
TD-EUA: Task-Decomposable Edge User
Allocation with QoE Optimization

Guobing Zou1,2, Ya Liu1, Zhen Qin1(B), Jin Chen1, Zhiwei Xu1,
Yanglan Gan3, Bofeng Zhang1, and Qiang He4(B)

1 School of Computer Engineering and Science, Shanghai University, Shanghai, China
{gbzou,ambersoul,zhenqin,cj1125,zhiweixu,bfzhang}@shu.edu.cn

2 Shanghai Key Laboratory of Computer Software Testing and Evaluating,
Shanghai, China

3 School of Computer Science and Technology, Donghua University, Shanghai, China
ylgan@dhu.edu.cn

4 Department of Computer Science and Software Engineering,
Swinburne University of Technology, Melbourne, Australia

qhe@swin.edu.au

Abstract. The edge user allocation (EUA) problem has attracted a lot
of attention recently. EUA aims at allocating edge users to nearby edge
servers strategically to ensure low-latency network connection. Exist-
ing approaches assume that a users’ request can only be served by an
individual edge server or cannot be served at all. They neglect the fact
that a user’s request may be decomposable and partitioned into multi-
ple tasks to be performed by different edge servers. To tackle this new
task-decomposable edge user allocation (TD-EUA) problem, we model
it as an optimization problem. Two novel approaches named TD-EUA-O
and TD-EUA-H are proposed, one for finding the optimal solution based
on Integer Linear Programming that maximizes users’ overall Quality
of Experience (QoE), and the other for efficiently finding a sub-optimal
solution in large-scale EUA scenarios. Extensive experiments based on a
widely-used real-world dataset are conducted to evaluate the effective-
ness and efficiency of our approaches. The results demonstrate that our
approaches significantly outperform the baseline and the state-of-the-art
approach.

Keywords: Edge computing · Edge user allocation · Task
decomposition · Quality of Experience · QoE optimization

1 Introduction

The rapidly increasing popularity of mobile and Internet-of-Things (IoT) devices,
including mobile phones, wearables, sensors, etc., has promoted the growth of
versatile computational-intensive applications, such as face recognition, machine
vision, intelligent furniture [6]. Due to the limited computing capabilities and
battery power of mobile and IoT devices, their computing tasks are often
c© Springer Nature Switzerland AG 2020
E. Kafeza et al. (Eds.): ICSOC 2020, LNCS 12571, pp. 215–231, 2020.
https://doi.org/10.1007/978-3-030-65310-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-65310-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-65310-1_17

216 G. Zou et al.

offloaded to app vendors’ servers in the cloud. Nevertheless, with the exponen-
tial growth in the number of mobile and IoT devices, it is becoming difficult
for cloud computing to handle the huge workload and network congestion. This
makes it difficult to provide a low-latency and reliable connection to end-users,
especially those that desire real-time responses from applications. For exam-
ple, delays caused by the traditional centralized computing paradigm may cause
operation failures on autopilot and endanger passengers’ lives.

To tackle this issue, edge computing, has been proposed as a new dis-
tributed computing paradigm [1,15]. In the edge environment, each base station
is equipped with a certain amount of computing resources, allowing computing
power to be provided to mobile users at the Internet access level. Compared to
cloud computing, edge computing places storage and computing resources (such
as CPU, memory, bandwidth, etc.,) closer to end-users. An edge server usually
cover a specific geographical area [10]. Typically, edge servers are geographically
distributed to offer diverse services for different areas. To avoid the existence
of an area that is not covered by any edge server, there are overlapping areas
between adjacent edges. A user located in the overlapping area can connect to
one of the edge servers covering them (proximity constraint) that has sufficient
computing resources (resource constraint) such as CPU, storage, bandwidth, or
memory [8,10,11].

While offering new opportunities, edge computing also raises many new chal-
lenges, such as the problem of edge user allocation (EUA). As an intermediate
supply station, an edge server has limited computing resources. Hence, an app
vendor’s users in an area must be allocated to edge servers properly to utilize
the computing resources hired by the app vendor on the edge servers. Exist-
ing research treat each user as a resource request, and each user can only be
assigned to one edge server to achieve certain specific optimization objectives,
e.g., to minimize the number of edge servers needed [8,10], to maximize the
overall user satisfaction measured by their Quality of Experience (QoE) [11] and
to increase the ratio of user allocation [14]. However, they ignore the real-world
application scenarios where user needs may be decomposable and a user’s needs
may be satisfied collectively by multiple collaborative edge servers. In a real-
world application, a user’s request may be composed by multiple tasks, which
may need to be performed different edge severs with different resources [20].
Consider a typical game streaming service for example. Players talk to their
teammates a lot while playing a game, generating different types of tasks to be
performed by edge servers.

The need to handle users’ decomposable requests significantly complicates the
EUA problem. The fundamental limitation of current EUA approaches assume
that a user’s needs for computing resources are either fulfilled by an individual
edge server nearby, or cannot be fulfilled at all. In this study, we focus on more
realistic EUA scenarios where a user’s needs may be satisfied by several collab-
orative edge servers nearby by decomposing its request to a set of tasks to be
performed by individual edge servers.

TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization 217

We refer to this problem as a task-decomposable edge user allocation (TD-
EUA) problem. To tackle this problem, we model it as an optimization problem
and propose two novel approaches, one for finding the optimal solution that
maximizes users’ overall QoE, and the other for efficiently finding a sub-optimal
solution to large-scale TD-EUA problems. To the best of our knowledge, it is the
first attempt to tackle the EUA problem where users’ requests are decomposable.
Our main contributions are as follows:

– We formally define and model the TD-EUA problem, and prove its NP-
hardness.

– We propose an optimal approach based on integer linear programming (ILP)
for solving the TD-EUA problem that aims to maximize users’ overall QoE.

– We propose a heuristic approach for finding a sub-optimal solution to large-
scale TD-EUA problems.

– Extensive experiments based on a widely-used real-world dataset are carried
out to demonstrate the effectiveness and efficiency of our approaches against
a baseline approach and a state-of-the-art approach.

The remainder of the paper is organized as follows. Section 2 provides a moti-
vating example for our research. Section 3 defines and formulates the TD-EUA
problem. Section 4 models TD-EUA problem as an optimization problem and
presents our approaches in detail. Section 5 shows the experimental evaluation.
Section 6 reviews the related work. Finally, we conclude the paper and point out
future work in Sect. 7.

2 Motivating Example

A typical example of a task-decomposable EUA application scenario is shown
in Fig. 1. In the edge computing environment, there are nine users, u1, · · · , u9,
four edge server s1, · · · , s4, and ten tasks t1, t2, · · · , t10, where each task can
be performed by a corresponding service deployed on an edge server. Each
edge server covers a specific geographical area and has a specific amount of
different types of resources available to serve users within its coverage. Edge
servers’ resource capacities and tasks’ resource demand are denoted as a vector
〈CPU,RAM, storage, bandwidth〉. Each user has a list of tasks and each task
may require different amounts of computing resources.

For example, user u2 has a task list {t2, t4, t7, t8}. If the resources available
on edge servers s1, s2 or s3 are not limited, user u2 can be served by any of the
three edge servers. Otherwise, the need of u2 can be partitioned. For example,
its tasks t2, t4, t7, t8 can be served by multiple edge servers. Assume that user u1

has all the resources it needs from edge server s2, users u3 and u6 are assigned
to server s3, and the workload generated by each task is 〈1, 1, 1, 1〉. As a result,
the remaining resources on edge server s2 or s3 cannot fulfil the demand of user
u2. Existing EUA approaches cannot handle such case and will allocate user
u2 to the cloud for task processing. However, if the user’s requirements can be
partitioned, this issue can be addressed. Note that user u2 is in the overlapping

218 G. Zou et al.

Fig. 1. An example task-decomposable EUA problem.

area of edge servers s1, s2, s3. Tasks t2 and t4 can be offloaded to edge server s2
and task t7 can be performed by edge server s3. Then, task t8 can be performed
by edge server s1. This way, the total workload of the tasks allocated to edge
server s2 is 〈5, 5, 5, 5〉, which not exceed the its remaining capacity (〈7, 5, 11, 13〉).
In the meantime, server s3 has abundant resources for the tasks assigned to it.
What’s more, users u4, u5, u7 can be allocated to server s1 and user u9 can be
allocated to server s4. Then, user u8 can allocate its task t2 to server s1, tasks
t4 and t5 to server s4. While fulfiling the proximity and capacity constraint, this
solution allocates all the users’ tasks to edge servers, none to the cloud.

There may be other solutions that can also allocate all the users’ tasks to
edge servers. Finding the optimal one that maximizes users’ overall QoE is not
trivial, especially in large-scale scenarios. Thus, there is a need for an effective
and efficient approach for finding TD-EUA solutions.

3 Problem Formulation

This section defines the TD-EUA problem. The notations and descriptions used
in this paper are summarized in Table 1. With the consideration of task decom-
position in EUA problem, we give a set of definitions.

Given a finite set of m edge servers S = {s1, s2, . . . , sm}, and n edge users
U = {u1, u2, . . . , un} in a particular area, each user has a task list for a request,
defined as follows.

Definition 1. (User Task Decomposition) Given an edge user u, u’s request r
is composed of a set of tasks, T (ui) = {t1, t2, . . . }, where each task tk can be
performed by an edge server.

From the app vendor’s perspective, a TD-EUA solution should allocate as
many user requests as possible to edge servers, so that the users’ overall QoE is

TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization 219

maximized. A user ui can only offload one or multiple tasks to an edge server sj

under the condition that it is located within sj ’s coverage area cov(sj).

