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Abstract—Quality of service (QoS) has been mostly applied to
represent non-functional properties of Web services and differen-
tiate those with the same functionality. How to accurately predict
service QoS has become a key research topic. Researchers have
employed neighborhood information into matrix factorization
(MF) for service QoS prediction in recent years. However, they
are restricted to traditional matrix factorization that may incur
a couple of limitations. 1) Conventional MF for QoS prediction
linearly combines the multiplication of the latent feature repre-
sentation of users and services through inner product, failing to
fully capture the implicit features of user and service. 2) Most
of approaches integrate user or service neighborhood as heuris-
tics into MF model, where either location context or historical
invocation records are used to calculate similar users or services.
Nevertheless, combining both of them together in a collabora-
tive way is ignored for neighborhood selection that has yet to
be properly explored. To deal with the challenges, we propose a
novel approach for service QoS prediction called Neighborhood-
integrated Deep Matrix Factorization (NDMF), which integrates
user neighborhood selected by a collaborative way into an
enhanced matrix factorization model via deep neural network
(DNN). We implement a prototype system and conduct extensive
experiments on public and real-world large Web service dataset
with almost 2,000,000 service invocations called WS-DREAM
which is widely used in service QoS prediction. The experimen-
tal results demonstrate that our proposed approach significantly
outperforms state-of-the-art ones in terms of multiple evaluation
metrics.

Index Terms—Web services, QoS prediction, matrix factoriza-
tion, deep neural network, neighborhood selection.
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I. INTRODUCTION

WEB SERVICES are widely used in service-oriented
architecture (SOA) to rapidly integrate and develop

software applications, since they are self-described and
platform-independent components with the characteristics of
loose coupling, reusability and composability. It accelerates
the interoperable machine-to-machine interaction and greatly
promotes the advancements on service discovery, selection,
composition and recommendation. Along with the popular-
ity of cloud and edge computing paradigm, more and more
services are published on the Internet by software vendors and
consumed by service requesters. Consequently, the number of
Web services grow exponentially in recent years. However, as
the overwhelming explosion on the number of Web services,
many of them share the same or similar functionality that
leads to be a labor-intensive challenging task for inexperi-
enced service requesters to choose their desired services from
a large-scale service repository, as faced with multiple can-
didate services of similar functionalities, when building their
service-oriented Web applications. Therefore, recommending
satisfactory Web services for a target user from those func-
tionally equivalent or similar ones has been a critical issue
that needs to be addressed.

Quality of Service (QoS) as a non-functionality criterion has
been widely applied as a key factor to differentiate those Web
services with the same functionality. In many cases, however, it
is uneasy to obtain QoS of a Web service invoked by a target
user. The main reason is two-fold: On one hand, the qual-
ity of a service invoked by a user depends on the contextual
information of both the user and service itself. For example,
a Web service invoked by different users holds different QoS
values because of the changes of user geographical location
and network environment. On the other hand, it is a time-
consuming and resource-consuming task for service providers
to monitor QoS information for each service invocation, lead-
ing to the large sparsity of user-service invocations due to
very few historical QoS values. That is, it still has difficulty
in recommending services to a target user due to vacant ser-
vice QoS. To deal with this challenge, many efforts have been
done to predict the unknown service QoS by exploiting the
known service QoS invocations.

Among the existing QoS prediction approaches, collab-
orative filtering (CF) is the most widely used technique.
CF-based QoS prediction approaches can be divided into
two categories, including memory-based and model-based.
Memory-based CF aims at predicting service QoS via similar
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users or services that can be calculated by historical invocation
records [1]–[3]. Moreover, there are also some memory-based
investigations [4], [5] for service QoS prediction, where con-
textual information such as location and temporal information
is taken into account to eliminate those dissimilar users or
services. In this way, it optimizes the neighborhood selec-
tion and boosts the procedure of QoS prediction. However,
this kind of approaches are vulnerable to data sparsity of
user-service invocations, resulting in lower QoS prediction
accuracy.

To alleviate the influence on data sparsity, model-based CF
approaches usually employ matrix factorization (MF) tech-
nique to learn latent factors of users and services from histor-
ical QoS invocations. By modeling the user-service invocation
relationship with inner product of the user and service latent
vector, it generally receives better QoS prediction performance
than memory-based approaches. Furthermore, researchers also
utilize neighborhood information as the auxiliary heuristics,
i.e., those users/services similar to the target user/service,
to reinforce the model training of matrix factorization and
improve the accuracy of MF-based QoS prediction [6]–[9].

Currently, state-of-the-art MF-based approaches for ser-
vice QoS prediction take historical QoS invocations as input,
calculate user or service neighborhood for training matrix
factorization model, and finally predict service QoS values.
However, two problems arise in this paradigm.

First, traditional MF for QoS prediction linearly combines
the multiplication of the latent vector of users and services
through inner product, failing to fully capture the latent
information of the user and service latent feature vectors.
Although the variations of MF may be applied to improve
the performance of model training by incorporating user and
service bias terms into the interaction function [10], there is
still lack of consideration on deeply exploiting user and ser-
vice latent information for achieving better QoS prediction
accuracy. Consequently, it cannot inherently avoid the disad-
vantages of interaction function for service QoS prediction.

Second, it is observed that neighborhood selection is not
only aware of contextual information such as user/service
geographical location, but also user-service interactions such
as QoS records of historical invocations. Nevertheless, there
is still no such consideration of combining both of them
together for performing better selection of user and service
neighborhood selection as heuristics into MF model.

To address the above two issues, we propose a novel
collaborative approach for service QoS prediction named
Neighborhood-integrated Deep Matrix Factorization (NDMF).
Specifically, we use a deep neural network (DNN) to match
the complex non-linear interaction relationship between the
latent features of user and service, which can overcome the
limitation of inner product in traditional matrix factoriza-
tion. Simultaneously, we reinforce the neighborhood selec-
tion by fusing user geographical location and user-service
invocation QoS. To test the performance of service QoS
prediction, extensive experiments are conducted on a public
and large-scale real-world dataset called WS-DREAM [11],
involving 5,825 real-world Web services in 73 countries and
339 service users in 30 countries. Comparing our proposed

Fig. 1. The motivating example of user-service invocation QoS for online
payment service.

approach with several state-of-the-art competing ones, the
results demonstrate the effectiveness and efficiency of our
proposed approach NDMF in multiple evaluation metrics for
service QoS prediction.

