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Abstract—Nowadays, the world is witnessing a rapid devel-
opment of edge computing. As an important issue in the edge
computing paradigm, the edge user allocation (EUA) problem
has attracted considerable attention. EUA aims at allocating the
end-users in a specific area to the edge servers in that area, and
ensure end-users’ low-latency access to app vendor’s services
deployed on those edge servers. However, existing approaches
simply assume that each edge server has a specific coverage
and neglect the complexity of wireless signal transmission. To
ensure end-users’ low latency, an EUA approach must take into
account the distance between end-users and their nearby edge
servers, as it significantly impacts their Quality of Experience
(QoE). Accordingly, EUA must maximize the overall QoE of
the app vendor’s users. To tackle this new distance-aware EUA
problem, we propose two novel approaches, namely DEUA-O
and DEUA-H. DEUA-O aims to find the optimal solution while
DEUA-H aims to find the sub-optimal solution in large-scale
scenarios efficiently. Four series of experiments are conducted
on a real-world dataset to evaluate DEUA-O and DEUA-H. The
results demonstrate the substantial gains of our approaches
over the state-of-the-art.

Keywords-Edge computing; Edge User Allocation; Signal
Strength; Quality of Service; Quality of Experience; Edge
Service

I. INTRODUCTION

In recent years, the Internet of Things (IoT), such as

smartphones, wearables and tablets, has been proliferated

worldwide, and then it was widely applied to many fields

such as healthcare, home, environment and transports [1].

The rapid development of IoT devices gives the IT industry

a tremendous boost. However, this also has put forward an

enormous challenge for ensuring low response time for end-

users and long battery life for their IoT devices [2]. For

example, a smart vehicle can generate two petabytes of data

per second, and it requires real-time processing to make a

timely decision. Sending all the data to the remote cloud

server to be processed often results in high and unpredictable

latency, leading to unexpected accidents. App vendors are

facing the challenge of maintaining low-latency connections

for their users.

To attack this challenge, edge computing, a new dis-

tributed computing paradigm, has emerged to allow com-

*Guobing Zou (gbzou@shu.edu.cn) and Qiang He (qhe@swin.edu.au)
are the corresponding authors of this work.

puting resources such as CPU, memory and storage to be

distributed to edge servers at the edge of the cloud [3].

Each edge server is powered by one or more physical

servers and deployed at base stations that are geographically

close to end-users. In this way, app users can be allocated

to edge servers to guarantee the low-latency and reliable

connection. Powered by 5G, edge computing thus plays an

extraordinarily significant role in the IT industry where low

latency and energy optimization are extremely desired in

real-world service-oriented application scenarios.

Offering a variety of new opportunities, edge computing

also raises many new problems. The edge user allocation

(EUA) problem as one of those has attracted a lot of

attention very recently [4]–[6]. With the consideration of

uneven user distribution in an area and the constrained

computing resources on edge servers, the general idea of

EUA is to allocate users to edge servers to achieve a

specific optimization goal, e.g., to fulfill the users’ needs of

computing resources measured by their Quality of Service

(QoS), to minimize the number of edge servers needed [4]

and to maximize the overall user satisfaction measured by

their Quality of Experience (QoE) [5]. However, existing

approaches simply ignore the complexity of wireless signal

transmission and assume that every edge server has a specific

coverage radius [4]–[6]. This is unrealistic in the real world

for twofold reasons: 1) The signal strength, or data rate, may

not immediately drop to zero when edge users are just out

of the coverage. Instead, it declines as the distance between

the edge servers and users increases [7]; 2) The user’s QoE

attained by the corresponding server largely depends on the

data rate, and thus it would be also attenuated during the

wireless transmission. Therefore, it is critical to consider

the users’ distances from edge servers when allocating them

to the nearby edge servers.