Definition 2. (Distance-Aware User Coverage) Given an edge user ui and a
set of edge servers S = {s1, s2, ..., sn}, only the edge servers that cover user ui

may serve ui, denoted as S(ui). The edge servers in S(ui) fulfil the proximity
constraint with respect to user ui:

dij ≤ cov(sj),∀i ∈ 1, 2, . . . , n;∀j ∈ 1, 2, . . . ,m (1)

Table 1. Notations

Notation Description

D = {CPU,RAM, storage, bandwidth} A set of computing resource
types

S = {s1, s2, . . . , sm} A set of edge servers
U = {u1, u2, . . . , un} A set of edge users
T = {t1, t2, . . . , tq} A set of tasks decomposed from

users’ service requests
cj =

〈
c1j , c

2
j , . . . , c

d
j

〉
Computing capacity of edge
server sj

wk =
〈
w1

k, w2
k, . . . , wd

k

〉
Computing resources demanded
for the task tk

Wi =
〈
W 1

i ,W 2
i , . . . ,W d

i

〉
Computing resource that the
user ui gets from the edge server

T (ui) A set of tasks which user ui

needs in a service request,
T (ui) ⊆ T

T (sj) A set of tasks allocated to server
sj

U(sj) A set of users that edge server sj

covers, U(sj) ⊆ U

S(ui) A set of user ui’s candidate
servers - edge servers that cover
user ui, S(ui) ⊆ S

cov(sj) Coverage radius of edge server sj

dij Geographical distance between
user ui and server sj

220 G. Zou et al.

Take Fig. 1 as an example. User u4 can be served by servers s1 or s3. Server
s3 can serve users u2, u3, u4, and u6 as long as it has adequate resources.

The total workload generated by all the tasks allocated to an edge server
must not exceed its current capacity. Otherwise, the server will be overloaded.

Definition 3. (Server Capacity Constraint) Given an edge server sj and its
covered users Uc =

{
u1

c , u
2
c , ...

}
, where each user in Uc has a set of tasks. We

denote T (sj) =
{

t1sj
, t2sj

, ...
}
as the tasks allocated to server sj, the total resource

demand of which must not exceed its current computing capacity:

∑

tksj
∈T (sj)

wk ≤ cj ,∀sj ∈ S (2)

Take Fig. 1 for an instance, as the workload generated by each task is
〈1, 1, 1, 1〉, the aggregate workload incurred by users u3 and u6 is 〈6, 6, 6, 6〉.
It does not exceed the current capacity of server s3 〈9, 11, 7, 17〉. Therefore, it is
a valid allocation. However, if we allocate users u1 and u2’s tasks t2, t4, t7 to
server s2, it will be overloaded since the aggregate task workload is 〈6, 6, 6, 6〉,
exceeding server s2’s current computing capacity 〈7, 5, 11, 13〉.

Through allocating users’ tasks to edge servers, an QoE value can be calcu-
lated for each user. In this study, we measure a user’s QoE in the same way as
[11], which depends on the Quality of the Service (QoS) delivered to the user.
As stated in [7,9], QoS is non-linearly correlated with QoE. Generally, it starts
to increase slowly at first, then speeds up, and finally converges. Many studies
model the correlation between QoE and QoS with the sigmoid function [11].
In [11], the authors use a logistic function, a generalized version of the sigmoid
function, to model the QoE-QoS correlation, which is represented as follows:

E0
i =

L

1 + e−α(xi−β)
(3)

where L is the maximum value of QoE, β is a domain-specific parameter that
controls the QoE growth should be, or the mid-point of the QoE function, α,
another domain-specific parameter, controls the growth rate of the QoE level,
i.e., how steep the change from the minimum to maximum QoE level is, E0

i

represents the QoE level given user ui’s QoS level Wi, and xi =
∑

l∈D W l
i

|D| . There
is E0

i = 0 if user ui is not allocated to any edge servers.
Now, we measure the QoE of a user in a TD-EUA scenario, where the its

tasks may be allocated to multiple edge servers:

Ei =
∑

l∈D W l
i∑

l∈D

∑
tk∈T (ui)

wl
k

E0
i (4)

Next, we formally define the TD-EUA problem:

Definition 4. (TD-EUA) The TD-EUA problem can be represented by a four
tuple TD − EUA =< U,S, T,W >,where

TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization 221

(1) U = {u1, u2, ..., un} is a set of edge users and each user has a request;
(2) S = {s1, s2, ..., sm} is a set of edge servers, each server has a coverage

radius;
(3) T = {t1, t2, ..., tq} is a set of tasks decomposed from a user’s request;
(4) W = {w1, w2, ..., wq} is a set of resource demands from a task in T .

The solution to a TD-EUA problem is a user-task-server assignment, where
the each user’s tasks are fully or partially allocated to their nearby edge servers.
Based on the assignment, a QoE value can be calculated for each user based on
its QoS level. From the app vendor’s perspective, its objective is to maximize
the users’ overall QoE.

4 Approaches

To solve a TD-EUA problem, we first model it as an integer linear programming
(ILP) problem to find its optimal solution. To solve large-scale TD-EUA prob-
lems efficiently, we propose a heuristic approach named TD-EUA-H that finds a
sub-optimal TD-EUA solution.