The main contributions of this article are summarized as
follows:

• We propose a novel collaborative framework for service
QoS prediction via deep neural network. Compared to the
traditional MF-based approaches, the advantage is that we
can more deeply reveal the implicit features of user and
service by complex non-linear interaction function, which
leads to better performance of service QoS prediction.

• We propose a comprehensive approach for measuring
the relevance among users by fusing both user geo-
graphical information and user-service invocation QoS,
which achieves better performance on user neighborhood
selection than traditional approaches.

• We design and implement a prototype system and con-
duct extensive experiments on WS-DREAM dataset. The
experimental results validate the effectiveness of our
proposed approach NDMF, which is superior to existing
competing approaches in terms of accuracy of service
QoS prediction.

The remainder of this article is organized as follows.
Section II illustrates the motivation of collaborative QoS
prediction. Problem formulation is presented in Section III.
Section IV elaborates our approach of NDMF for service
QoS prediction. Section V shows and analyzes the experi-
mental results. Section VI reviews the related work. Finally,
Section VII concludes this article and discusses the future
works.

II. MOTIVATING EXAMPLE

In this section, we initially give a motivating example in
e-commerce application that demonstrates the procedure of
neighborhood-based MF approach for service QoS prediction.

Fig. 1 illustrates a motivating example with five users and
five Web services, where the users come from the same or
different cities and services have the same functionality of
online payment. The QoS matrix contains response time of
Web services experienced by users and it can be denoted as
R = [ru,i ]m×n , where m is the number of users and n is
the number of Web services. Each entry ru,i in QoS matrix,
1 ≤ u ≤ m, 1 ≤ i ≤ n , is the QoS value of Web service i
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invoked by user u. An “?” entry represents an unknown QoS
value to be predicted. We denote each user and service as
ux , ix by its sequence such as u1 for the first user and i1 for
the first service. According to [7], if users are located in a close
physical place, they usually share similar IT infrastructure and
routing protocols. Then, they would have similar QoS experi-
ences when they invoke the same Web services. For example,
u1 and u5 are both located in Shanghai, they invoked i1, i4
and received similar QoS experiences. Nevertheless, u2 and
u4 are from different countries, and they have totally different
QoS when invoking the same services i3.

By calculating the similarity of users based on their
observed QoS values [3], [12], we can find user neighborhood
for further service QoS prediction. Motivated by the exist-
ing work, we integrate users’ geographical locations by using
Autonomous System (AS) into the neighborhood selection to
improve the accuracy of service QoS prediction.

After achieving the neighbors in a collaborative way, tradi-
tional neighborhood-integrated matrix factorization performs
the procedure of modeling the relationship of feature vec-
tors of users and services with an inner product function.
Once it reaches convergence, a complete user-service invo-
cation matrix can be generated without vacant QoS value. As
discussed above, the traditional matrix factorization model has
not accurately performed the task of service QoS prediction,
since it mainly takes a linear strategy to combine the latent fea-
ture of users and services. To solve the issue, we upgrade the
traditional matrix factorization model by deep neural network
and an improved neighborhood selection to further boost the
accuracy of service QoS prediction.

III. PROBLEM FORMULATION

In this section, we first focus on the understanding of service
QoS prediction problem by a set of formal definitions, and
then clearly demonstrate what the solution is to a service QoS
prediction problem.

Definition 1 (Web Service): A Web service can be described
as a five-tuple i = <n, f , d , q , l>, where n, f and d represent
service name, functionality description and domain tag. q is
the service dimension and l indicates the location information
of a service.

For service QoS prediction, we mainly focus on the non-
functional features of a Web service including QoS dimension
q and its location information l, rather than service function-
ality and domain features.

Definition 2 (Service User): Given a service user u, it can
be described as a two-tuple u = <id , l>. id is the identity
label of u and l is the location information.

Generally, the location information of a service user mainly
includes IP, AS and country. The neighborhood set N(u) is
defined as a set of users who hold the same or similar QoS
experiences when invoking Web services.

Definition 3 (User-Service Invocation Record): Given a user
set U and a service set I, a user-service invocation record is
defined as a three-tuple <u, i , ru,i>, where u ∈ U is a service
user, i ∈ I is a Web service, and ru,i is the QoS value when
u invokes i.

By the invocations of Web services, all of the user-service
invocation records can be represented as a QoS matrix, denoted
as R. Each row represents the QoS of a user who invokes all
of the Web services, and each column represents QoS of a
Web service that is invoked by all of the users. Note that if
an entry of a user-service invocation matrix is equal to vacant,
indicating that a user has not ever invoked this service. In such
case, it needs to be predicted for further use, which is defined
as below.

Definition 4 (QoS Prediction Problem): Given a user set U,
a service set I and all observed QoS invocation records R,
the QoS prediction problem is defined as a five-tuple Q =
<U , I ,R, u, i>, where u is a target user, i is a target service
and ru,i has no invocation record that needs to be predicted.

The solution to a QoS prediction problem is <u, i , r̂u,i>.
It indicates the predicted QoS when a target user invokes
a target service. By predicting missing QoS values on each
service in I, we have their predicted QoS values. In terms
of the ranking of predicted QoS values, a subset of Web
services with the equivalent or similar functionality can be
recommended to a target user. To achieve this objective, we
propose a neighborhood-integrated deep matrix factorization
approach called NDMF that is illustrated and elaborated in
the subsequent section.

IV. APPROACH

In this section, we discuss NDMF in detail. We first present
the overall framework, then elaborate the neural user-service
feature interaction model, and subsequently introduce the col-
laborative neighborhood selection. Finally, we fuse these two
components together and train the model for service QoS
prediction.

A. The Overall Framework of the Approach

Starting from the historical Web service invocation records,
the framework and its procedure is shown in Fig. 2. It
mainly consists of two crucial components, including neu-
ral user-service feature interaction modeling and collaborative
neighborhood selection.

