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Epigenetic alteration is a fundamental characteristic of nearly all human cancers. Tumor
cells not only harbor genetic alterations, but also are regulated by diverse epigenetic
modifications. Identification of epigenetic similarities across different cancer types is
beneficial for the discovery of treatments that can be extended to different cancers.
Nowadays, abundant epigenetic modification profiles have provided a great opportunity
to achieve this goal. Here, we proposed a new approach TriPCE, introducing tri-clustering
strategy to integrative pan-cancer epigenomic analysis. The method is able to identify
coherent patterns of various epigenetic modifications across different cancer types. To
validate its capability, we applied the proposed TriPCE to analyze six important epigenetic
marks among seven cancer types, and identified significant cross-cancer epigenetic
similarities. These results suggest that specific epigenetic patterns indeed exist among
these investigated cancers. Furthermore, the gene functional analysis performed on the
associated gene sets demonstrates strong relevance with cancer development and
reveals consistent risk tendency among these investigated cancer types.
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INTRODUCTION

Cancer genetics and epigenetics are closely linked in driving the cancer phenotype (Bailey et al.,
2018). The vast majority of human cancers emerge from a gradual accumulation of somatic
alterations and epigenetic abnormalities, which together lead to the malignant growth (Jones et al.,
2016). Epigenetic changes can further enable tumor cells to escape from host immune surveillance
and various treatments (You and Jones, 2012). Epigenetic abnormalities are usually observed as
disrupted DNAmethylation patterns (Chiappinelli et al., 2015), abnormal histone post translational
modifications (Sawan and Herceg, 2010), and aberrant changes in chromatin organization (Allis
and Jenuwein, 2016). How to identify epigenetic modification patterns that lead to the
corresponding dysregulation in diverse cancers has become a critical research issue of cancer
studies (Dawson, 2017; Kelly and Issa, 2017).

Great advancements have been made in delineating the underlying mechanisms of human
cancers (Lawrence et al., 2014; Martincorena and Campbell, 2015). Extensive research has centered
on the genetic aspect of cancers, such as how mutational activation and inactivation of cancer genes
influence the cellular pathways (Vogelstein et al., 2013; Waddell et al., 2015). Recently, an increasing
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emphasis of drug discovery efforts has been targeting on the
cancer epigenome (Flavahan et al., 2017). Many epigenome
mapping projects have been gradually founded. The Cancer
Genome Atlas Network (TCGA), BLUEPRINT, and the
International Cancer Genome Consortium (ICGC) define the
genome-wide distribution of epigenetic marks in many normal
and cancerous tissues (Beck et al., 2012; Kundaje et al., 2015;
Weinstein et al., 2015). Given the genome-wide distribution of
epigenetic modifications of different cancers, it is urgent to
decipher common epigenetic patterns across cancers and to
understand the underlying mechanisms of tumorigenesis. Key
epigenomic similarities shared by different cancer types would
present an important opportunity to design effective cancer
treatment strategies among cancers regardless of tissue or
organ and enable the extension of effective treatments from
one cancer type to another (Karlic et al., 2010; Gan et al., 2018).

To detect significant epigenetic patterns, existing
computational methods mainly focus on identifying
combinatorial states of different epigenetic marks. Specifically,
CoSBI captures diverse histone modification patterns based on
the correlations of different histone signals (Ucar et al., 2011).
ChromHMM and HiHMM both apply a HMM model to
annotate genomic sequences by the co-occurrence of multiple
epigenetic marks (Ernst et al., 2011; Sohn et al., 2015). RFECS is
developed mainly based on random forests (Rajagopal et al.,
2013). IDEAS is able to jointly characterize epigenetic landscapes
in many cell types and detect differential regulatory regions
(Zhang et al., 2016). These methods have successfully
identified the combinatorial epigenetic pattern in specific cell
type. However, the relations among different cancer types still
need to be investigated. Because DNAmethylation in cancers has
been addressed elsewhere (Kretzmer et al., 2015; Yang et al.,
2016), here we only focus on the critical covalent histone
modifications that are altered in various cancers, particularly
the well-studied acetylation and methylation modifications.