We refer to this problem as the distance-aware edge
user allocation (distance-aware EUA) problem. To solve this

problem, we propose two novel approaches that maximize

users’ overall QoE, taking into account their distances from

nearby edge servers. To the best of our knowledge, this is

the first attempt to study the distance-aware EUA problem

from the app vendor’s perspective. The main contributions

of this paper are as follows:
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Figure 1. An example of distance-aware EUA problem.

- We formally define and model the distance-aware EUA

problem, and prove its NP-hardness;

- We propose an optimal approach, named DEUA-O,

based on Integer Linear Programming (ILP), and pro-

pose a heuristic approach, named DEUA-H, for finding

sub-optimal solutions in large-scale scenarios.

- Extensive experiments have been conducted on a real-

world dataset to demonstrate the effectiveness and

efficiency of the two proposed approaches against the

state-of-the-art.

The remainder of this paper is organized as follows.

Section II motivates this research using an example. Section

III introduces the basic notations, defines the problem, and

then presents the proposed approaches as well as proves the

NP-hardness of the distance-aware EUA problem. Section

IV experimentally evaluates the proposed approaches on

a real-world dataset. Section V reviews the related work.

Section VI concludes the paper and points out future works.

II. MOTIVATING EXAMPLE

Figure 1 presents an example of distance-aware EUA

scenario with four users {u1, u2, u3, u4} and two edge

servers {s1, s2} hired by an app vendor to accommodate

those users’ requests. In addition, a remote server is available

in the cloud to accommodate the requests of the users who

cannot be allocated to any edge servers, e.g., user u4.

In the existing work [4]–[6], it is assumed that each edge

server has a specific coverage radius and the users covered

by the same edge server will have the same data rate.

However, this is unrealistic. In the real world, when a user

communicates with an edge server, the wireless transmission

between them strictly follows a slow attenuation pattern [8].

In general, the wireless signal strength relies on the distance

between the user and the edge server (referred to as distance
for short hereafter), the closer the stronger. Take Figure

1 for example. Users u1, u2 and u3 are covered by edge

server s1. Since u1 is close to s1, u1 will receive a stronger

wireless signal from s1 than u2 and u3, and consequently

a higher data rate. Being far away from s1, u3 might not

Table I
NOTATIONS

Notation Description

T = {CPU, RAM, Storage,
Bandwidth}

Set of resource types

n Total number of users

m Total number of edge servers

q Total number of of QoS / QoE levels

ui i-th user in U

sj j-th edge server in S

di,j Geographical distance between user ui

and edge server sj
γ(di,j) Attenuation coefficient caused by dis-

tance di,j
ckj Capacity of k-th resource type of edge

server sj
U = {u1, u2, ..., un} Set of users

S = {s1, s2, ..., sm} Set of edge servers

Cj = {c1j , c2j , ..., chj } Capacity of edge server sj

W = {w1, w2, ..., wq} Set of QoS level l

E = {e1, e2, ..., eq} Set of QoE with QoS level l

be able to receive a satisfactory data rate, which lowers

u3’s QoE. However, this is not considered by the existing

approaches [4]–[6]. Aiming to minimize the number of edge

servers needed, existing approaches [4] will allocate u1, u2

and u3 to s1. As a matter of fact, u3 might have to be

allocated to s2 to ensure a satisfactory data rate for u3.

Thus, when allocating users to edge servers, the distance

between the users and the edge servers must be considered.

Otherwise, the app vendor’s objective cannot be achieved,

i.e., to maximize its users’ overall QoE [5].

In the real world, the scale of this distance-aware EUA

problem can be much larger than the one presented in Figure

1. The EUA problem was proven to be NP-hard [4]. The

distance awareness further increases the complexity of the

distance-aware EUA problem. Finding an optimal solution

in a large-scale distance-aware EUA problem is not trivial.

III. APPROACH

A. Problem Definition

With the consideration of distance, we define the distance-

aware EUA problem as follows:

Definition 1. Given a set of edge servers denoted as S and
app users denoted as U , The distance-aware EUA problem
aims to find an allocation f : U → S, which maximizes
the overall QoE of users while fulfils all the users’ resource
requirements, including that data rate that are impacted by
wireless signal attenuation.