When modeling the neural user-service feature interaction,
we first use the identity of a user and a service as the inputs,
by transforming them into a high-dimensional and sparse
binarized vectors with one-hot encoding, then learn them as
dense vector representations, respectively. After that, a non-
parametric operation is performed on users’ and services’
dense feature vectors to concatenate latent representations
that are fed into the deep neural network of user-service
interaction to derive the non-linear relationship between users
and services. The collaborative user neighborhood selection
finds out user neighborhood by combining user geographical
context and user-service historical QoS records for the model
training. Consequently, NDMF model trained by integrating
the implicit user-service features and user neighborhood can
predict service QoS value.

Specifically, NDMF is divided into two parts as illustrated
in Fig. 3. The left part is used to model neural user-service fea-
ture interaction and learn an effective non-linear relationship
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Fig. 2. The overall framework of the approach.

Fig. 3. QoS prediction integrating user-service deep neural interaction feature and hybrid collaborative user neighborhood.

function between users and services and the right part aims at
choosing user neighborhood in a collaborative way.

B. Neural User-Service Feature Interaction

MF associates each user and item with a real-valued vector
of latent features. Let pu and qi denote the latent vector for
user u and service i, respectively. It predicts an interaction ŷu,i
as the inner product of pu and qi :

ŷu,i = f (u, i |pu , qi ) = pTu qi =
K∑

k=1

pu,kqi ,k (1)

where K denotes the dimension of the latent space. It is
observed that MF models the two-way interaction of user and
service latent factors, assuming each dimension of the latent
space is independent of another one and they are linearly com-
bined with the same weight. As such, MF can be deemed as
a linear model of latent factors.

To permit a full non-linear treatment of matrix factoriza-
tion, we adopt a neural user-service feature interaction model
to extract implicit features of user-service interaction as shown
in Fig. 3. It consists of multi layers with the deep neural
network, where the output of one layer serves as the input

of the next one. The predictive model of neural user-service
feature interaction can be represented as:

ŷu,i = f
(
PT vUu ,QT v Ii |P ,Q ,Θf

)
(2)

where P ∈ R
M×K and Q ∈ R

N×K , indicating the latent fac-
tor matrix for users and services, respectively; vUu and v Ii are
the initial representations of user u and service i; Θf denotes
model parameters of the feature interaction function f. Since
f is defined as a multi-layer deep neural network, it can be
formulated as:

f
(
PT vUu ,QT v Ii

)

= φout

(
φX

(
. . . φ2

(
φ1

(
PT vUu ,QT v Ii

))
. . .

))
(3)

where φout and φx denote the mapping function for output
layer and the x-th neural user-service feature interaction layer,
respectively.

To draw the predictive model, we mainly apply two pro-
cedures, including latent feature mapping and neural feature
interaction between user and service.

1) User-Service Latent Feature Mapping Layer: NDMF
maps target user and service from sparse high-dimensional
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vectors into dense low-dimensional vectors. It can be parti-
tioned into two parts, i.e., input layer and embedding layer.

The Input Layer identifies a user and a service and gener-
ates its initial feature representation, by transforming it into
a binarized sparse vector with one-hot encoding. It is a high-
dimensional zero vector with a specified dimension that is set
to be one and represents the corresponding user or service.
Suppose that if there are 3 users total, then the dimensionality
of one-hot vector d = 3, then the user with id = 1 can be rep-
resented as u1 = [1, 0, 0] and the user with id = 2, 3 can be
represented as u2 = [0, 1, 0] and u3 = [0, 0, 1], respectively.

After transforming user and service into sparse high-
dimensional vectors, they are further mapped into low-
dimensional dense vectors with Embedding Layer. The
Embedding Layer is regarded as a special fully-connected layer
without bias term. Similar to Word2Vec [13], Doc2Vec [14] and
GloVe [15], our embedding takes user/service high-dimensional
sparse vectors as input and turns out dense low-dimensional
vector. The mapping process is formalized as:

pu = fe

(
UT
e hu

)
(4)

qi = fe

(
ITe hi

)
(5)

where hu and hi represent one-hot encoding vectors of user
u and service i, respectively; Ue and Ie represent user’s
and service’s embedding weight matrix; fe is the activation
function.

Vectors in the Latent Representation Layer are all dense and
low-dimensional, which represent users’ and services’ latent
features, and they can be adapted through the process of back
propagation. Since the task is to predict the QoS of any user
invoking any service, we must utilize the latent features of
both specified user and service. They are concatenated as input
for the neural user-service feature interaction layer to learn a
non-linear relationship function between users and services.
The concatenation of two latent features is expressed as:

x = Φ(pu , qi ) = [pu , qi ] (6)

where Φ represents the concatenation operation, pu and qi
denotes the embedding vector of a user and service, and x is
the input vector in neural user-service feature interaction layer.

2) Neural User-Service Feature Interaction Layer: Upon
the joint latent feature, a multi-layer fully connected deep
neural network is trained and used to predict the unknown
QoS of a user invoking a service [10]. Each layer in the neu-
ral user-service feature interaction layer can be customized to
mine certain latent structures of interactions. In this way, more
complex and non-linear interactions between pu and qi can
be learned, rather than only linear inner product in traditional
MF training. The forwarding procedure in neural user-service
feature interaction layer is expressed as:

z1 = φ(pu , qi ) = [pu , qi ]

φ(z1) = a2

(
W T

2 z1 + b2

)

...

φx (zx−1) = ax

(
W T

x zx−1 + bL

)

Fig. 4. User neighborhood selection within different autonomous systems.

ŷu,i = σ
(
hTφ(zx−1)

)
(7)

where Wx , bx , and ax denote the weight matrix, bias vector
and activation functions, respectively. Here, Rectified Linear
Unit (ReLu) is applied as the activation function. Furthermore,
the typical tower pattern [10], is used to as the architecture in
our deep neural network for user-service feature interaction
shown in Fig. 3. The output of the neural user-service fea-
ture interaction layer is the predictive QoS for the target user
on target service r̂u,i , where user neighborhood is taken into
account during the model training.

C. Collaborative Neighborhood Selection

To further improve the accuracy of service QoS prediction,
neighborhood selection in a collaborative way is performed by
combining user geographical locations and historical QoS of
user-service invocations.

1) Location-Based Neighborhood Selection: Autonomous
system (AS) as a small unit decides which routing protocol
should be used in the system on the Internet. In many appli-
cation scenarios, AS can be a kind of simple network or a
network group controlled by one or more common network
administrators such as a university or a company.