In this paper, we proposed a tri-clustering approach, named
TriPCE, for integrative pan-cancer epigenomic analysis. The
method TriPCE adopts a tri-clustering strategy to identify the
coherent patterns of various epigenetic modifications across
different cancer types. We applied TriPCE to investigate six
critical epigenetic marks among seven cancer types, and
identified significant pan-cancer epigenetic modification
patterns. The results reveal that there exists consistent
epigenetic modification tendency among these cancer types.
Meanwhile, the gene function analysis demonstrates that these
associated genes are strongly relevant with the cancer
cellular pathway.
MATERIALS AND METHODS

Datasets
To detect epigenetic similarities among different cancers, we
analyzed the epigenome maps of seven cancer types, including
A549, K562, HepG2, HCT116, Hela-S3, multiple myeloma-Cell
Line, and sporadic Burkitt lymphoma-Cell Line. For the
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epigenetic marks, we first filtered out those marks that are not
included in these seven cancer types, and then focused on six
widely studied ones, including H3K4me1, H3K4me3, H3K9me3,
H3K27ac, H3K27me3, and H3K36me3. Meanwhile, the RNA
expression profiles of these cancers were also collected. Totally,
we obtained 42 epigenome maps and 7 RNA expression profiles
for these cancers. The datasets were downloaded from the
website of NIH Roadmap Epigenome Project.
General Scheme of the TriPCE Approach
We developed a tri-clustering approach TriPCE to dissect the
pan-cancer epigenetic pattern. The method not only explicitly
detects combinatorial states of various epigenetic marks in
different genomic segments, but also mines similar epigenetic
patterns across different cancer types. The proposed TriPCE
model has three key components, as shown in Figure 1. Firstly,
preprocess the modification data of various epigenetic marks in
different cancer types. Secondly, identify bi-Clusters based on
FP-growth algorithm for each epigenetic mark. Thirdly, mine tri-
Clusters with coherent epigenetic modification patterns across
different cancer types.

Step 1. Preprocess the epigenetic modification data of different
cancer types. Firstly, the genome was divided into consecutive
genomic segments, with a typical segment size of 200 bps (Gan
et al., 2017). For each epigenetic modification map, we computed
the summary tag count of every segment. Then, each segment is
associated with the intensities of a set of epigenetic modifications
in each cancer type. To deduce the impact of the noise resulting
from spurious tag counts in the ChIP-seq experiments, raw
sequence read counts of each epigenetic modification were
further normalized by the total number of reads followed by
arcsine transformation (Pinello et al., 2014). Finally, according to
the genome annotation data, the epigenetic distribution in the
promoter regions was extracted.

After the preprocessing step, we gained six epigenetic profiles
of seven cancer types along the promoter regions. Let G = {ɡ1, ɡ2,
…, ɡn} be a set of n genes, let T = {t1, t2,…, t7} be the investigated
seven cancer types and let E = {e1, e2,…, e6} be the six epigenetic
marks. For each epigenetic mark, the epigenetic profiles of
different cancer types in the promoter regions of these genes
are organized as a matrix Dk = T � G = tki,j (with i ∈[1,2…,7], j
∈[1,2…, n], k ∈[1,2…,6]), where rows correspond to the cancer
types, and columns correspond to those genes, respectively. Each
entry tki,j is a vector representing the epigenetic profile of ek in the
ith cancer along the promoter region of gene j.

Step 2. Identify bi-clusters based on FP-growth algorithm for
each epigenetic mark. Given the preprocessed and reorganized
epigenetic modification data matrix of each epigenetic mark, we
first computed the Pearson correlation coefficients between the
epigenetic profiles of any two cancer types at every promoter
region, and then obtained a correlation coefficient matrix.

