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Abstract: With the rapid growth of web services, service classification is widely used to 
facilitate service discovery, selection, composition and recommendation. Although there is much 
research in service classification, work rarely focuses on the long-tail problem to improve the 
accuracy of those categories which have fewer services. In this paper, we propose a  
novel label-based attentive model LMA with the multi-head structure for long-tail service 
classification. It can learn the various word-label subspace attention with a multi-head 
mechanism, and concatenate them to get the high-level feature of services. To demonstrate the 
effectiveness of LMA, extensive experiments are conducted on 14,616 real-world services with 
80 categories crawled from the service repository ProgrammableWeb. The results prove that the 
LMA outperforms state-of-the-art approaches for long-tail service classification in terms of 
multiple evaluation metrics. 
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1 Introduction 

With the blossom of Web 2.0 technologies, the past decade 
has witnessed a rapid growth of web services and their 
compositions (e.g., mashups) on the internet (Cao et al., 
2019). From July 2018 to December 2019, the number  
of registered services on the world’s largest online  
web service repository, ProgrammableWeb (https://www. 
programmableweb.com/), increased from 17,923 to 23,038, 
increased by 23.5%. That means on average ten new 
services are registered in the repository every day. One of 
the reasons why web service has been able to develop  
so rapidly is web services provide a unified and  
loosely-coupled integration to reuse the heterogeneous 
software components (Yu et al., 2007). Software reuse is 
treated as a promising way to reduce the cost of software 
development (Yang et al., 2018), so more and more 
software developers are discovering reusable services from 
service repository. 

In recent years, keyword-based methods are the first 
choice of service discovery in practice (Yang et al., 2018). 
Generally, service providers choose multiple keywords 
manually to describe the service so that software developers 
can quickly locate these services. For example, PayPal API 
is one of the services registered in ProgrammableWeb,  
the provider added four keywords to it, including  
one primary category payments and three secondary 
categories ecommerce, financial and invoicing. When a 
software developer implements a transaction processing 
requirement, he can use the keyword ‘ecommerce, financial’ 
to filter and finally find the service. However, the keywords 
assigned for the developers are not always reliable and 
appropriate, because manual labelling is limited by the 
service provider’s perception. As to December 2019, the 
number of categories in ProgrammableWeb has increased to 

488, such a large candidate pool makes it difficult to select 
several categories for a new service. 

To address the challenge, machine learning methods are 
used to predict the keywords and recommend appropriate 
categories for service providers. Several works use 
traditional methods such as SVM (Wang et al., 2010) and 
LDA (Pang et al., 2019) for service classification. They 
have achieved good results on classification tasks of fewer 
than ten categories. As the number of categories increases, 
deep learning classification method is introduced, because 
traditional methods can only catch low-level features. In 
text classification tasks, convolutional neural network 
(CNN) (Kim, 2014) is often used to extract local features in 
a sentence and recurrent neural network (RNN) (Lai et al., 
2015) is applied for classification by mining long-term 
dependent features. The work (Yang et al., 2018) adopts  
2D CNN with bi-directional LSTM to get sentence 
representation and use it for classification. 

Although the existing approaches can help service 
providers select keywords automatically, they are still 
limited in many service-oriented applications due to the 
long-tail distribution of web services among multiple 
categories. Anderson (2006) coined the term ‘the long tail’, 
as opposed to 20/80 rule, it is claimed that the internet 
makes it easier for consumers to purchase niche product 
(Yin et al., 2012). Taking an example in economics, success 
on Amazon often comes from selling in a niche with 
passionate buyers and fewer competitors. In service 
computing, niche mainly refers to categories that contain 
fewer web services. The long-tail marketing model is also 
appropriate for the field of service computing. It is observed 
that the distribution of the number of services on all 
categories is long-tailed. The histogram of the top 80 
categories of web services is shown in Figure 1. 
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Figure 1 Histogram of the top 80 categories (see online version 
for colours) 

 

In such case, a good service classifier needs not only to pay 
attention to the accuracy of classification but also to 
improve the diversity of classification. Therefore, the 
significance of service classification for service providers 
should include two facets: 

1 help service providers find appropriate categories 

2 make every category available, especially those ones 
with fewer services. 