It is a consensus that users who share the same access point
would have similar network latency when invoking a Web
service, and users with different access points in the same
AS would have minor differences when invoking a Web ser-
vice. Through many statistics and calculations, it’s proved that
users with smaller network distances or within closer physical
regions indeed have more similar QoS values [7]. For example,
Web services can be invoked by users with different geograph-
ical locations as shown in Fig. 4, a real-world Web service
invocation scenario with multiple ASs and access devices.
Suppose that User 1, User 2 are located in AS100, while User
3 and User 4, User 5 are located in AS110 with different
access devices. The arrows among users, access points and the
cloud represent service invocations, and the numbers around
the users represent the time measurements of network latency
of user-service invocations. We can see from Fig. 4, User 1
and User 2 with AP-1 in AS100 have the similar network
latency, while User 3 with AP-2, User 4, User 5 with AP-3 in
AS110 have the similar network latency between different APs
when invoking Service 1, although there are variable network
latencies with those users distributed in different ASs.

By this observation, the users who share the same AS are
selected as the neighborhood in terms of users’ physical and
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network locations. However, in some cases, AS can span con-
siderably wide geographical areas. In such case, although users
are located in the same AS, they may be a long distance
away with different network environment, leading to diverse
QoS experiences and disturbing the neighborhood selection.
In order to reduce inaccurate neighborhood selection, user-
service historical invocations and Adaptive Corrector (AC)
mechanism are also applied to exclude these latent inaccurate
neighbors by AS-based neighborhood selection.

2) Memory-Based Neighborhood Selection: Although
Pearson Correlation Coefficient (PCC) is the most widely
used approach to calculate similarity, it remains some
disadvantages analyzed in [3] to select user neighborhood.

Sun et al. [3] argue that PCC does not take the differences of
QoS values given by different users into account. To overcome
this issue, we apply ratio-based similarity (RBS) [12] method
for memory-based neighborhood selection. The similarity
between two users is calculated by:

Sim(u, v) =

∑
i∈I

min(ru,i ,rv,i )
max(ru,i ,rv,i )

|I | (8)

where ru,i and rv ,i are the QoS values when user u and v
invoke service i; min(ru,i , rv ,i ) is the minimum value of ru,i
and rv ,i ; max (ru,i , rv ,i ) is the maximum value of them; I =
Iu ∩ Iv is the co-invoked services set of user u and v; |I |
denotes the number of services in I.

After calculating the user similarity with RBS, we have user
neighborhood in terms of QoS values of service invocations.

3) Adaptive Corrector (AC): After achieving the two user
neighborhood sets from physical location and QoS values
of service invocations, we apply AC to determine the final
collaborative user neighborhood.

The process of merging two user neighborhood sets is
shown in Algorithm 1. If we aim to select k number of neigh-
bors for a target user u, we separately find top-k similar users
by location-based and memory-based approach. There are two
possibilities in collaborative neighborhood selection by AC.
One possibility is that if the size of location-based neighbor-
hood set Nl (u) is equal to k, then memory-based similarity set
Nm(u) is used through intersection operation to generate N(u).
Subsequently, we check the size of N(u). If len(N (u)) < k ,
Nl (u) is united into N(u); In such case, if len(N (u)) is still
smaller than k, we take the subset of Nm(u) to make the
size of N(u) equal to k, where those selected neighborhood
users are not included in N(u) and have the highest similarity
with the target user u. Another possibility is that if the size
of Nl (u) < k , then we combine it and the subset of Nm(u)
into N k (u), where those selected users from Nm(u) hold the
highest similarity with the target user.

D. Model Training and QoS Prediction

In this section, we first elaborate how to train the model by
integrating the neural user-service feature interaction with the
collaborative neighborhood selection. Upon the trained model,
we describe QoS prediction for service recommendation.

1) Loss Function and Model Optimization: Matrix factor-
ization is one of the most popular and effective techniques for
predicting missing values by revealing the latent features. In
traditional rating-based recommender systems, MF maps both

Algorithm 1: Adaptive Corrector of Neighborhood
Selection

Input: (1) Ni(u) //neighborhood of location-based approach (top-k)
(2) Nm (u) //neighborhood of memory-based approach (top-k)
(3) k //the predefined number of neighborhood

Output: N k (u) //collaborative neighborhood set (top-k)
if len (Nl (u)) = k then

N (u) = Nl (u) ∩Nm (u)
if len(N (u)) < k then

N (u) = N (u) ∪Nl (u)
end
if len(N (u)) < k then

N k (u) = N (u)∪N 2
m (u),where ∀un ∈ N 2

m (u), un /∈N (u),
and len(N 2

m (u)) = k − len(N (u)
end

end
if len(Nl (u)) < k then

N (u) = Nl (u)
N k (u) = N (u) ∪N 2

m (u),where ∀un ∈ N 2
m (u), un /∈ N (u),

and len(N 2
m (u)) = k − len(N (u))

end

users and items to a joint latent factor space of dimensional-
ity d, such that ratings are modeled as inner products in that
space. The premise behind MF is that there are a few potential
factors that affect the user’s preference on items. In our NDMF
framework, it divides an m×n user-service QoS matrix R into
two parts U and S with the dimensionality of latent factors d:

R ≈ UTS (9)

where U ∈ R
d×m and S ∈ R

d×n represent user and service
latent matrices, respectively.

The objective function used to approximate the original
user-service QoS matrix R with U and S by minimizing the
following term is expressed:

min
U ,S

1

2

m∑

i=1

n∑

j=1

∥∥∥Ri ,j − UT
i Sj

∥∥∥
2

F
(10)

where || · || denotes the Frobenius norm [16] that calculates
the difference between real value Rij and the corresponding
estimated value calculated through UT

i Sj , where U and S rep-
resent the matrices of user and service latent feature vectors,
respectively. Since each user generally invoked a small number
of services, the QoS matrix R is always sparse. Therefore, (10)
can be improved as:

min
U ,S

1

2

m∑

i=1

n∑

j=1

Ii ,j

(
Ri ,j − UT

i Sj

)2
(11)

where Ii ,j is the indicator function that it is equal to 1 if user
Ui invoked service Sj or 0 otherwise. To obtain the optimal U
and S approximate to R, two regularization terms related to U
and S are introduced for the purpose of overfitting avoidance,
which is expressed:

min
U ,S

L(R,U ,S ) =
1

2

m∑

i=1

n∑

j=1

Ii ,j

(
Ri ,j − UT

i Sj

)2

+
λ1
2
||U ||2F +

λ2
2
||S ||2F (12)

where λ1 and λ2 are two tunable parameters that control the
regularization degree. It is desired to minimize the sum of
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squared errors in (12). Since it is non-convex objective func-
tion, it is difficult to find the global minimum value [17].
Instead, the stochastic gradient descent technique [16] is
employed to find the sub-optimal solution with (13):