Similar to many studies of edge computing [4], [5], [9],

we investigate the distance-aware EUA problem in quasi-

static scenarios where the user distributions remain un-

changed during the allocation, e.g., their resource needs and
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locations. The notations used in the paper are summarized

in Table I.

To solve the distance-aware problem, we propose two

approaches, namely DEUA-O and DEUA-H. DEUA-O is

an optimal approach for finding optimal solutions to small-

scale distance-aware EUA problem. Then, we prove the

NP-hardness of the distance-aware EUA problem based

on the optimization model. To solve the distance-aware

EUA problem efficiently in large-scale scenarios, DEUA-H

employs a heuristic to find sub-optimal solutions.

B. Optimal Approach

Given a set of users and a set of edge servers in a

particular area, the app vendor’s objective is to maximize

these users’ overall QoE [5]. In this research, we measure a

user’s QoE in the same way as [5], which highly depends on

the Quality of the Service (QoS) delivered to the user. The

correlation between QoS and QoE is application-specific.

For example, a YouTuber user’s QoE mainly relies on video

resolution and frames per second while a Uber user is more

sensitive to service latency. In the general EUA scenario,

a user’s QoE relies on the computing resources it receives

from the edge server, e.g., CPU, RAM, storage and data

rate [5]. In this research, the distance impacts the data rate,

but not the CPU, RAM or storage. Thus, a user’s QoE is

measured by its data rate. As reported in [10], in general, as

the QoS increases, a user’s QoE does not obey a linear open-

ended increase. Instead, it starts to increase slowly at first,

then speeds up, and finally converges. Take YouTube for

example. A mobile YouTube user’s QoE increases slightly

when the video resolution increases from 240p to 360p. As

the video resolution continues to increase to 720p or 1080p,

the user’s QoE increases significantly. However, as video

resolution further increases to 2k, the user’s QoE increases

only slightly or does not even increase as it cannot tell the

difference between a 1080p video and a 2k video on a mobile

device. The same applies to a user’s QoE measured by data

rate. In general, the correlation between QoE and QoS can

be generalized with a sigmoid function [11], also known as

logistic function, which is also employed in [5]. Formally,

it is represented as follows:

el =
L

1 + e−α(wl−β)
(1)

where el and wl denote QoE and QoS, L is the maximum

value of QoE, α is the growth rate of the curve, and β is the

value at the middle point of the curve. In this way, a user’s

QoE can be measured quantitatively and integrated into a

domain-specific distance-aware EUA problem.

To solve the distance-aware EUA problem, the attenuation

of data rate in wireless transmission must be taken into

account. The Free Space Path Loss (FSPL) [8] model is

part of the IEEE 802.11 standard, which is the world’s

most widely used wireless computer networking standards
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Figure 2. Quantitative correlation between distance and signal strength.

[7]. In this model, the received power is impacted by many

factors, such as transmitted power, antenna gain and distance

between the transmitter and the receiver. It ideally suggests

that the electromagnetic wave spreads to all around based

on the transmitter as the center. Thus, the basic idea of this

model is that the received power decreases as the square of

the distance. The signal power attenuation in a free space

can be calculated as:

γ(d) =
Pr

Pt
= GtGr(

λ

4πd
)2 (2)

where Pr and Pt are the received power and transmitted

power, respectively, Gr and Gt are the receiver antenna

gain and transmitter antenna gain, respectively, λ is the

wavelength and d is the distance between transmitter and

receiver. Gt and Gr are commonly set to 1.
In the edge computing environment, edge servers are

attached to base stations. The transmitted power and antenna

gain of the base stations are ensured and controlled by 5G

network operators like T-Mobile and China Mobile. Thus, in

this research, the distance is the key to finding the solution

to a distance-aware EUA problem. As illustrated in Figure

2, a user’s signal strength is attenuated by the increase in the

distance between the user and the edge server. According to

Equation 2, the attenuation coefficient can be simplified as:

γ(di,j) = (
ξ

di,j
)2 (3)

where γ(di,j) is the attenuation coefficient for the commu-

nication between user ui and edge server sj . Given the

attenuation coefficient, a user’s data rate and QoE can be

calculated.
Based on the model presented above, the distance-aware

EUA problem can be modeled as an Integer Linear Program-

ming (ILP) problem, formulated as follows:

max :

n∑

i=1

m∑

j=1

q∑

l=1

γ(di,j) · el · xi,j,l (4)

s.t. :
n∑

i=1

q∑

l=1

wl · xi,j,l ≤ Cj (5)
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m∑

j=1

q∑

l=1

xi,j,l ≤ 1 (6)

xi,j,l ∈ {0, 1} (7)

where xi,j,l is a binary variable indicating whether user ui

is allocated to edge server sj with QoS level wl.

The objective function (4) maximizes the total QoE of all

the users. Note that the QoE level el can be pre-calculated

by the predefined QoS level wl. Constraint (5) indicates that

the total computing resources required by the users allocated

to an edge server must not exceed the available coputing

resources on that edge server. Constraint (6) ensures that

each user can only be allocated to one edge server at most.

The ILP model above can be solved with ILP solvers,

such as Gurobi1 or IBM CPLEX Optimizer2. The solution

is the optimal allocation f : U → S defined in Section III-A.

C. Problem Hardness

Based on the optimization model built in Section III-B,

we can prove the hardness of the distance-aware EUA

problem. To do so, we first introduce a classic NP-hard prob-

lem, named Capacitated Facility Location problem (CFLP).

Given the facility capacity set C, the facility set F , the

demand set R and the cost metrix Cost. The CFLP problem

can be formulated as follows:

min :
∑

i∈F

∑

j∈R
costi,jyi,j +

∑

i∈F
fixi (8)

s.t. : ∑

i∈F
yi,j = 1 (9)

∑

j∈R
rjyi,j ≤ cixi (10)

xi, yi,j ∈ {0, 1} (11)

where the variable yi,j represents whether the demand rj
is fulfilled by facility i and the variable xi means whether

the facility i is open, while costi,j is the cost to allocate

the demand rj to the facility i and ui is the capacity of the

facility i.
Now, we demonstrate that the distance-aware EUA prob-

lem is NP-hard by proving Theorem 1.

Theorem 1. The distance-aware EUA problem is NP-hard.

Proof: Now we prove that CFLP can be reduced

to an instance of the distance-aware EUA problem. The

reduction is done in the following steps. Firstly, we set

the number of QoS levels to 1. Denote the total QoS

obtained by the ILP model as QoStotal. Then we convert

the objective (4) of the distance-aware EUA problem to

minQ − QoStotal, where Q → ∞. As there is no any

1http://www.gurobi.com/
2https://www.ibm.com/analytics/cplex-optimizer

open cost for edge servers in the distance-aware EUA

problem, the second part
∑

i∈F fixi in (8) can be ignored.

Given an instance CFLP (Cost,R,C, F ), we can construct

an instance distance − awareEUA(D,U, T, S) with the

reduction above in polynomial time while |R| = |U | and

|F | = |S|, where D is the distance matrix. In this case, any

solution s satisfying objective (8) and constraint (11) also

satisfies objective (4) and (7). Since the users who are not

allocated to edge servers would be allocated to the cloud

server, the solution s fulfills constraint (9) and constraint

(6). In the distance-aware EUA problem, there are multiple

kinds of resources required by app users. We can treat those

resources as a whole, and it violates the constraint if any

resource is over the capacity of that edge server. This way,

we can project the constraint (5) to the constraint (10). In

conclusion, any solution S satisfies the reduced distance-

aware EUA problem if S satisfies the CFLP problem. Thus,

the distance-aware EUA problem is NP-hard.