Since existing works primarily focus on the accuracy of the 
top 20% categories of services and neglect those niche ones, 
leading to ineffective service classification for those  
80% niche categories. Upon the motivation, we investigate 
the problem of long-tail web service classification, and 
propose a novel approach named label-based multi-head 
attentive (LMA) Model for long-tail service classification. 

In recent years, attention mechanism has been widely 
used for text feature extraction (Lin et al., 2017b; Vaswani 
et al., 2017). Most of these works are a self-attentive model, 
which means the attention information is extracted only 
from the text sequence. However, we observe that label 
embedding of web services can bring extra heuristic 
information, and the word-label attention can more directly 
promote the training of service classifier. Consequently, 
LMA introduces service label embedding and implements a 
label-attentive model to get the word-label attention. By 
integrating the attention vector, low-level representations 
abstracted to high-level features for the model training of 
service classifier. Furthermore, we propose a multi-head 
structure applied to the label-attentive model, which is 
informative for long-tail service classification. Additionally, 
to improve the overall performance of the classifier on 
uneven datasets, we use focal loss as our loss function. 
Extensive experiments are conducted on 14,616 services 
with 80 categories crawled from ProgrammableWeb,  
and the results demonstrate that LMA achieves  
higher classification performance than other machine 
learning-based methods. 

 

To the best of our knowledge, this is the first work 
proposed to address the long-tail service classification 
problem. The main contributions of this paper are 
summarised as follows: 

 We analyse the long-tail phenomenon in service 
classification. To further recommend niche categories 
for a new service, we propose a novel label-attentive 
model LMA that integrates service label embedding to 
attentive model for more precisely extracting abstract 
features and improving the accuracy in classification 
task of niche services. 

 A multi-head structure is proposed to allow the 
attention model to learn information in different 
representation subspaces. That makes the model 
training in parallel and more efficient than the 
conventional deep learning methods. 

 We perform extensive experiments on an overall 
testing set and three niche-N testing sets, demonstrating 
that our model outperforms the state-of-the-art in  
long-tail service classification. 

The remainder of this paper is organised as follows.  
Section 2 illustrates the overall framework and elaborates 
the proposed LMA model for long-tail service 
classification. Section 3 shows the experimental evaluation. 
Section 4 reviews the related work. Finally, Section 5 
concludes the paper and discusses the future work. 

2 Approach 

In this section, we first present the overall framework of 
LMA model, and then elaborate the label embedding and 
multi-head attention, which is followed by focal loss and 
model training. 

2.1 The framework of approach 

The framework of LMA is illustrated in Figure 2. The LMA 
employs a process similar to text classification, which 
consists of three crucial steps: 

 Embedding layer: embedding the service descriptions 
and labels to their distributed representations. In this 
way, label embedding can learn dense label features 
during training and help improve the long-tail 
classification effect. 

 Feature extraction layers: aggregating word 
embeddings and label embeddings into a fixed-length 
vector representation. Via these layers, low-level word 
representations are abstracted to high-level features, 
which is treated as the service representation. 

 Task layer: using a classifier to annotate the service 
representation with a label. The applied classifier  
can be flexibly replaced according to the different 
applications. 
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Figure 2 The framework of LMA model for long-tail service classification (see online version for colours) 

 

 
For the three steps, we focus on the first two steps in the 
following sections. In these two steps, we developed a series 
of techniques to make the obtained service representation 
more conducive to the long-tail classification problem.  
As for the third step, we adopt a softmax layer as the 
classifier, since it is concise and effective for classification 
tasks. 

2.2 Label embedding 

Since the inputted service descriptions are in the form of 
characters, they cannot be processed directly by the 
computer, so each word in the description needs to be 
encoded. We build a vocabulary to generate a unique 
numerical index for each word in the service description and 
represent the indexed word with one-hot encoding. 
Although one-hot encoding can be used as a representation 
of words, when the number of words in the vocabulary is 
large, the encoding vector is high-dimensional and sparse, 
which cannot be used for model training. So we use word 
embedding to transform one-hot vectors into distributed 
representations. 