U ′
i = Ui − γ

∂L
∂Ui

S ′
j = Sj − γ

∂L
∂Sj

(13)

where γ > 0 represent the learning rate.
In our NDMF framework, to further utilize the user neigh-

borhood information, NDMF integrates the following term into
the basic objective function:

min
∑

j∈N (u)

∥∥Ui − Uj

∥∥2
F (14)

where Ui and Uj are the user latent feature vectors from user
embedding matrix U; Ui denotes the latent feature vector of
the target user i and Uj , j ∈ N (u) denotes its latent fea-
ture vector of neighborhood. It aims to minimize the latent
difference between each user and the corresponding neigh-
borhood to facilitate personalized QoS prediction, which can
be regarded as a means of correcting and optimizing the
representations of user latent feature vectors.

By incorporating (12) and (14), the objective function of
NDMF framework is transformed into:

min
U ,S

L′(R,U ,S ) =
1

2

m∑

i=1

n∑

j=1

Ii ,j

(
Ri ,j − UT

i Sj

)2

+
λ1
2
||U ||2F +

λ2
2
||S ||2F

+
α

2

m∑

i=1

∑

j∈N (u)

∥∥Ui − Uj

∥∥2
F

(15)

where α > 0 is a tunable parameter that controls the impor-
tance of difference between target user and the corresponding
neighborhood.

Similarly, we employ the gradient descent method to
approximately optimize the NDMF objective function and
expectantly reach the minimum L′:

∂L′
∂Ui

=

n∑

j=1

Ii ,j
(
Ri ,j − UiSj

)(−Sj
)
+ λ1Ui

+ α
∑

j∈N (u)

(
Ui − Uj

)
(16)

∂L′
∂Sj

=
m∑

i=1

Ii ,j
(
Ri ,j − UiSj

)
(−Ui ) + λ2Sj (17)

Given (9), (16) and (17), we fuse the objective function
of neural user-service feature interaction and the collaborative
neighborhood selection, and then employ the stochastic gradi-
ent descent technique [16] to find the sub-optimal solution.

Due to the non-convexity of the loss function in NDMF,
gradient-based optimization methods can only find sub-
optimal solutions. In the procedure of model optimization,
we first train the neural user-service feature interaction model
from scratch with random initializations until convergence, and

TABLE I
STATISTICS OF SERVICE DATASET

then use this model parameters as the initialization of NDMF’s
parameters with the optimizer RMSProp [18].

2) QoS Prediction: Once completing the model training
procedure, we generate the fine-trained NDMF model. When
performing the task of service QoS prediction, it has to specify
a target user and service as inputs, respectively. By applying
the NDMF model to predict the missing QoS for those entries
where users did not invoke the corresponding services, we can
recommend the same or similar Web services.

V. EXPERIMENTS

A. Service Dataset and Experimental Setup

We conduct experiments on widely-used the WS-DREAM
dataset,1 which is public and has large number of real-world
Web services collected and maintained by Zheng et al. [2].
It contains 1,974,675 historical QoS records of service invo-
cations (both response time and throughput) historical ser-
vice invocation records originating from 339 users on 5,825
services, which provides location information about users and
services. The statistics of dataset is illustrated in Table I. The
QoS dataset is represented in the form of a user-service matrix,
where a row represents the QoS of a user who invokes all of
the services, and a column represents the QoS of a service
that is invoked by all of the users.

To validate the performance of our proposed approach, we
conducted various experiments under different matrix densities
with 5%, 10%, 15%, 20% (both response time and through-
put), which include randomly selected number of 98,734,
197,468, 296,201, 394,935 observations as training set and
200,000 observations in each specified density as testing set.

All the experiments are carried out on a workstation with a
NVIDIA Geforce 1080Ti GPU, Intel Xeon Gold 6132 CPU@
2.60 GHz, and the components of the NDMF approach are
implemented by Python 3.7.4 with Pytorch 1.1.0.

B. Evaluation Metrics

Mean absolute error (MAE) and root mean square error
(RMSE) used as the two evaluation metrics to measure the
accuracy of service QoS prediction among the competing
approaches in the experiments.

MAE is defined as:

MAE =

∑
u,i

∣∣ru,i − r̂u,i
∣∣

N
(18)

where r̂u,i and ru,i are the predicted and ground truth value of
the target user invoking a service, respectively; N is the num-
ber of the predicted QoS values. Since MAE is linear to the

1https://wsdream.github.io/
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TABLE II
PARAMETER SETTINGS

deviation of QoS prediction, all the individual differences are
weighted equally in the average. It is obvious that the smaller
MAE is, the better QoS prediction accuracy it indicates.

RMSE measures the deviations between those predicted
QoS and their corresponding observed QoS, which is then
squared and averaged for calculating the square root. It is
defined as:

RMSE =

√∑
u,i

(
ru,i − r̂u,i

)2

N
(19)

RMSE represents a relatively high weighting to large errors
because they are squared before they are averaged by the
number of samples.

In our experiments, MAE reflects the overall accuracy of
QoS prediction, which averages absolute deviations to the
ground truth QoS values. Compared with MAE, RMSE is
very sensitive to individual outliers by representing a rela-
tively high weighting to large errors on predicted QoS values.
They are the most widely-used evaluation metrics in service
QoS prediction [1]–[3], [5], [7], [19] and other quantitative
prediction tasks [20]–[22], since they can intuitively show the
error between the predicted value and the ground truth one.

C. Competing Approaches

In the experiments, we compared with twelve compet-
ing approaches, including UMEAN, IMEAN, UPCC [1],
IPCC [23], UIPCC [24], NMF [25], PMF [26], LACF [4],
NIMF [8], NAMF [7], NeuMF [10], LRMF [19].