D. Heuristic Approach

The density of edge servers is expected to reach up to

50 BSs per km2 in future 5G deployments [12]. Finding

the optimal solution to the NP-hard distance-aware EUA

problem is intractable in large-scale scenarios. Thus, we

propose a heuristic approach named DEUA-H for finding

sub-optimal solutions to large-scale distance-aware EUA

problems. Algorithm 1 presents the pseudo code.

Algorithm 1 DEUA-H

Input: edge servers S; users U .

Output: allocation f : U → S.

1: for i = 1 to n do
2: S(ui)← {sj : cj ≥ w1}
3: if S(ui) �= ∅ then
4: j ← argmaxj{ cj

di,j
: sj ∈ S(ui)}

5: l← argmaxl{wl : wl ∈W,wl ≤ Cj}
6: allocate user ui to server sj with QoS level l
7: end if
8: end for

DEUA-H goes through three main steps: 1) obtain the set

of edge servers that have adequate computing resources to

accommodate the user; 2) calculate the ratio of the remaining

computing resources to the respective distance for each

edge server, and find the edge server which has the highest

ratio; 3) select the maximum QoS level the edge server can

provide, and allocate the user to that edge server. Take Figure

1 as an example. DEUA-H first selects a users from u1,

u2, u3 and u4, calculates the ratio of each edge server’s

computing capacity to its distance from the selected user. It

then allocates the selected user to the edge server that has

the highest ratio with the highest QoS / QoE level this edge

server can provide. This process is iterated for all the four

users until they are all allocated or there are no computing
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Figure 3. An example of user and edge server distributions with different numbers of hot spots.

resources available on any of the edge servers. The final

allocation is the solution to the distance-aware EUA problem

presented in Figure 1. Please note that the ratio between each

edge server’s capacity to the distance from each user can be

maintained in a matrix. This matrix can be partially updated

in each iteration to reduce the overall computation time.

The time complexity of all these steps is O(m). Hence,

the overall time complexity of Algorithm 1 is O(nm),
linear to the number of users times the number of edge

servers. This indicates the high efficiency of DEUA-H. Its

effectiveness will be experimentally evaluated in Section IV.

IV. EXPERIMENTS

In this section, we evaluate DEUA-O and DEUA-H

through a series of experiments conducted on a widely-

used real-world dataset. All the experiments are conducted

on a platform equipped with Intel(R) Xeon(R) Gold 6130

CPU@2.10GHz.

A. Dataset and Experiment Settings

To comprehensively evaluate the effectiveness and effi-

ciency of our approaches, we conduct a series of experiments

on the EUA dataset3. It contains the locations of base

stations in Australia and has been used widely used in

research on edge computing [4]–[6], [9], [13]. We select the

Melbourne Central Business District (CBD), with an area

of 6.2km2 to conduct the experiments. There are a total

of 125 base stations in this area, which corresponds to 125

edge servers. In addition, users are randomly and unevenly

distributed in six ways in this area to simulate different EUA

scenarios, as illustrated in Figure 3.

3https://github.com/swinedge/eua-dataset

In the experiments, the parameters for existing approaches

are tuned to be optimal. The coverage radius of edge server

assumed by the existing approaches is set to 150m. The

users within edge servers’ coverage areas can achieve a

relatively high data rate. For the QoE model presented in

SectionIII-B, we set L = 5, α = 1.5, β = 2 and the possible

QoS levels are set to be W = {< 1, 2, 1, 2 >,< 2, 3, 3, 4 >
,< 5, 7, 6, 6 >}. For DEUA-O and DEUA-H, we set

ξ = 100m, and γ(di,j) = 1 if di,j < 100m. Under the above

settings, we conduct four sets of experiments to compare

DEUA-O and DEUA-H with one baseline approach and

three state-of-the-art approaches. In each set of experiments,

we vary one of the four setting parameters to evaluate its

impact on the performance of the approaches. Each time

a setting parameter varies, the experiment is repeated for

100 times and the average results over the 100 runs of

experiment are reported. The setting parameters are changed

in the following ways:

1) User Distribution: We randomly distribute the users

in the Melbourne CBD with distance from following the

Gaussian distribution N (μ, 502) with one to six hot spots,

as illustrated in Figure 3.