Word embedding is the basic building block in NLP, 
which can capture the regularities between words (Mikolov 
et al., 2013). Word embedding takes one-hot encoding  
as input, transforms high-dimensional vectors into  
low-dimensional distributed representations. The embedded 
vector using floating-point numbers to contain more dense 
information. We use random initialisation to embed the 
service description. 

Given a service dataset 1{( , )} ,N
n n n X y  where 

X  is the service description, and y  Y is its 
corresponding label. X = {w1, ‧‧‧, wL} is a service 
description of length L, the word wl is a one-hot vector in 
the space ΔD, where D is the vocabulary size. Note that L is 
the padding length of the description sequence, we truncate 
long descriptions and complete short descriptions. The 
process of word embedding can be described as ,D D

d    

where d is the dimensionality of the embedded  
vectors. Therefore, after embedding the one-hot vector,  
the embedded service description is represented as 

1{ , , },L   X x x  where .D
l d x  

Several works (Tang et al., 2015; Wang et al., 2018) 
demonstrate that the integration of label embedding is 
informative for the downstream classification task. So we 
embed all labels into the distributed representation. 
Y is the label set, and label y  Y is a one-hot vector in 

the space ΔM, where M is the number of the service 
categories. Similar with word embedding, the process of 
label embedding can be described as ,M M

d    and the 

embedded labels are represented as 1{ , , },M   Y y y  

where .M
m d y  

The label embedding Y is updated iteratively during  
the training of the model to learn the corresponding  
label features. Label embedding can help enhance the 
compatibility of the service description and its associated 
category, thereby improving the accuracy of long-tail web 
service classification. 

2.3 Multi-head attention 

We propose a multi-head attention mechanism in the feature 
extraction layer. It consists of two procedures: first, we 
construct label-based attention to extract features, then we 
duplicate it as several copies to get the various word-label 
subspace attention. 

Inspired by the work (Vaswani et al., 2017), we regard 
the service description as the query/value, the label set as 
the key, the attention vector c is calculated by the query and 
key, then c is used as the weight of value, and finally output 
the high-level service feature. 

Specifically, we put the embedded sequence X and 
embedded labels Y into three linear layer to get the query 
Q, value V and key K: 

 Q Qrelu  Q W X b  (1) 
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 V Vrelu  V W X b  (2) 

 K Krelu  K W Y b  (3) 

where the output dimensionality of the linear layer is dk, 
which is equal to the embedding dimensionality d. As a 
result, the shape of Q and V are both L × dk, and the shape 
of K is M × dk. Note that the parameters of the linear layer 
are independent with each other. 

Then, we calculate the compatibility of label-word pairs 
via matrix multiplication: 

G QK  (4) 

The shape of G is L × M, where Glm is the compatibility of 
word wl and label ym. Based on the importance distribution 
of service labels on description words, we collect the largest 
compatibility value of each word: 

 l lm Maxpooling G  (5) 

For the entire sentence, we obtain a vector m of length L.  
To generate the attention vector c, m is put into a softmax 
layer: 

max( )Softc m  (6) 

Finally, the high-level sequence representation can be 
summarised by weighting the value V with c: 

l l

l

z V c  (7) 

where z is a vector for a service feature representation with 
the dimensionality of dk. 

To improve the performance and capture the word-label 
attention in multiple subspace, we perform a multi-head 
structure that is illustrated in Figure 3. 

Figure 3 Label-based multi-head attention (see online version 
for colours) 

 

Before generating the Q, V and K, we set the output 
dimensionality dk as: 

kd d h  (8) 

where h is the number of the heads. All the heads can be 
calculated parallelly, and we gained the high-level sequence 

representation hz  with the number of h. The subspace 
features from all heads are concatenated as the service 
representation z: 

 1, , hconcat   z z z  (9) 

Finally, z is used as an input of the softmax layer, which 
outputs the probability distribution of all categories. The 
category corresponding to the maximum value is selected as 
the classification result. 