- UMEAN (User Mean): It is a user-based QoS prediction
approach. It averages all the QoS values of the services that
the target user invokes as the predicted result. It is the baseline
approach.

- IMEAN (Item Mean): It is a service-based QoS prediction
approach. It averages all the QoS values of the target ser-
vice that is invoked by users as the prediction result. It is the
baseline approach.

- UPCC: It is a user-based CF approach using PCC for
service QoS prediction. It is required to find a set of similar
users as the neighborhood of the target user with PCC. The
prediction result combines the average QoS by UMEAN and
the deviation migration based on the found similar users.

- IPCC: It is a service-based CF approach using PCC for
service QoS prediction. It selects the most similar services
as the neighborhood of the target service with PCC. The
prediction result combines the average QoS by IMEAN and
the deviation migration based on the found similar services.

- UIPCC: It is a comprehensive CF approach for service
QoS prediction by the combination of UPCC and IPCC, which
utilizes a parameter to adjust the weighting of UPCC and

IPCC. It provides a fundamental approach by simultaneously
considering similar users and services for predicting the
missing QoS.

- NMF: It is a non-negative matrix factorization approach
that makes service QoS prediction by non-negative factorized
factors without considering neighborhood information. It is
the basic traditional model-based approach for service QoS
prediction that is used as the foundation of follow-up ones by
incorporating more heuristic information.

- PMF: It is a probabilistic matrix factorization approach
which introduces probability model to optimize matrix factor-
ization model for service QoS prediction. It is a model-based
representative approach by updating the traditional matrix
factorization.

- LACF: It is a location-aware collaborative filtering
approach for service QoS prediction that uses both the loca-
tions of users and services. It is a typically memory-based
approach that takes location context into account when calcu-
lating the similar users/services.

- NIMF: It is a representative neighborhood-integrated
matrix factorization approach that was the first one merg-
ing similar users into matrix factorization for service QoS
prediction. It applies PCC to identify user neighborhood based
on historical service invocation QoS. It is similar with our
proposed approach, where neighborhood information is incor-
porated into the model training. However, the significant
differences in our research not only include neighborhood
selection by combining both historical service invocation QoS
and location context, but also perform model learning by deep
neural network, rather than traditional matrix factorization.

- NAMF: It is a network-aware matrix factoriza-
tion approach which also integrates users’ neighborhood
information into matrix factorization for service QoS
prediction. It is also a representative approach by incorpo-
rating user neighbors into model training by traditional matrix
factorization. Unlike the NIMF, it selects user neighborhood
based on their geographical locations, while both historical
service invocation QoS and location context are considered in
our approach NDMF.

- NeuMF: It is an advanced neural collaborative filtering
approach that combines multi-layer perceptron and matrix fac-
torization for recommender systems. It is a very influential
deep learning approach that is used to rank the items for a
target user and solve regression problems such as service QoS
prediction.

- LRMF: It is a location and reputation aware matrix factor-
ization approach that integrates users’ location information and
reputation into matrix factorization for service QoS prediction.
It calculates user reputation to minimize the influence of
those dishonest users who distribute excellent QoS for their
own services and bad QoS for other competing services.
It is a state-of-the-art approach based on traditional matrix
factorization.

D. Experimental Results and Analysis

To validate the effectiveness of our proposed NDMF
approach for service QoS prediction, we compare it with
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TABLE III
EXPERIMENTAL RESULTS OF SERVICE QOS PREDICTION AMONG COMPETING APPROACHES IN RESPONSE TIME

TABLE IV
EXPERIMENTAL RESULTS OF SERVICE QOS PREDICTION AMONG COMPETING APPROACHES IN THROUGHPUT

state-of-the-art memory-based and model-based approaches
under the parameter setting in Table II. In the experi-
ments, we run all these competing approaches with the
same training and testing dataset, where the model param-
eters with the best performance are directly used as they
are suggested in the experiments of the references. To
avoid the deviations, the experiments are run for sev-
eral times to guarantee the fairness of the performance
comparison between our proposed approach and the base-
lines.

Table III and Table IV illustrate the experimental results
on response time (RT) and throughput (TP) compared with
state-of-the-art approaches. Here, lower MAE and RMSE indi-
cate better performance on service QoS prediction. As can be

seen from the tables, the proposed NDMF remarkably outper-
forms the traditional approaches on both RT and TP datasets.
In the tables, we make the best results of competing bold
and calculate the performance gains on them. The experimen-
tal results demonstrate that our approach has a remarkably
stepwise improvement on MAE up to 13.2% on RT and
11.4% on TP, respectively. UMEAN and IMEAN as the
baseline perform poorly in QoS prediction because they aver-
age the historical records directly without mining any latent
patterns; UPCC, IPCC and UIPCC improve a lot in QoS
prediction performance through CF approach incorporating the
user or service neighborhood, and LACF use extra geographi-
cal context in neighborhood selection that performs better than
previous approaches; NMF and PMF as basic MF approaches
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Fig. 5. The performance impact of service QoS prediction with the changes of user neighbors number in NDMF.

show large improvement compared with CF approach in
QoS prediction because CF is vulnerable to the data spar-
sity, whereas MF is much better in dealing with it; NIMF
and NAMF as the traditional neighborhood-incorporated MF
approaches have a slight improvement compared with NMF
and PMF because they incorporate neighborhood in the model
training. Although NeuMF performs well in recommender
systems, it does not work well in service QoS prediction
because QoS data is more discrete and has bigger data span.
Even though LRMF mines latent user reputation and incor-
porates geographical context in model training, it still does
not gain superior performance compared with other MF based
QoS prediction approaches. From the results, we can see
that NAMF can perform the best among the conventional
approaches in some cases with specified matrix densities.
However, other approaches dominate the performance of ser-
vice QoS prediction when the density is set to be 10% in
different densities on RT and TP. Due to failing to extract
implicit interactions in the traditional approaches, we observed
that it is difficult to improve the performance even when
neighborhood is taken into account and integrated into matrix
factorization. Since deep neural network for the representation
of latent user-service feature interaction is used in matrix
factorization, our NDMF can overcome the bottleneck of
the existing ones, which can achieve better performance for
service QoS prediction. More specifically, with the variance
of matrix density from 0.05 to 0.20 on RT and TP, we
observe that all of the competing approaches can receive bet-
ter MAE and RMSE, since more QoS values can be used for
precisely selecting neighborhood as well as matrix factoriza-
tion. From the results, the performance of NDMF can become
increasingly better and is always superior to other compet-
ing approaches along with the increase of matrix density.
Consequently, we conclude that the proposed NDMF approach
performs the best for service QoS prediction among all of the
competing approaches with different matrix densities.