Specifically, for the promoter region ɡi, we computed the
Pearson correlation coefficients among the epigenetic
modification distribution vectors of any different cancer types.
If the calculated correlation coefficient is higher than a given
threshold, the epigenetic modification trend in these two cancer
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types is regarded as coherent in this promoter region. Then, we
added this cancer type to the corresponding itemset, which
contains all the cancer types exhibiting similar epigenetic
patterns in this region. Based on extensive experimental
comparison, when the correlation coefficient threshold is set as
0.7, the identified epigenetic patterns are obviously coherent. For
each epigenetic mark, we respectively constructed the
corresponding similar itemsets for all promoter regions.
Frontiers in Genetics | www.frontiersin.org 3
Based on the resulted itemset, we further identified the
significant coherent epigenetic patterns using FP-growth
algorithm (Han et al., 2004). FP-growth algorithm is a data
mining method that was originally developed for frequent
itemset mining in market basket analysis. Here, we adopted the
FP-tree model to represent in a compact way all the cancer types
with similar epigenetic patterns in different promoter regions.
Then, it can be used to mine potential frequent itemsets and
FIGURE 1 | The flowchart of the proposed TriPCE approach. (A) Preprocessing the epigenetic modification data of different cancer types. (B) For each epigenetic
mark, identifying bi-Clusters based on the FP-growth algorithm. (C) Mining tri-Clusters with coherent epigenetic modification patterns across different cancer types.
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filter out most of the unrelated data. In this context, a typical
frequent itemset represents a group of cancer types that share
similar epigenetic patterns in abundant promoter regions. To gain
the significant epigenetic states, we set the minimum support of
genes as 10% of the investigated genes. For each frequent itemset,
we then inversely identified the corresponding gene set and gained
the bi-Cluster. The resulted bi-Cluster is in the form (“genomic
regions,” “cancer types”), representing the cancer types exhibit
similar epigenetic patterns in these genes. Similarly, we obtained the
corresponding bi-Cluster sets for all investigated epigenetic marks.

Step 3.Mine tri-Clusters with coherent epigenetic modification
patterns across different cancer types. After obtaining the bi-
Cluster sets for each epigenetic mark, we further mined the tri-
Clusters. By enumerating the maximum subsets of different
epigenetic marks, we obtained the tri-Clusters. In detail, we
respectively computed the intersection of the bi-Cluster sets
from two epigenetic marks ek and el, which are kept with the
epigenetic marks to get possible tri-Clusters. Further, by filtering
out the candidates with the support lower than the predefined
minimum support, we obtained the significant tri-Clusters.
Iteratively, we continued the process with another epigenetic
mark until all the epigenetic marks were analyzed. We tried all
such paths and kept the maximal tri-Clusters only. Each tri-
Cluster is represented as (“genomic regions,” “cancer types,”
“epigenetic marks”), listing a gene set with similar trend of
epigenetic modifications in different cancer types. The resulted
tri-Clusters indicate that the conserved epigenetic signatures in
these genomic regions are shared by multiple cancer types.
Frontiers in Genetics | www.frontiersin.org 4
Functional Analysis of the Genes
From the identified tri-Clusters, we can obtain the gene sets
associated with specific coherent epigenetic patterns. To
investigate the potential functions of these genes, we
performed the gene ontology (GO) enrichment analysis and
pathway enrichment analysis via DAVID bioinformatics
resources (Huang et al., 2007). The significant enrichment lists
were obtained with P-value < 0.005.
RESULTS

Identifying Similar Epigenetic Patterns
Across Different Cancer Types
We developed a tri-clustering approach, TriPCE, to capture
similar epigenetic patterns among different cancer types.
TriPCE was applied to the genome-wide epigenetic
modification maps of seven cancer types, including A549,
K562, HepG2, HCT116, Hela-S3, multiple myeloma-Cell Line,
and sporadic Burkitt lymphoma-Cell Line. For each epigenetic
mark, TriPCE first groups the promoter regions based on the
epigenetic modification profiles among different cancer types.
Figure 2 shows a typical bi-Cluster of epigenetic mark
H3K4me1, which contains abundant genes with similar
modification pattern in four cancer types, including Hela-S3,
HepG2, K562, and A549. From this figure, we observe that the
epigenetic profiles of these genes are similar in these cancer types.
FIGURE 2 | The profiles of epigenetic mark H3K4me3 in a typical bi-Cluster exhibit a similar pattern in four cancer types, including Hela-S3, HepG2, K562 and A549.
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Then, the epigenetic profile shared by a cluster of promoter
regions in multiple cancer types is considered to be an epigenetic
pattern. Meanwhile, different cancer types share similar
epigenetic patterns. This result is consistent with previous
finding that H3K9me3/me2 and H3K36me3/me2 frequently
observed in breast cancer (Liu et al., 2009), esophageal cancer
(Yang et al., 2000), MALT lymphoma (Vinatzer et al., 2008), and
lung sarcomatoid carcinoma (Italiano et al., 2006). Based on the
identified bi-Clusters of these investigated epigenetic marks, we
noted that cancers (HepG2 and HCT116) are clustered together
and share a larger number of epigenetic marks, implying that
they share more similar epigenetic regulation mechanisms.