The multi-head structure is available to compute all 
heads in parallel, leading to more efficient extraction of 
high-level abstraction features of web services. Moreover, 
there is no additional increase in the total computational 
cost, since the dimension in multi-head structure is 
partitioned from single-head attention with full 
dimensionality. 

2.4 Focal loss and model training 

When training the LMA, we adopt the variant cross-entropy 
loss function taking into account long-tail distributions  
of web services. Cross-entropy is commonly used in 
classification tasks, which measures the difference between 
the true label distribution and the predicted one. Since 
ordinary cross-entropy loss function does not perform well 
on imbalanced service distributions among multiple service 
categories, we use the focal loss (Lin et al., 2017a) as loss 
function during the model training. Focal loss adds a  
weight based on the cross-entropy loss, thus it can penalise 
negative labelled service samples. The focal loss is formally 
defined as follows: 

   1 logt t tL p p   g
 (10) 

where p is the output of the task layer, and given the true 
label y, 

1

1 otherwise
t

p y
p

p


  

 (11) 

Besides, there are two hyper-parameters in equation (10), 
where g  is a focusing parameter for modulating factor  

(1 – p), and 

1

1 otherwise
t

y 
  





 (12) 

where  is the value between 0 and 1 to balance the positive 
and negative service samples. Since the formal focal loss 
function is mainly appropriate for binary classification,  
we fix the function in the multi-class long-tail service 
classification task by scaling the outputs from the task layer, 
where the service category probabilities of each sample sum 
to 1. 

   
1

1 log
M

fixed i i i

i

L p y p


  g
 (13) 
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where M is the number of service categories. For those 
misclassified samples, the fixed focal loss function can 
increase the penalty value of categories containing fewer 
services while reducing the penalty value of categories 
containing more services. 

We conduct Adam optimiser (Kingma and Ba, 2014) 
instead of stochastic gradient descent (SGD) to optimise the 
parameters during the model training for parameter 
optimisation in LMA model. Adam can adjust different 
learning rates for the different parameters, and update those 
with more frequent changes in smaller steps. Furthermore, 
we use the early stopping method to determine whether 
model training converges. It can monitor a certain metric 
and the model training is finished, when its values no longer 
rises any more. 

3 Experimental evaluation 

In this section, we first introduce the service dataset, and 
then illustrate the experimental results of LMA model, 
which includes the comparison with other machine learning 
methods as well as our own variant methods. Finally, we 
show the classification performance in terms of parameter 
impact. 

3.1 Experimental setup and dataset 

The experiment is implemented using Tensorflow 1.14  
and Python 3.7.4. All the models are trained and tested  
on our workstation, which is equipped with NVIDIA  
GTX 1080 Ti, Intel Xeon Gold 6130 and 192 GB RAM. 

The experimental data comes from web API platform 
ProgrammableWeb, which is the largest online RESTful 
service repository. We implemented a python crawler script 
with scrapy to collect services and use MySQL to manage 
the web services. As of 1 July 2018, this dataset contains 
17,923 web services with 481 categories. 

To validate the performance of LMA on the long-tail 
service classification problem, we use the top 80 categories 
with the most common web services as our dataset. The 
filtered dataset contains 14,616 services with 80 categories. 
After counting the services in each category, we find that 
tools contains 890 services, which has the maximum 
number of services, while the minimum category is  
data-as-a-service, which contains only 42 services. From 
Figure 1, it can intuitively see that the number of services 
involved in each category is rather uneven, indicating  
long-tailed distribution of web services. 

Table 1 The comparison results of data selection methods 

Accuracy Data partitioning 
method Overall Niche-20 Niche-30 Niche-40 

Random selection 0.5510 0.4544 0.3274 0.3010 

Random selection by 
category (SMOTE) 

0.5163 0.4431 0.3512 0.3329 

Random selection by 
category 

0.5521 0.4943 0.4226 0.3995 

In the preprocessing of web services in the experiments,  
we filter the service description with stopwords and delete 
useless information in square brackets of several services, 
which indicates that these services are outdated. In addition, 
we do stem extraction on the service description that is 
effective as it may lessen redundancy of the stemmed words 
and their inflected words. 