E. Performance Impact of Parameters

In the experiments, three main parameters impact the
performance of service QoS prediction in NDMF approach.
1) the number of similar users for collaborative neighborhood
selection; 2) the depth of deep neural network for user-service
implicit feature interaction; 3) the dimensionality of user and
service representation.

1) Impact of the Collaborative User Neighborhood: To
study the performance impact of the number of similar users,

we denote it as k. It is varied from 0 to 25 with interval of 5.
The performance impact of service QoS prediction along with
the changes of the number of neighborhood users is shown in
Fig. 5. From the results, we observe that as k becomes larger,
its prediction accuracy initially increases and then reaches the
best at k = 5. After that, the performance decreases along
the with increase of similar users. The reason is that at first
more similar users included in the model training can pro-
vide more useful information that leads to better performance.
However, as k goes larger and larger, some selected users that
are not highly similar with the target user affect the service
QoS prediction accuracy.

Due to the constraints of WS-DREAM service QoS dataset,
we currently do not take the time factor into account when
the service is invoked by users. However, two users connected
to the same AP and AS could receive different QoS invo-
cation experiences, when they invoke the same Web service
in different periods of a day. Thus, time factor would pos-
itively influence collaborative neighborhood selection. If we
take the time parameter into account, what would happen on
the performance of NDMF? It would help NDMF in making
more accurate service QoS prediction.

2) Impact of Depth of Deep Neural Network: Neuron is
the basic unit of arithmetic that constitutes a deep neural
network(DNN) in NDMF framework. In this work, DNN is
implemented as tower structure to better learn more non-linear
implicit feature interactions between user and service. The
depth of DNN layer influence the accuracy of service QoS
prediction. The performance impact of the depth of DNN layer
is shown in Fig. 6.

It can be seen from the experimental result, the prediction
error is very high both in MAE and RMSE when the depth of
DNN layer is set to be 1. As the DNN layer goes deeper, the
QoS prediction accuracy significantly improves at first, and then
gradually improve to a less extent on MAE and RMSE. DNNs
can learn complex and non-linear interaction function of latent
vectors, making up the limitations of traditional MF. However,
when the depth of DNN layers is too shallow, it cannot fully
reach the ability of fitting interaction function well.

3) Impact of Dimensionality of User and Service
Representation: Dimensionality of user or service vec-
tor determines how many latent factors are utilized to
characterize the features of users or services. To test the
performance impact of dimensionality on service QoS
prediction, we vary the dimensionality d by 2, 4, 8, 16,
32, 64 and set the matrix density as 0.05, 0.10, 0.15 and
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Fig. 6. The performance impact of service QoS prediction with the changes of DNN layers number in NDMF.

Fig. 7. The performance impact of service QoS prediction with the changes of dimensionality and data density in NDMF.

0.20, respectively. The experimental results of service QoS
prediction along with the changes of dimensionality and
matrix density on MAE and RMSE are shown in Fig. 7.

It is observed that the acuracy of service QoS prediction
improves along with the decrease of user and service vec-
tor dimensionality on both the service dataset of RT and TP.
The prediction accuracy is dramatically improved as matrix
density increases from 0.05 to 0.15 and dimensionality drops
from 64 to 8. Nevertheless, it changes slowly when it achieves
density > 0.15 and d < 8. Moreover, the best dimensional-
ity d for service QoS prediction changes along with different
matrix densities. The reason of these phenomena is that when
service QoS matrix is too sparse, the parameters cannot be
fully learned and optimized by model training, so that the
implicit features of users and services are poorly represented
via deep matrix factorization model; on the contrary, as the
service QoS dataset becomes denser, more implicit features
can be mined by the NDMF model. In such case, high dimen-
sionality should be used to represent the implicit features for
differentiating the users or services, which receives better QoS
prediction accuracy.

F. Analysis of Time Consumption

To analyze the time consumption of NDMF, we carry out
the experiments under different parameter settings on matrix

density, the number of user neighbors and DNN layers. The
experiments of competing approaches are run for 20 rounds
that are averaged as the final value to guarantee the fair-
ness of the comparison on time consumption. The results are
illustrated in Fig. 8.

Along with the increase of matrix density as shown in
Fig. 8(a), time consumption of all approaches grows from
more data for model training and finding similar users or
services. Specifically, memory-based approaches like UPCC,
IPCC, UIPCC and some model-based approaches like NMF,
NeuMF perform well in time consumption. Since NDMF and
NIMF are neighborhood-integrated approaches, it is observed
that time consumption of them is much higher than other
approaches, where NIMF is even about two times higher
than NDMF. More deeply, the experiment results illustrated in
Fig. 8(a) consist of the time consumption for model training
and all vacant QoS values prediction. Taking matrix density
with 0.05 as an example, model training process is performed
on approximately 100,000 training samples, which consumes
more time than QoS prediction process according to Fig. 8(c).
However, model training can always be performed offline in
realistic practical scenarios. As for QoS prediction process,
it calculates all the vacant service QoS values by using the
learned model, which consumes less than 1 minute for almost
200,000 test samples as shown in Fig. 8(c). That is, it takes
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Fig. 8. The time consumption of NDMF against competing approaches with different parameter settings.

around 0.00024s to predict a vacant QoS value, which indi-
cates an example of a user invoking a Web service. Moreover,
the computing capability is limited in the experiments and
it can be transplanted to a more powerful platform to fur-
ther shorten the time consumption of model training and QoS
prediction in real-world applications. Therefore, NDMF is
still efficient and could be potentially deployed and adopted
to achieve much better service QoS prediction accuracy in
real-world service-oriented applications.

As the increasing number of user neighbors shown in
Fig. 8(b), time consumption gradually arises in NDMF. The
reason is that more user neighbors are selected in NDMF, it
consumes much more time for model training and predicting
vacant service QoS values. However, it does not show the trend
of explosion on time consumption as the number of user neigh-
bors arises. In many cases, to achieve the best performance on
QoS prediction accuracy, the number of user neighbors can
not be too large but an appropriate value, whereas the realistic
number of user neighbors varies with different datasets.