To identify the significant modification patterns, we set the
minimal support of genes as 10% of the investigated genes. With
diverse correlation coefficient thresholds, we respectively gained
different numbers of bi-Clusters for epigenetic marks H3K4me1,
H3K4me3, H3K9me3, H3K27me3, H3K36me3, and H3K27ac,
among these cancer types, as shown in Figure 3. The comparison
indicates that the similarities of these epigenetic marks are quite
different. Under different threshold settings, the epigenetic mark
H3K4me3 has a relatively small number of bi-Clusters,
indicating that its profiles are less conserved and exhibit more
variable patterns among these cancer types than other epigenetic
marks. On the contrary, there are more similar epigenetic
patterns of H3K4me1 and H3K27me3 among different cancer
types (Baylin and Jones, 2016). The plasticity of epigenome
depends on diverse environmental factors. Thus, it is not
surprising that epigenotypes contribute to developmental
human disorders and adult diseases (Brien et al., 2016). As the
minimal support threshold slightly affects the trend among
different epigenetic marks, we chose the bi-Clusters with
threshold 0.7 for further analysis.

Identifying Coherent Patterns Among
Different Epigenetic Marks
From the above results, we notice that there are obvious
differences among the investigated epigenetic modifications. To
Frontiers in Genetics | www.frontiersin.org 5
identify the conserved epigenetic states and explore the similar
patterns of these epigenetic modifications, we further clustered
these epigenetic marks based on the detected bi-Clusters. By
systematically computing the intersection of the bi-Cluster sets
from different epigenetic marks, we kept the tri-Clusters with the
support higher than the predefined minimum support. The
identified tri-Clusters are represented as triples (“genomic
regions,” “cancer types,” “epigenetic marks”). Each tri-Cluster
represents that the promoter region of these genes exhibits
similar epigenetic modification patterns in the related
cancer types.

Applying TriPCE to the data set, we initially obtained 175
significant tri-Clusters. Figure 4 shows the information of 15
typical clusters, including the epigenetic marks, the cancer types,
and the supports of these tri-Clusters. The results indicate that
specific genomic regions indeed share combinatorial epigenetic
patterns across different cancer types. For example, the changing
pattern of epigenetic modifications (H3K4me3, H3K9me3,
H3K27me3, and H3K36me3) are shared by a large number of
genes in cancer types A549, HepG2, and K562. On the contrary,
some epigenetic modification patterns are only coherent in
certain cancer types. Among these resulted clusters, we observe
that the similar patterns of H3K36me3, H3K27ac, and
H3kK27me3 exist in fewer cancer types, such as HepG2 and
sporadic Burkitt lymphoma-Cell Line. Notably, these identified
tri-Clusters reveal more information about the epigenetic
patterns among these cancer types.
Analyzing the Potential Roles of
Associated Genes
Based on the detected tri-Clusters, we further obtained those
gene sets that exhibit coherent epigenetic patterns in different
cancer types. Previous studies have shown that the modification
intensities are significantly distinct between high-expression
gene promoters and low-expression gene promoters, which
suggests that these chromatin components have significant
effect on gene regulation (Su et al., 2012). To investigate the
potential functions of those genes in the cellular control
pathways, we performed a systematic GO enrichment analysis
using DAVID tools (https://david.ncifcrf.gov/). Then, for the
associated gene sets in the identified tri-Clusters, we respectively
summarized the key biological processes and pathways that they
are involved in.

Overall, we found that those genes enriched in tri-Clusters
exhibit an enrichment for cancer-related functions. Table 1 lists
the significant GO terms of a typical tri-Cluster (P-value <
0.005). In this tri-Cluster, the genes exhibit coherent
modification patterns on epigenetic marks (H3K4me1,
H3K4me3, H3K9me3, H3K27ac, and H3K27me3) in cancer
types (HeLa-S3, HepG2, multiple myeloma-Cell Line, and
sporadic Burkitt lymphoma-Cell Line). In the table, terms
“positive regulation of cell proliferation” and “negative
regulation of apoptotic process” are enriched in these gene
sets. This result implies that the identified genes in this tri-
Cluster are essential for cell proliferation and apoptotic process,
which has been reported to be related to cancer development by
FIGURE 3 | The numbers of bi-Clusters with varied similarity thresholds for
different epigenetic marks.
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previous researches (Deng et al., 2016). Meanwhile, the term
“positive regulation of gene expression” is also enriched in the
gene set, further indicating that these genes might perform
important regulation roles in these cancers.
DISCUSSION