4.1 Optimal Approach

The optimization objective of TD-EUA is to maximize the users’ overall QoE,
while satisfying the capacity constraint and proximity constraint. In this section,
we present TD-EUA-O, our approach for finding the optimal solution to a TD-
EUA problem. It models the TD-EUA problem as an ILP problem as follows:

objective function: max
n∑

i=1

Ei (5)

s.t.:

xi,j,k = 0 ∀i, j ∈ {i, j|dij > cov(sj)} ,∀k ∈ {1, 2, . . . , |T (ui)} (6)

n∑

i=1

q∑

k=1

wkxi,j,k ≤ cj ∀j ∈ {1, . . . ,m} (7)

m∑

j=1

xi,j,k ≤ 1 ∀i ∈ {1, . . . , n} ,∀k ∈ {1, . . . , q} (8)

where xi,j,k is a binary variable indicating that,

xi,j,k =
{

1, if user ui’s task tk is allocated to server sj

0, otherwise.

The objective (5) maximizes the users’ overall QoE. In (5), QoE level Ei

depends on the ratio of the resources Wi the user ui obtains over the total
resources requested by ui. Constraint (6) enforces the proximity constraint.

222 G. Zou et al.

A user may be located within the overlapping coverage area of multiple edge
servers. Constraint (7) makes sure that the aggregate resource demands of all
tasks allocated to an edge server must not exceed that server’s current comput-
ing capacity. Constraint (8) ensures that each task can be allocated to at most
one edge server.

The above ILP problem can be solved by an ILP problem solver, e.g., CPLEX
or Gurobi. The outcome is the optimal solution to the TD-EUA problem.

4.2 Problem Hardness

Based on the optimization model, we now prove that the TD-EUA problem is
NP-hard.

Theorem 1. Knapsack ≤p TD-EUA. Therefore, TD-EUA problem is NP-hard.

Proof. We prove that the TD-EUA problem is NP-hard by reducing the NP-
hard Knapsack problem to a specialization of the TD-EUA problem.

Definition 5. (Knapsack Problem) Given n items and their corresponding
weights and values, the aim of a Knapsack problem is to select a group of items
so that the total price of the items is the highest within the total weight limit. It
can be formally defined as follows:

objective function:max
n∑

i=1

vixi (9)

s.t.:
n∑

i=1

wixi ≤ W (10)

xi ∈ {0, 1} (11)

where W is the total weight limit and xi indicates whether the i-th item is
selected.

Based on the definition of the Knapsack problem, we now prove that it can
be reduced to a special instance of the TD-EUA problem. For ease of exposition,
we make the following assumptions: 1) For each task tk, its requirements for
different types of computing resources are the same, i.e., w1

k = w2
k = . . . = wd

k;
2) For any edge server sj , its computing capacities in different dimensions are
equal, i.e., c1j = c2j = . . . = cd

j ; 3) The coverage of each edge server is infinite,
i.e., a task can be allocated any of the edge server in the area.

Based on the above assumptions, we can obtain a simplified special case of
the TD-EUA problem. For the simplified special case, constraints (6)(8) can be
combined and projected to (11), because any task can be allocated to any edge
server. Moreover, constraint (7) can be projected to objective function (10), since
the computing capacities of all the edge servers can be aggregated as an overall
resource limit. Clearly, there is a solution to the TD-EUA problem if and only
if there is a solution to the corresponding Knapsack problem. Thus, TD-EUA
problem is NP-hard.

TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization 223

4.3 Heuristic Approach

Due to the NP-hardness of TD-EUA problem, finding its optimal solution is
intractable in large-scale scenarios. This is demonstrated in our experimental
results presented in Sect. 5. Thus, we propose a heuristic approach named TD-
EUA-H for finding a sub-optimal solution to a TD-EUA problem efficiently.
Algorithm 1 presents its pseudo code.

TD-EUA-H goes through three main steps: 1) it employs the skyline algo-
rithm to partition the tasks decomposed from users’ requests into two categories,
including a group of tasks T1 requiring more computing resources than any task
in the other group T2; 2) it sorts the tasks within each group according to their
required computing resources from high to low; 3) when orderly assigning each
task in T1 to an edge server, for each candidate edge server, it calculates the
ratio of the remaining computing resources on that edge server over the number
of unallocated tasks covered. Then, it finds the edge server sj with the highest
ratio (Line 15), then allocates the task to that edge server (Lines 13–17). In the
same way, it orderly allocates each task tk in T2 to an edge server.

The time complexity of TD-EUA-H consists of: 1) using the skyline algorithm
to partition q tasks takes O(q2) time; 2) labeling and sorting the tasks for each
user which depends on the total number of tasks takes O(n ∗ q) time, where n
and q are the number of edge users and tasks, respectively; 3)calculating and

Algorithm 1. TD-EUA-H
Input: edge servers S; edge users U ; tasks T .
Output: task-server allocation f : T → S.
1: T

skyline−→ Good(T), Bad(T);
2: for each ui ∈ U do
3: for each tk ∈ T(ui) do
4: if tk ∈ Good(T) then
5: T1 ← (tk, ui)
6: else
7: T2 ← (tk, ui)
8: end if
9: end for

10: end for
11: sort(T1)key = wk, sort(T2)key = wk

12: for each (tk, ui) in T1 do
13: S(ui) ← {sj ∈ S|ui ∈ cov(sj)};
14: if S(ui) �= φ then

15: j = argmax cj/unallocated
(
|∑ui∈U(sj)

∑
tk∈T (ui)

tk|
)

16: end if
17: f ← f ∪ {tk, sj}
18: end for
19: Perform task-server allocation for T2

224 G. Zou et al.

ranking m candidate edge servers for each task takes O(m log m), and O(n ∗ q ∗
m log m) time for all the tasks. Thus, the overall time complexity of TD-EUA-H
is O(q2) + O(n ∗ q) + O(n ∗ q ∗ m log m). Its complexity indicates that it is an
efficient heuristic algorithm with polynomial time for task-decomposable edge
user allocation. Thus, it can handle large-scale TD-EUA scenarios.