To analyze the impact on time consumption of network
structure, we run NDMF with different setting of DNN lay-
ers as shown in Fig. 8(c). Here, training step experiences the
whole span of model training by using training set until it
converges to the optimal or suboptimal point, which contains
several epochs. Based on the learned model, prediction step
experiences the whole process of predicting all the vacant QoS
values by using test set. The results illustrate that training step
and prediction step cost almost cost the same time in different
number of DNN layers, respectively. The underlying reason
is that although the number of neurons varies in NDMF, the
propagation process of DNN is very quick, leading to a stable
time consumption in the same data size.

VI. RELATED WORK

A. Memory-Based Approaches for Service QoS Prediction

The memory-based approach for service QoS prediction has
been widely studied since the use of CF by Shao et al. [1]. It
includes user-based [27], item-based [23], and comprehensive-
based [2]. By the use of historical QoS invocation records,
similar users or services can be selected by similarity calcula-
tion approach such as PCC, Cosine et al. The crucial step of
memory-based approach is to perform similarity calculation on

users or services for service QoS prediction. To more accurately
calculate the similarity of users or services, enhanced memory-
based CF approaches have been proposed. Jiang et al. [28]
mined personalized features of users and services by analyzing
historical QoS records and combined them into the calculation
procedure of user and service similarity. Sun et al. [3] investi-
gated the QoS distribution and proposed a novel collaborative
filtering approach for QoS prediction. It normalizes the QoS
values to the same range and then unifies the similarity in multi-
dimensional vector spaces. Wu et al. [12] proposed a novel
ratio-based similarity approach to select neighborhood of users
and services. Compared with PCC similarity [29] and cosine
similarity [23], it is more precise for predicting the unknown
service QoS. Wu et al. [30] employed the data smoothing
technique on the user-service QoS matrix, and proposed an
enhanced CF approach to alleviate the issue of matrix sparsity
of user-service QoS invocations.

Moreover, some researchers try to take advantage of extra
heuristic information of user and service to assist in boosting
the accuracy of service QoS prediction. Xi et al. [31] applied
the users’ IP addresses to find similar users. They assumed that
users with similar IP addresses are located in the same region
and have similar QoS experiences. Wei et al. [32] employed
users’ longitude and latitude to calculate distance and identify
similar users. Tang et al. [4] combined users’ and services’
locations before the similarity calculation, which reduces the
scale of finding similar users and services.

Although memory-based collaborative filtering approaches
have been widely investigated for service QoS prediction, it is
sensitive and vulnerable to the sparsity of QoS records matrix,
due to few service invocations by users.

B. Model-Based Approaches for Service QoS Prediction

In recent years, model training by matrix factoriza-
tion has been widely studied for service QoS prediction.
Zheng et al. [8] proposed a MF-based prediction approach that
integrates users’ neighborhood information into the factoriza-
tion model, where PCC is applied to calculate the similarity
and select user neighborhood.

Matrix factorization also employed user and service con-
text in the model training for improving the accuracy of
service QoS prediction, such as geographical information.
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Li et al. [19] proposed an approach of service QoS prediction
which incorporates the reputation and location as the heuristic
information in model training. By doing so, those dishonest
users, who distribute their own services with excellent QoS but
bad QoS to services with the same or similar functionality on
purpose to attract more users to use their published services,
can be effectively identified to improve the QoS prediction
accuracy.

Xu et al. [33] proposed a location-integrated QoS prediction
approach, which finds the similar users within a distance
threshold based on their longitudes and latitudes. However,
users with close geographical position do not mean they are
close in the network path, which indicates they might not
have the same or similar network environment. On the con-
trary, when users are close in network distance, they might
share the same network devices or similar network environ-
ment that promotes the service QoS prediction accuracy. Upon
the assumption, Tang et al. [7] proposed a network-aware QoS
prediction approach NAMF that integrates neighborhood into
matrix factorization. NAMF measures the network distances
between users with network map between users and then cal-
culates the neighborhood as heuristics for matrix factorization.
However, NAMF calculates user similarity without consider-
ing their historical QoS records, which may discard similar
users with latent similar service invocations.

In recent years, deep learning techniques have been widely
applied to improve the recommendation quality and optimize
the QoS management. He et al. [10] proposed an effective
approach called NeuMF that incorporates traditional matrix
factorization with a deep neural network to solve the poor
representation of MF in low dimensions. By using deep
reinforcement learning, Guo et al. [34] proposed a Deep-Q-
Network based multi-service QoS optimization approach that
helps make decisions to optimally and dynamically schedule
the limited radio resource for QoS flows in mobile edge com-
puting (MEC). To provide enhanced QoS with improved data
rates in mobile IoT, Zafar et al. [35] proposed an approach of
threshold percentage dependent interference graph (TPDIG)
by deep learning based resource allocation algorithm for city
buses mounted with moving small cells (mSCs), where Long–
Short Term Memory (LSTM) is applied to predict the locations
of city buses with high QoS for interference determination
between mSCs. Additionally, Guo et al. [36] proposed a
deep reinforcement learning based QoS-aware secure rout-
ing protocol, which extracts knowledge from history traffic
demands and dynamically optimize the routing policy while
guaranteeing the QoS in software defined network.

VII. CONCLUSION AND FUTURE WORK

In this article, we proposed a novel neighborhood-integrated
deep matrix factorization approach called NDMF, which aims
at more accurately predicting service QoS. First, it captures
the complex non-linear interaction of user and service implicit
features by deep neural network, which replaces the inner
product interaction function in the traditional matrix factor-
ization. Second, user neighborhood is effectively selected in a
collaborative way by both the historical QoS records and users’

geographical information. Finally, it integrates user neighbor-
hood as heuristics into the deep matrix factorization model
for service QoS prediction. Extensive experiments have been
conducted on real-world service invocation QoS datasets to
evaluate the performance of NDMF. The results demonstrate
that NDMF can significantly improve the accuracy of service
QoS prediction compared with state-of-the-art approaches.

In the future, we plan to further extend our model adapting
to new users or services added in an incremental learning way,
and explore the integration of users’ and services’ geo-location
embeddings into deep neural network to reduce model training
time and improve the accuracy of service QoS prediction.
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