Because the service dataset is small and imbalance, we 
take dataset partitioning methods in the experiments. We 
apply three data selection methods, including random 
selection, random selection by category and oversampling 
with the smote algorithm. The three datasets are divided in a 
seven-to-three ratio, that is, the training set accounts for 
70% of the total samples and the testing set accounts for 
30%. The result of the dataset partitioning is shown in  
Table 1. The overall, niche-20, niche-30 and niche-40 are 
four testing sets for the long-tail service classification 
problem. We observe that random selection by category 
performs better than random selection, because it has the 
ability to divide training and testing sets evenly across all 
service categories. As for the SMOTE method, when the 
number of service categories is increased to 80, the number 
of web services in the training set is oversampled to nearly 
five times the original. It may lead to the model underfit  
on most common categories. Consequently, the dataset is 
divided using random selection by category. The training set 
and testing set contains 10,231 and 4,385 web services, 
respectively. 

In order to verify the performance on the long-tail 
service classification problem, we further redistribute the 
testing set into four subsets. The basal testing set contains 
all the 80 categories services, which we call it overall. 
Based on the overall testing set, we delete the top 20, 30, 
and 40 categories of services. Therefore, we generate the 
three datasets named niche-20, niche-30 and niche-40, 
which contains 60, 50 and 40 categories, respectively.  
It helps us understand the long-tail service classification 
performance among competing methods. In the 
experiments, we use them to train and test the proposed 
model as well as other machine learning models. The 
number of web services per testing set is shown in Table 2. 

3.2 Evaluation metrics 

We evaluate the long-tail service classification performance 
from the perspective of accuracy and area under curve 
(AUC). Accuracy is a basic indicator for measuring the 
performance of a classifier, AUC is the probability that a 
random positive sample has a higher score than a random 
negative one, which measures the ranking ability of the 
model (Fawcett, 2006). It is defined as follows: 

    1
,

x D x D

AUC R f x f x
u u    

 
 

 

    (14) 

where D+ is the set of all positive instances with size u+,  
D– is the set of all negative instances with size u-, f(‧)  
is the prediction model and :R      is a function to 
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calculate the ranking score of the input pair, which is 
defined as follows: 

     1 2 1 2 1 2
1

,
2

R x x x x x x      (15) 

where ( )  is the indicator function. In the case of 

unbalanced samples, AUC can better reflect the overall 
classification performance. It is a real number ranging from 
0 to 1, where a higher value indicates better performance of 
a classifier. 

Table 2 The distribution of training and testing dataset of web 
services 

Testing set Training 
set Overall Niche-20 Niche-30 Niche-40 

10,231 4,385 1,835 1,233 811 

3.3 Competing methods 

To demonstrate the performance of the proposed method, 
we compare LMA with nine machine learning-based 
methods, including seven traditional models: CNN, LSTM, 
GRU, BiLSTM, CLSTM (Zhou et al., 2015), FastText 
(Joulin et al., 2016) and TextCNN (Kim, 2014), and  
two state-of-the-art models: LEAM (Wang et al., 2018) and 
ServeNet (Yang et al., 2018). To more deeply analyse the 
impact of the two components of LMA on the performance 
of the long-tail service classification, we implement  
our model into four variants: LMA, LMA (focal loss), LMA 
(multi-head), LMA (multi-head; focal loss). The details of 
the competing methods as well as our variant ones are 
described as below. 

 CNN: it obtains phrase features through convolution, 
then the max-pooling layer extracts sentence features 
that are used for service classification. 

 LSTM: it regards text data as sequence type, and can 
capture long-term dependencies of a sentence for 
service classification. 

 GRU: it is a variant of LSTM, which can acquire  
long-term and short-term memory features for service 
classification through a simpler structure. 