5 Experiments

5.1 Experimental Setup and Dataset

We conduct a series of experiments to evaluate the effectiveness and efficiency of
our approaches. All the experiments are conducted on a machine equipped with
an Intel(R) Xeon(R) Gold 6130 CPU@2 and 192 GB RAM. The ILP model in
Sect. 4.1 is solved with Gurobi.

The experiments are conducted on the public and widely-used EUA dataset1.
It contains the locations of the 125 edge servers (base stations) in the Melbourne
central business district area in Australia. Following the Gaussian distribution
N(u, σ), users are distributed in different ways in this area to simulate six differ-
ent real-world TD-EUA scenarios with different user distributions, as illustrated
in Fig. 2, where each black point represents an edge server and each orange point
represents a user. Accordingly, six datasets are synthesized with data extracted
from the EUA dataset, each corresponding to a specific type of the six user
distribution in Fig. 2.

5.2 Competing Methods and Evaluation Metrics

To evaluate the performance of TD-EUA-O and TD-EUA-H, we compare them
with two other approaches, including a random baseline and a state-of-the-art
approach for solving the EUA problem.

– Random: each task is allocated to a random edge server that has sufficient
computing resources to accommodate the task, as long as the user of the task
is located within the edge server’s coverage area.

– VSVBP [10,11]: it models the EUA problem as a variable sized vector bin
packing (VSVBP) problem and aims at maximizing the number of allocated
users, while minimizing the number of edge servers needs to be used. This
approach treats each user request as a whole, i.e., one user can either be
allocated to only one edge server, or cannot be allocated to any edge server
at all.

Three widely-used performance metrics are employed in the experiments.

– QoE: it is measured by users’ overall QoE, the higher the better.
– Allocation Rate: it is measured by the percentage of users allocated to edge

servers of all, the higher the better.
– CPU Time: it is measured by the computation time consumed to find a solu-

tion, the lower the better.
1 https://sites.google.com/site/heqiang/eua-repository.

https://github.com/swinedge/eua-dataset.

https://sites.google.com/site/heqiang/eua-repository
https://github.com/swinedge/eua-dataset

TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization 225

Fig. 2. EUA experimental datasets with different user distributions.

Table 2. Experimental results on different datasets

Methods
Dataset one Dataset two Dataset three
QoE AR CPU TimeQoE AR CPU TimeQoE AR CPU Time

VSVBP 4,479 0.56 22.512 5,319 0.66 24.312 5,189 0.65 23.145
Random 5,105 0.63 0.014 6,377 0.79 0.016 6,102 0.76 0.015
TD-EUA-H 6,002 0.66 0.034 7,121 0.82 0.046 6,9710.80 0.041
TD-EUA-O 6,357 0.72 2.591 7,416 0.87 3.241 7,261 0.85 2.756

Methods
Dataset four Dataset five Dataset six
QoE AR CPU TimeQoE AR CPU TimeQoE AR CPU Time

VSVBP 5,606 0.70 26.235 5,725 0.71 29.324 5,609 0.56 28.165
Random 6,964 0.87 0.018 7,385 0.92 0.018 6,952 0.86 0.018
TD-EUA-H 7,500 0.90 0.045 7,665 0.94 0.048 7,507 0.90 0.047
TD-EUA-O 7,622 0.93 3.212 7,737 0.95 2.234 7,658 0.93 2.946

226 G. Zou et al.

5.3 Experimental Results and Analysis

In the experiments, the parameters for existing approaches are tuned to achieve
optimal performance. The coverage radius of edge servers obeys a Gaussian
distribution with u = 150 and the number of tasks per user follows a Gaussian
distribution with u = 3. Further, we set the number of users to 400, the number
of edge servers to 125 and the edge server’s available computing capacities follow
the Gaussian distribution N(35, 1).

Table 2 summarizes the experimental results, where the best and second-best
values in each column are marked in dark and light grey, respectively. The results
demonstrate that TD-EUA-O achieves the highest overall QoE and allocates
the most users. Specifically, TD-EUA-O outperforms VSVBP, Random and TD-
EUA-H by 41.92%, 24.52% and 5.91%, respectively, in QoE. In allocation rate,
TD-EUA-O is superior to VSVBP, Random and TD-EUA-H with an advantage
of 28.57%, 14.28% and 9.09%, respectively. The main reason of the advantage of
TD-EUA-O lies in its consideration of task decomposition and pursuit of global
optimization. The computation time of TD-EUA-O is much less than that of
VSVBP. Compared to Random and TD-EUA-H, TD-EUA-O takes more time,
which is expected because of the NP -hardness of the TD-EUA problem as proved
in Sect. 4.2.