2) Number of Users: The number of users varies from

100, 200 to 1,000 in steps of 100.

3) Number of Edge Servers: A certain percentage of the

125 base stations are randomly selected to be available for

allocating users, i.e., 10%, 20%, ..., 100%.

4) Server Capacity: The available computing resources

on edge servers also follow a Gaussian distribution, with

σ = 1. The mean for the four types of computing resources,

i.e., CPU, RAM, storage and bandwidth, varies from 15, 20,

to 60 in steps of 5. Please note that in the experiments the
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computing resources are unitized, similar to [4], [5].

B. Competing Approaches and Evaluation Metrics

In the experiments, to demonstrate the performance of

EDUA-O and EDUA-H, we compare them with one baseline

approach and three state-of-the-art approaches:

- Random: This approach randomly allocates users to

available edge servers.

- VSVBP [4]: This approach solves the EUA problem as

a variable sized vector bin packing problem, with the

aims to maximize the number of allocated users and to

minimize the number of edge servers needed.

- DQoS [5]: This approach solves the EUA problem with

the consideration of the correlation between users’ QoE

and required QoS. It aims to maximize the total QoE

of all the users, the same as DEUA-O and DEUA-H.

Additionally, we employ three performance metrics to

evaluate the approaches, two for effectiveness and one for

efficiency:

- QoE: measured by users’ total QoE produced by the

approach, the higher the better.

- Allocation Rate: measured by the percentage of users

allocated to edge servers, the higher the better.

- CPU Time: measured by the computation time taken to

find the solution, the lower the better.

C. Results and Discussion

Table II summarizes the results of experiment set #1

where we use dark and light grey to mark the best and

second-best value in each column respectively. DEUA-O

achieves the highest overall QoE and the second-highest

allocation rate among all the five approaches. Its advantages

in QoE are significant, 24.60% over DQoS, 42.58% over

DEUA-H, 139.02% over VSVBP and 146.80% over Random

in user distribution type 1. However, such high performance

comes at a price - DEUA-O takes the most time to find

a solution. Instead, DEUA-H achieves the third highest

overall QoE and the third highest allocation rate. Compared

to DEUA-O, its advantage is its high efficiency as the

second fastest approach, outperformed by Random only.

Interestingly, Random achieves the highest allocation rate

and the lowest CPU time. It is because Random does not

consider users’ QoE and randomly assign QoS levels to

users. As users become more evenly distributed (from user

distribution type 1 to 6), DEUA-H achieves higher overall

QoE, outperforming DQoS in user distribution type 6.

