, such as social
relations, review text, type of items, personal information of users, and so on. We can further improve
the accuracy of the model by adding extra valuable data.
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