Our heuristic approach TD-EUA-H also achieves high performance, with an
advantage of 34.00% and 17.57% over VSVBP and Random in QoE, and 17.85%
and 4.76% in allocation rate. Surprisingly, we can see that the performance of the
Random approach is higher than VSVBP, in terms of both QoE and allocation
rate. This is because VSVBP either allocates a user request to an edge server as
a whole or does not allocate at all, whereas Random can partition a user request
into a set of tasks to be allocated. Overall, the results indicate that decomposing
users’ requests into tasks can significantly improve the allocation rate and users’
overall QoE.

(a) QoE (b) Allocation Rate (c) CPU Time

Fig. 3. Performance comparisons on the variations of edge users.

TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization 227

(a) QoE (b) Allocation Rate (c) CPU Time

Fig. 4. Performance comparisons on the variations of edge servers.

(a) QoE (b) Allocation Rate (c) CPU Time

Fig. 5. Performance comparisons on the variations of server’s available capacity.

5.4 Performance Impacts of Parameters

To evaluate the performance of our approaches in various TD-EUA scenarios,
we vary the following three parameters in the experiments. Each experiment is
repeated 100 times to obtain 100 different user distributions so that the impacts
of extreme cases, such as overly sparse or dense distributions, are neutralized.

– Number of edge users (n): We random distribute 100, 200, . . . , 1,000 edge
users in the Melbourne CBD.

– Number of edge servers (m): A certain percentage of the all of the edge
servers (10%, 20%, . . . , 100%) in the Melbourne CBD are included in the
experiments.

– Server’s available resources (c): Edge servers’ overall capacity is gener-
ated following a Gaussian distribution with σ = 1. The average capacity of
each edge server ranges from u = 15, 20, . . . , to 60 in each dimension, e.g.,
CPU, RAM, storage and bandwidth.

Three sets of experiments #1, #2 and #3 are conducted. In each experiment
set, we vary one parameter and fix the other two. The results are shown in Figs. 3,
4, and 5.

Figure 3 compares the performance in experiment set #1, where the number
of edge users (n) varies from 100 to 1,000 in steps of 100. Figure 3(a) shows

228 G. Zou et al.

that as n increases, users’ overall QoE achieved by different approaches increase.
TD-EUA-O achieves the most improvement from 1,989 to 12,559 by 10,570,
outperforming TD-EUA-H’s 9,244, Random’s 6,737, and VSVBP’s 6,905. At
the beginning, the overall QoE of the four approaches are not that different,
because edge servers can provide sufficient computing resources to serve a small
number of user requests. As n increases, edge servers’ overall computing capacity
becomes inadequate, making it hard to achieve high QoE and allocation rate.

The impact of n on allocation rate is shown in Fig. 3(b). Obviously, TD-
EUA-O outperforms other approaches again. More specifically, compared with
Random and TD-EUA-H, the allocation rate of TD-EUA-O declines more slowly.
VSVBP achieves the lowest allocation rate, because it also needs to minimize the
number of edge servers hired. Furthermore, as n gradually increases, it is harder
to allocate all the users, lowering the allocation rates, from 99.86 % to 52.33 %
by 47.33% for TD-EUA-O, from 99.88% to 44.27% by 55.61% for TD-EUA-H,
from 99.40% to 43.48% by 55.92% for Random and from 73.01% to 41.96% by
31.04% for VSVBP.

As shown in Fig. 3(c), the average computation time of TD-EUA-O fluctu-
ates slightly and it takes significantly less time consumption than VSVBP. As
the problem scales up in n, VSVBP’s computation time increases quickly. How-
ever, when n exceeds 700, the computation time of VSVBP starts to decrease
quickly before it converges. The reason is that the complexity of the TD-EUA
problem increases as n increases, producing more possible solutions for VSVBP
to inspect. Considering the multi-objective optimization of VSVBP, its solution
is not unique, in which it needs to compromise among multiple optimization
objectives. Nevertheless, after the turning point, the edge servers cannot accom-
modate the excessive user requests. Most users are directly allocated to the cloud
without further decisions. The computation time of TD-EUA-H is similar to that
of Random, slightly less than TD-EUA-O. Thus, TD-EUA-H can accommodate
TD-EUA scenarios with large numbers of users.

Figure 4 shows the performance in experiment set #2, where the percentage
of the number of edge servers (m) varies from 0.1 to 1.0. As demonstrated, the
overall QoE follows a similar trend as in experiment set #1, where TD-EUA-O
and TD-EUA-H achieve much higher QoE than Random and VSVBP. As m
increases from 10% to 40%, Random achieves performance similar to VSVBP in
the resource-scarce situations. Figure 4(b) shows that as m increases, TD-EUA-O
and TD-EUA-H continue to achieve high allocation rates. It is worth noting that
when m reaches a specific level, the allocation rate achieved by Random is close
to that of the TD-EUA-H because the overall computing resources is sufficient
to accommodate all the user requests. Figure 4(c) presents the rising trend of
the computation time of TD-EUA-O as m keeps increasing. VSVBP takes much
more time to find a solution than the other approaches. Its computation time
fluctuates. The reason is that VSVBP needs to frequently reselect edge servers to
achieve the optimization goal. As for TD-EUA-H and Random, the computation
time is always at a low level, similar experiment set #1.

TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization 229

Figure 5 shows the performance comparison in experiment set #3. As the
server’s available capacity (c) varies from 15 to 60, the overall QoE and allocation
rates follow a similar trend as in experiment set #2. In Fig. 5(a), TD-EUA-O and
TD-EUA-H outperform the Random and VSVBP in terms of the overall QoE.
Especially, With the increase in c, the overall QoE achieved by VSVBP grows
slowly, from 3,799 to 6,265 by 2,466, compared with the growth of TD-EUA-O’s
3,259 from 5,765 to 9,015, Random’s 3,822 from 3,714 to 7,536, and TD-EUA-
H’s 3,907 from 4,844 to 8,751. Figure 5(b) shows the same trend as Fig. 4(b) on
allocation rate as experiment set #2. In Fig. 5(c), compared to other approaches,
VSVBP takes the most time to find a solution.

The experimental results show that by considering the task decomposition of
service’s request, TD-EUA-O and TD-EUA-H outperform the random baseline
and the state-of-the-art approach in both QoE and allocation rate with relatively
low computation time. In general, TD-EUA-O is the best approach for finding
solutions in small-scale instances. In large-scale scenarios, TD-EUA-H is the best
option for its second-highest effectiveness of all and its high efficiency.

6 Related Work

With the advances in mobile devices and the Internet of Things, cloud centers
may easily be overwhelmed by excessive workloads, causing network latency and
congestion. Cisco coined the fog computing, or edge computing, paradigm in 2012
to overcome the major drawback of access latency in cloud computing [1]. Edge
computing is an open paradigm that integrates network, computing, storage, and
application core capabilities close to end-users to provide low-latency services.
Applications deployed and running on the edge can provide fast responses to
users’ request, meeting their needs for low latency. Service providers can deploy
resources on edge servers that are closer to end-users in the edge computing
environment. However, an edge server only has a limited computing capacity,
making it difficult or sometimes impossible to serve all of the users within its
coverage area. Offering many new opportunities, edge computing has also raised
a variety of new problems, e.g., edge user allocation (EUA) problem [5,8,10–
12,14], edge service placement [2,13,19], edge data management [16–18], edge
server placement [3,4], etc.

Recently, the EUA problem as one of the new challenges in the edge com-
puting environment has attracted a lot of attention. Lai et al. [10] made the
first attempt to tackle the EUA problem. They modeled the EUA problem as a
variable sized vector bin packing problem, and developed an optimal approach
for solving the EUA problem with the aim to maximize the number of users
allocated and minimize the number of edge servers needed. Then, they further
applied user satisfaction as the criterion to measure whether the user allocation
is cost-effective, considering that users’ resource demands may be differentiated
[11]. He et al. [8] proposed a game-theoretic approach for solving the EUA game
in a distributed manner. They seek to find the Nash equilibrium of the game as
the EUA solution. Peng et al. [14] tackled the EUA problem in an online manner
with mobility consideration.

230 G. Zou et al.

However, existing studies simply assume that a user’s demands of computing
resources can either be fully fulfilled by a single edge server or cannot be fulfilled
at all. In many real-world scenarios, an edge user’s request can actually be par-
titioned into multiple tasks that can be performed by different edge servers. In
this paper, we studied the EUA problem with task decomposition and proposed
two approaches, TD-EUA-O for finding optimal solutions and TD-EUA-H for
finding sub-optimal solutions.

7 Conclusion and Future Work

In this paper, we studied the TD-EUA problem. Instead of serving an user’s
request as a whole, we consider task decomposition and partition a user’s request
into individual tasks, which can be performed by different edge servers. To solve
the TD-EUA problem, we modeled it as an optimization problem with multiple
constraints, and proposed two novel approaches to find TD-EUA solutions that
maximize users’ overall QoE. The results of experiments conducted on a widely-
used real-world dataset demonstrated that our approaches significantly outper-
form the baseline approach and the state-of-the-art approach. In the future, we
will consider the mobility of users and tasks.

Acknowledgments. This work was partially supported by Shanghai Natural Sci-
ence Foundation (No. 18ZR1414400), National Key Research and Development Pro-
gram of China (No. 2017YFC0907505), National Natural Science Foundation of China
(No. 61772128) and Australian Research Council Discovery Projects (DP18010021 and
DP200102491).