 BiLSTM: considering LSTM can only pass sequence 
information backwards, it concatenates a forward 
LSTM and a backward LSTM to extract more 
comprehensive features for service classification. 

 CLSTM (Zhou et al., 2015): it utilises CNN to extract a 
sequence of higher-level phrase representations, which 
are fed into a long short-term memory recurrent neural 
network (RNN) (LSTM) to obtain the sentence 

representation. It can capture both local features of 
phrases as well as global and temporal sentence 
semantics for service classification. 

 FastText (Joulin et al., 2016): it is a simple and fast 
classifier proposed by Facebook. It can achieve good 
service classification performance through simple 
linear combination of features. 

 TextCNN (Kim, 2014): it uses convolution kernels of 
different sizes to extract key information in the 
sentence, and uses max-pooling to select the most 
influential high-dimensional features for service 
classification. 

 LEAM (Wang et al., 2018): it introduces an attention 
framework that measures the compatibility of 
embeddings between text sequences and labels for 
service classification. 

 ServeNet (Yang et al., 2018): it is the state-of-the-art 
method in service classification. It adopts 2D CNN 
with bi-directional LSTM rather than 1D CNN with 
one-directional LSTM for service feature extraction. 

 LMA: it is our fundamentally self-developed method. 
Sentence features are extracted by single-head 
attention, and categorical cross-entropy is calculated  
as the loss function during model training. 

 LMA (focal loss): it is our self-developed variant for 
service classification. Sentence features are extracted 
by single-head attention, and focal loss is used for 
parameter optimisation in model training. 

 LMA (multi-head): it is our self-developed variant for 
service classification. Sentence features are extracted 
by multi-head attention, where it consists of five heads 
and categorical cross-entropy is used as loss function 
for model training. 

 LMA (multi-head; focal loss): it is our self-developed 
variant with the best performance of service 
classification. Sentence features are extracted by  
multi-head attention, where it consists of eight heads 
and focal loss is applied for parameter optimisation in 
model training. 

3.4 Experimental results and analysis 

In this section, a set of experiments on a large-scale service 
dataset are conducted to validate the effectiveness of our 
proposed approach. Once a model is trained, we test it on all 
of the four testing sets. Results on the overall dataset reflect 
the basic performance of service classification, whereas 
results on niche-N datasets show its advantages on long-tail 
service classification. 
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Table 3 The experimental results of long-tail web service classification compared with conventional methods 

Overall Niche-20 Niche-30 Niche-40 
Method 

ACC AUC 
 

ACC AUC 
 

ACC AUC 
 

ACC AUC 

LSTM 0.4520 0.8404  0.3461 0.7932  0.2506 0.7604  0.2109 0.7433 

GRU 0.5161 0.8777  0.4218 0.8450  0.3228 0.8091  0.2799 0.7879 

BiLSTM 0.5298 0.9065  0.4447 0.8875  0.3512 0.8658  0.3033 0.8529 

CLSTM 0.4990 0.8811  0.3973 0.8418  0.3025 0.8109  0.2663 0.8022 

FastText 0.5473 0.9341  0.4431 0.9089  0.3552 0.8825  0.3083 0.8715 

TextCNN 0.5777 0.9117  0.4796 0.8821  0.3942 0.8532  0.3453 0.8277 

CNN 0.5238 0.8873  0.4327 0.8622  0.3682 0.8413  0.3329 0.8258 

LEAM 0.5389 0.9081  0.4425 0.8700  0.3674 0.8409  0.3687 0.8256 

ServeNet 0.5637 0.8804  0.4867 0.8535  0.4161 0.8272  0.3872 0.8217 

LMA* 0.5521 0.9364  0.4943 0.9051  0.4226 0.8815  0.3995 0.8609 

Note: LMA* is our best self-developed variant, LMA (multi-head; focal loss). 
 