Figure 4 shows the results of experiment set #2, where

the number of users increases. Figure 4(a) shows that as the

number of users increases from 100 to 1,000, the total QoE

achieved by every approach increases. DEUA-O achieves

the most significant increase, by 5,972 from 1,859 to 7,831,

outperforming DQoS’s 4,847 increase from 1,551 to 6,398,

DEUA-H’s 2,842 increase from 1,773 to 4,615, VSVBP’s

2,592 increase from 835 to 3,427 and Random’s 3,014

from 501 to 3,515. As the number of users increases, the

advantages of DEUA-O over the other approaches increase,

indicated by the increasing gaps between them. DEUA-

O achieves the second highest allocation rate, as shown

in Figure 4(b), outperformed by Random. However, its

advantages over the other approaches in allocation rate are

also significant, i.e., by 9.61% over DEUA-H, 36.13% over

DQoS an 63.32% over VSVBP on average. As the number of

users increases, it is harder for all five approaches to allocate

all the users, resulting in the decreases in their allocation

rates, from 100.00% to 87.38% by 12.62% for Random,

100.00% to 71.78% by 28.22% for DEUA-O, 100.00% to

59.09% by 40.91% for DEUA-H, 99.88% to 50.48% by

49.46% for DQoS and 75.05% to 45.21% by 66.00% for

VSVBP. Figure 4(a) shows that when the number of users

is relatively small (between 100 and 400), DEUA-H achieves

higher overall QoE than DQoS. However, as the number of

users exceeds 400, DEUA-H is outperformed by DQoS. The

rationale for that is the greedy heuristic employed by DEUA-

H allows it to achieve promising results when the computing

resources are ample (when the number of users is small).

Something similar is observed in the results reported in [5].

The outstanding performance of DEUA-O in achieving high

QoE and high allocation rates comes at the price of high

computational overhead. As shown in Figure 4(c), DEUA-

O takes much more time than the other approaches to find

a solution. Its computation time increases significantly as

the problem scales up in the number of users. This is

expected because of theNP-hardness of the DEUA problem

proven in Section III-C. DEUA-H, the approach designed for

finding sub-optimal solutions, are almost as fast as Random,

outperforming DEUA-O by 99.58%, DQoS by 98.34%, and

VSVBP by 96.73% on average. This is its most significant

advantage over DQoS. An interesting phenomenon in Figure

4(c) is that, as the number of users exceeds 700, DEUA-

O’s computation starts to decreases. The reason is that the

edge servers cannot accommodate too many users. A lot

of users cannot be allocated. They are simply allocated to

the remote cloud. This lowers the difficulty for DEUA-O

to find a solution. However, this does not significantly help

with DEUA-O’s low efficiency in finding optimal solutions

to large-scale distance-aware EUA problems.

Figures 5 and 6 show the results of experiment set #3 and

set #4. The results are similar in general. In both experiment

sets, DEUA-O again achieves the highest overall QoE and

the highest allocation rate. DEUA-H achieves similar overall

QoE and higher allocation rate compared with DQoS. Figure

5(a) shows that, as the number of edge servers exceeds

60, DEUA-H starts to outperform DQoS with an increasing

advantage. Figure 6 shows something similar. The reason

is the same as in Figure 4(a) - DEUA-H is more suitable

in scenarios with ample computing resources, i.e., more

servers as shown in Figure 5(a) and more available server

capacity as shown in Figure 6(a). Figure 5(c) and Figure

71



Table II
EXPERIMENT SET #1: PERFORMANCE RESULTS ON DISPARATE DATASETS.

Methods
User Distribution Type 1 User Distribution Type 2 User Distribution Type 3

QoE Allocation Rate CPU Time QoE Allocation Rate CPU Time QoE Allocation Rate CPU Time

Random 1,658 0.8822 0.0098 2,336 0.9754 0.0104 2,405 1.0000 0.0080

VSVBP 1,712 0.4588 0.8543 2,626 0.6059 0.8539 2,537 0.5778 1.4181

DQoS 3,284 0.5141 1.1749 4,581 0.7560 1.1595 4,581 0.7057 1.2516

DEUA-O 4,092 0.7498 5.3207 5,743 0.9330 18.548 5,799 1.0000 16.737

DEUA-H 2,870 0.6543 0.0194 4,205 0.8320 0.0253 4,443 0.9766 0.0292

Methods
User Distribution Type 4 User Distribution Type 5 User Distribution Type 6

QoE Allocation Rate CPU Time QoE Allocation Rate CPU Time QoE Allocation Rate CPU Time