References

1. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in
the internet of things. In: International Conference on Mobile Cloud Computing
(MCC), pp. 13–16 (2012)

2. Chen, Y., Deng, S., Ma, H., Yin, J.: Deploying data-intensive applications with
multiple services components on edge. Mob. Netw. Appl. 25(2), 426–441 (2020).
https://doi.org/10.1007/s11036-019-01245-3

3. Cui, G., He, Q., Chen, F., Jin, H., Yang, Y.: Trading off between user coverage
and network robustness for edge server placement. IEEE Trans. Cloud Comput.
(2020). https://doi.org/10.1109/TCC.2020.3008440

4. Cui, G., He, Q., Xia, X., Chen, F., Jin, H., Yang, Y.: Robustness-oriented k edge
server placement. In: 20th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing. IEEE (2020). https://doi.org/10.1109/CCGrid49817.2020.
00-8

5. Cui, G., et al.: Interference-aware SaaS user allocation game for edge computing.
IEEE Trans. Cloud Comput. (2020). https://doi.org/10.1109/TCC.2020.3008440

6. Deng, S., Zhao, H., Fang, W., Yin, J., Dustdar, S., Zomaya, A.Y.: Edge intel-
ligence: the confluence of edge computing and artificial intelligence. CoRR
arxiv.org/abs/1909.00560 (2020)

https://doi.org/10.1007/s11036-019-01245-3
https://doi.org/10.1109/TCC.2020.3008440
https://doi.org/10.1109/CCGrid49817.2020.00-8
https://doi.org/10.1109/CCGrid49817.2020.00-8
https://doi.org/10.1109/TCC.2020.3008440
http://arxiv.org/abs/org/abs/1909.00560

TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization 231

7. Fiedler, M., Hossfeld, T., Tran-Gia, P.: A generic quantitative relationship between
quality of experience and quality of service. IEEE Network 24(2), 36–41 (2010)

8. He, Q., et al.: A game-theoretical approach for user allocation in edge computing
environment. IEEE Trans. Parallel Distrib. Syst. 31(3), 515–529 (2020)

9. Hemmati, M., McCormick, B., Shirmohammadi, S.: QoE-aware bandwidth alloca-
tion for video traffic using sigmoidal programming. IEEE MultiMedia 24(4), 80–90
(2017)

10. Lai, P., et al.: Optimal edge user allocation in edge computing with variable sized
vector bin packing. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q. (eds.) ICSOC 2018.
LNCS, vol. 11236, pp. 230–245. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-03596-9 15

11. Lai, P., et al.: Edge user allocation with dynamic quality of service. In: Yangui, S.,
Bouassida Rodriguez, I., Drira, K., Tari, Z. (eds.) ICSOC 2019. LNCS, vol. 11895,
pp. 86–101. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33702-5 8

12. Lai, P., et al.: Cost-effective app user allocation in an edge computing environment.
IEEE Trans. Cloud Comput. (2020). https://doi.org/10.1109/TCC.2020.3001570

13. Li, B., et al.: READ: robustness-oriented edge application deployment in edge
computing environment. IEEE Trans. Serv. Comput. (2020). https://doi.org/10.
1109/TSC.2020.3015316

14. Peng, Q., et al.: Mobility-aware and migration-enabled online edge user allocation
in mobile edge computing. In: IEEE International Conference on Web Services
(ICWS), pp. 91–98. IEEE (2019)

15. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Internet Things J. 3(5), 637–646 (2016)

16. Xia, X., et al.: Graph-based optimal data caching in edge computing. In: Yangui,
S., Bouassida Rodriguez, I., Drira, K., Tari, Z. (eds.) ICSOC 2019. LNCS, vol.
11895, pp. 477–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
33702-5 37

17. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., Jin, H.: Online collabora-
tive data caching in edge computing. IEEE Trans. Parallel Distrib. Syst. (2020).
https://doi.org/10.1109/TPDS.2020.3016344

18. Xia, X., Chen, F., He, Q., Grundy, J., Abdelrazek, M., Jin, H.: Cost-effective app
data distribution in edge computing. IEEE Trans. Parallel Distrib. Syst. 32(1),
31–44 (2021)

19. Xiang, Z., Deng, S., Taheri, J., Zomaya, A.: Dynamical service deployment and
replacement in resource-constrained edges. Mob. Netw. Appl. 25(2), 674–689
(2020). https://doi.org/10.1007/s11036-019-01449-7

20. Zhao, H., Deng, S., Zhang, C., Du, W., He, Q., Yin, J.: A mobility-aware cross-edge
computation offloading framework for partitionable applications. In: 2019 IEEE
International Conference on Web Services (ICWS), pp. 193–200. IEEE (2019)

https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1007/978-3-030-03596-9_15
https://doi.org/10.1007/978-3-030-33702-5_8
https://doi.org/10.1109/TCC.2020.3001570
https://doi.org/10.1109/TSC.2020.3015316
https://doi.org/10.1109/TSC.2020.3015316
https://doi.org/10.1007/978-3-030-33702-5_37
https://doi.org/10.1007/978-3-030-33702-5_37
https://doi.org/10.1109/TPDS.2020.3016344
https://doi.org/10.1007/s11036-019-01449-7

	TD-EUA: Task-Decomposable Edge User Allocation with QoE Optimization
	1 Introduction
	2 Motivating Example
	3 Problem Formulation
	4 Approaches
	4.1 Optimal Approach
	4.2 Problem Hardness
	4.3 Heuristic Approach

	5 Experiments
	5.1 Experimental Setup and Dataset
	5.2 Competing Methods and Evaluation Metrics
	5.3 Experimental Results and Analysis
	5.4 Performance Impacts of Parameters

	6 Related Work
	7 Conclusion and Future Work
	References