Identifying epigenetic patterns is important to understand
epigenetic mechanisms in various cancers. The detected
patterns among different cancers could demonstrate critical
cross-cancer similarities, which reveals some consistent clinical
risk among different cancer types and further suggests strong
clinical relevance. Our knowledge about the patterns of
epigenetic modifications and the cause and consequence of
them is still limited. Computational approach that exploits the
Frontiers in Genetics | www.frontiersin.org 6
complex epigenomic landscapes and discovers significant
signatures out of them is required. Previous computational
methods for analyzing epigenomes primarily focus on the
combinatorial states of different epigenetic marks in a specific
cell type. Differently, we developed a tri-clustering approach
TriPCE for integrative pan-cancer epigenomic analysis. Based on
the FP-tree structure, TriPCE can compactly represent all similar
cancer types in the promoter regions for a specific epigenetic
mark. Using the constructed FP-tree, the frequent patterns are
then detected to yield the set of bi-Clusters of this epigenetic
mark, indicating the similar epigenetic pattern in these cancer
types along these genomic regions. TriPCE further mines the
final tri-Clusters based on the bi-Clusters of all investigated
epigenetic marks, explicitly detecting combinatorial epigenetic
states in different genomic segments and similar epigenetic
changes across different cancer types. In the proposed
FIGURE 4 | Typical epigenetic tri-Clusters. (A) The epigenetic marks (column) in each cluster (row). (B) The cancer types (column) in each cluster (row). Fold
enrichment was calculated as the ratio between the number of genes in the tri-Cluster to that of all genes.
TABLE 1 | Functional enrichment of genes in the identified tri-Clusters.

Term type Term name P-value Term type Term name P-value

BP Positive regulation of cell proliferation 2.84E-06 MF Protein binding 1.10E-12
BP Translational initiation 1.18E-05 MF Poly(A) RNA binding 3.90E-10
BP mRNA processing 2.72E-05 MF RNA binding 2.13E-05
BP Cell division 4.08E-05 MF Glutathione binding 7.85E-04
BP rRNA processing 2.70E-04 MF Enzyme regulator activity 4.02E-03
BP RNA splicing 4.04E-04 MF Nucleosomal DNA binding 4.25E-03
BP Positive regulation of gene expression, epigenetic 9.41E-04 MF Translation initiation factor activity 4.30E-03
BP Protein targeting to Golgi 8.87E-05 MF Glutathione transferase activity 8.00E-03
BP Nitrobenzene metabolic process 1.14E-04 MF Protein binding, bridging 4.33E-03
BP Xenobiotic catabolic process 1.13E-03 MF ATP binding 4.57E-03
BP mRNA splicing, via spliceosome 1.14E-03 CC Nucleoplasm 6.18E-13
BP Sister chromatid cohesion 2.13E-03 CC Cytosol 3.96E-07
BP SRP-dependent cotranslational protein targeting to membrane 1.06E-03 CC Membrane 7.68E-06
BP Negative regulation of transcription, DNA-templated 1.55E-03 CC Nucleus 2.34E-04
BP Negative regulation of apoptotic process 1.88E-03 CC Cytoplasm 2.69E-04
BP Nucleosome assembly 3.86E-03 KEGG Glutathione metabolism 1.09E-03
BP Glutathione derivative biosynthetic process 4.18E-03 KEGG Systemic lupus erythematosus 1.93E-03
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approach TriPCE, the tri-Cluster enumeration is an expensive
operation. In the future we plan to develop heuristic techniques
to efficiently prune the search space, and then improve the
efficiency of mining the tri-Clusters. We applied TriPCE to
uncover the similar patterns of six epigenetic marks among
seven cancer types and successfully identified significant cross-
cancer epigenetic modification similarities, which suggests that
there exhibits consistent epigenetic modification tendency
among these investigated cancer types. Furthermore, the gene
functional analysis demonstrates that these associated genes are
strongly relevant with the cancer cellular pathway.
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