Figure 4 The experimental results on performance of long-tail 
web service classification among four self-developed 
methods, (a) accuracy (b) AUC (see online version  
for colours) 

 

(a) 

 

(b) 

 

3.4.1 Comparison with conventional methods 

We compare our proposed LMA model with  
nine conventional methods for web service classification. 
The experimental results are shown in Table 3. For the 
classification accuracy, although TextCNN and ServeNet 
can get higher accuracy with 57.77% and 56.37% on the 
overall testing set, they perform poorly on the niche-N 
dataset. It is observed that our proposed model LMA with 
multi-head and focal loss can achieve the highest test 
accuracy on all the three niche-N testing sets. LMA  
has the classification accuracy with 49.43%, 42.26% and  
39.95% on niche-20, niche-30 and niche-40, while the  
state-of-the-art method ServeNet receives 48.67%, 41.61% 
and 38.72%, respectively. The results prove that LMA is 
better than other machine learning based methods in  
long-tail service classification. As for AUC, LMA also 
reaches superior results among all benchmarks. Note that 
FastText has a good performance on AUC, and it is even 
slightly better than our method. However, its accuracy is 
much lower than LMA, which is unsuitable for long-tail 
service classification. 

3.4.2 Comparison with self-developed methods 

To further validate the capability of various components of 
our proposed model, we compare LMA (multi-head; focal 
loss) with three self-developed variants: LMA, LMA (focal 
loss) and LMA (multi-head). Note that LMA (multi-head) 
consists of five heads to achieve the optimal results. 

The results show that variants with focal loss function 
obtain a higher AUC, which indicates that focal loss can 
improve the service classifier for uneven datasets. For those 
variants with multi-head attention, we find that the 
classification accuracy on niche-N testing set can be 
significantly improved, which demonstrates that multi-head 
attention is able to capture the features of niche services. 
When both multi-head and focal loss are used for LMA 
model, it reaches the best performance for long-tail service 
classification task. 
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Figure 5 The performance impact on service classification 
accuracy along with the changes of different  
hyper-parameters (h, d, L), (a) multi-head number  
(b) embedding dimensionality (c) padding length  
(see online version for colours) 

 

(a) 

 

(b) 

 

(c) 

 

3.5 Performance impact of hyper-parameters 

In the experiments, two groups of hyper-parameters 
influence the performance of long-tail service classification 
in out LMA model. 

1 The quality of the service feature extraction of LMA is 
directly related to three hyper-parameters, including the 
number of multi-head attention h, the dimensionality of 
word and label embedding d, and the padding length of 
service description L. 

2  and g  are both the hyper-parameters in focal loss 

function, which impact the performance and need to be 
adjusted accordingly in different variants of our LMA 
model. 

To find the best setting, we test the two groups of  
hyper-parameters and analyse how they impact the 
performance of long-tail service classification in our LMA 
model. 

Figure 6 The performance impact on service classification 
accuracy along with the changes of different  
hyper-parameters ( , ) g  (see online version  

for colours) 

 

Figure 5 illustrates the performance impact on service 
classification accuracy along with the changes of h, d and L. 
The results as shown in Figure 5(a) demonstrate that the 
LMA can learn the long-tail attention subspace better when 
the number of the head is set as 8. In Figure 5(b), we can 
see the embedding dimensionality has a significant impact 
on service classification accuracy. More specifically, as the 
dimensionality increases, the accuracy of LMA on the 
niche-N dataset is accordingly improved. When d is set  
as 256, it receives the best classification accuracy. Since the 
padding length of the service description sequence plays an 
important role in service classification, we perform a set of 
experiments on different padding lengths. In Figure 5(c), it 
is observed that LMA achieves the best accuracy on  
long-tail service classification when L is set as 50. Padding 
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too long may cause the inputs to contain a lot of 
meaningless placeholder, which decreases the accuracy of 
long-tail service classification. 

The effectiveness of focal loss is affected by  
two parameters, and each model has its unique best 
combination. To find the best combination of LMA, we test 
the model on the overall testing set. Figure 6 shows the 
performance impact on service classification accuracy with 
different combinations of  and .g  Along with the increase 

of  and ,g  the classification accuracy gradually declines. 

When  = 0.3 and 0.5,g  LMA performs best for  

long-tail service classification. 