Random 2,544 1.0000 0.0075 2,398 0.9986 0.0075 2,562 1.0000 0.0069

VSVBP 3,008 0.6542 1.2206 2,990 0.6541 2.2691 3,264 0.7018 3.0808

DQoS 5,377 0.8405 3.2848 5,507 0.8419 1.5504 6,314 0.9218 5.0674

DEUA-O 6,484 1.0000 21.774 6,572 0.9940 14.580 7,405 0.9966 23.232

DEUA-H 5,051 0.9508 0.0272 5,477 0.9833 0.0289 6,498 0.9962 0.0297
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Figure 4. Experiment set #2: Performance comparisons on various number of users.
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Figure 5. Experiment set #3: Performance comparisons on various number of servers.
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Figure 6. Experiment set #4: Performance comparisons on various server capacities.
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6(c) illustrate DEUA-H’s high efficiency and high scalability

to the problem scale in terms of the number of users and

the available server capacity. The performance of DEUA-O

demonstrated in Figure 6(c) is similar to Figure 4(c). When

the available server capacity exceeds 40, DEUA-O takes less

time to find a solution. This is because when the computing

resources become ample, all the users can be accommodated

by the edge servers. This reduces the complexity of finding

the optimal solution and starts the decrease in DEUA-O’s

computation time. DQoS also exhibits similar changes in its

computation time in Figure 6(c).

The experimental results show that by taking into account

the distance, our approaches outperform the state-of-the-

art approaches in solving the distance-aware EUA problem.

Overall, DEUA-O is the most suitable approach in small-

scale scenarios for its outstanding performance in achieving

high QoS and allocation rates. However, in large-scale

scenarios, DEUA-H is the best choice for its effectiveness

comparable to DQoS but much higher efficiency.

V. RELATED WORK

With the push from cloud services and pull from the

IoT, the edge computing paradigm has received increasingly

attention in recent years [2]. The edge computing possesses

the advantages of speed, security, cost saving, reliability and

scalability, allowing the delivery of new applications and

services especially for the future Internet. In terms of Cisco

Global Cloud Index, 75% of the data produced by people

and devices will be stored, processed, analyzed, and acted

upon close to or at the edge of the network by 2021 [14].

As a novel paradigm, edge computing also poses many new

challenges for app vendors in allocation-like problems, e.g.,

edge user allocation [4], [5], [13], [15], edge data caching

[16], [17], edge server placement [18] and edge application

deployment [19], [20].

Very recently, the edge user allocation problem has at-

tracted a lot of attention. Lai et al. [4] made the first

attempt to formulate the EUA problem. They model the

EUA problem as a variable sized vector bin packing prob-

lem, and propose an approach that maximizes the number

of allocated users while minimizing the number of edge

servers. Afterwards, they investigated a more sophisticated

problem by considering user satisfaction measured by users’

Quality of Experience (QoE). Their aim was to maximize

all users’ overall QoE by assigning them suitable QoS

levels [5]. Moreover, Peng et al. targeted at the mobile

edge computing environment and modeled the EUA problem

as a revolvable process. They propose a greedy algorithm

based on the mobility of edge users to find an allocation

solution [6]. However, the existing research on EUA ignores

the complexity of wireless transmission in real-world EUA

scenarios. It is simply assumed that each base station has a

specific coverage area and every user in that coverage area

will receive the same data rate. The correlation between

the signal strength (as well as data rate) and the distance

between users and edge servers is neglected. This often

lowers users’ overall QoE due to unsatisfactory data rates. In

contrast, we studied the influence of the distance between

users and edge servers on users’ data rates and QoE and

took it into account in the designs of our optimal approach

DEUA-O and sub-optimal approach DEUA-H for solving

the distance-aware EUA problem.

VI. CONCLUSION

In this paper, we studied the distance-aware EUA prob-

lem. Specifically, we took into consideration the correlation

between the users’ signal strength (or data rate) and their

distance from edge servers. To solve the distance-aware

EUA problem, we proposed two novel approaches, one for

finding the optimal solution that maximizes users’ overall

QoE, and the other for efficiently finding sub-optimal so-

lutions in large-scale scenarios. The results of experiments

conducted on a widely-used real-world dataset showed that

our approaches significantly outperform the state-of-the-art

approaches with their respective advantages. In the future,

we plan to focus on the dynamics of the computation tasks

and consider the behaviors of users.
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