3.6 Time overhead 

To validate the efficiency of different service classification 
methods, we test the convergence speed on the training set. 
The histogram of comparison results is illustrated in  
Figure 7. It can be clearly observed that the training time  
of these models is divided into two levels: CNN,  
LEAM, FastText, LMA, and TextCNN can converge with 
approximately 200 seconds, while CLSTM, ServeNet, 
BiLSTM, GRU, and LSTM consume almost 4 times longer. 
Since CLSTM, ServeNet, BiLSTM, GRU and LSTM are 
based on the implementation of RNN, the calculation of the 
current moment depends on the result of the previous 
moment. As a result, they cannot be trained in parallel like 
CNN, which take them longer time to make the model 
converged. 

Figure 7 The convergence speed of model training among 
different service classification methods (see online 
version for colours) 

 

Typically, the state-of-the-art method ServeNet converges at 
6 epochs in 881 seconds. As for our method, LMA has a 
network structure similar to transformer (Vaswani et al., 
2017), which can process all words in parallel by stacking 
different activation functions to achieve fast convergence 
speed. In the experiment, our method LMA converges at 7 
epochs in 218 seconds. 

4 Related work 

In recent years, service classification has been widely 
investigated and it fundamentally promotes advanced 
service-oriented applications, including service discovery, 
selection, composition and recommendation. Several works 
(Aznag et al., 2014; Liu et al., 2016; Pang et al., 2019) 
classify services with the LDA model, which is a classical 
classification model. The work (Shi et al., 2017) introduced 
a multi-label active learning approach for web service tag 
recommendation by learning the correlations among labels. 
Actually, since the service descriptions are text sequences, 
many semantic methods of service classification are  
based on natural language processing (NLP) techniques. 
The emergence of cloud computing has driven the 
transformation of service delivery and consumption. 
Furthermore, everything-as-a-service (XaaS) connects all 
things efficiently and flexibly by service. Benefiting from 
XaaS and service classification, much work has dedicated to 
the internet-of-things (IoT) research (Liang et al., 2019c, 
2019b, 2019a) and changed people’s lives. 

Text classification has been widely explored based on 
NLP techniques. To reduce the cost of manual labelling, the 
work (Tong and Koller, 2001) proposed a pool-based active 
learning method with support vector machine (SVM) for 
text classification. Some researches work on attentive text 
classification. The work (Du et al., 2017) proposed a 
framework that combines RNN with a CNN-based attention 
model to capture the salient parts of sentences to improve 
the performance of text classification. The Google Brain 
group stacks several scaled dot-product attention in both the 
encoder and the decoder to build a self-attention model 
called the transformer (Vaswani et al., 2017) to improve the 
performance of text classification. 

Moreover, label-based feature extraction gradually 
emerges as mainstream techniques for text classification. 
The predictive text embeddings (PTE) (Tang et al., 2015) 
use label embeddings to extract the relationship between 
words and labels. Label embedding attentive model 
(LEAM) (Wang et al., 2018) combined the label embedding 
into an attention model, which accelerates the learning 
speed and achieves high accuracy in text classification 
tasks. 

Considering the classification tasks with the long-tail 
characteristics, the OLTR algorithm developed in the work 
(Liu et al., 2019) handled the imbalanced classification  
in computer vision, which integrates a dynamic  
meta-embedding to improve the classification accuracy on 
several long-tail distributed datasets. 

Motivated by the above investigations, we aim at 
solving the problem of long-tail service classification and 
propose a novel LMA model. 

5 Conclusions 

To solve long-tail service classification task, we propose a 
novel approach called LMA model by integrating label 
embedding into multi-head attentive model, which can more 
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accurately extract service features for service classification 
with unbalanced service dataset. To demonstrate the 
performance of LMA, we conduct extensive experiments on 
a real-world service dataset. The results demonstrate that 
LMA outperforms the state-of-the-art methods for long-tail 
service classification in both accuracy and AUC. In the 
future, we continue developing more advanced approach 
based on the deep learning models to further improve the 
performance of service classification. 
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