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A B S T R A C T   

Gene regulatory network models the interactions between transcription factors and target genes. Reconstructing 
gene regulation network is critically important to understand gene function in a particular cellular context, 
providing key insights into complex biological systems. We develop a new computational method, named 
iMPRN, which integrates multiple prior networks to infer regulatory network. Based on the network component 
analysis model, iMPRN adopts linear regression, graph embedding, and elastic networks to optimize each prior 
network in line with specific biological context. For each rewired prior networks, iMPRN evaluate the confidence 
of the regulatory edges in each network based on B scores and finally integrated these optimized networks. We 
validate the effectiveness of iMPRN by comparing it with four widely-used gene regulatory network recon-
struction algorithms on a simulation data set. The results show that iMPRN can infer the gene regulatory network 
more accurately. Further, on a real scRNA-seq dataset, iMPRN is respectively applied to reconstruct gene reg-
ulatory networks for malignant and nonmalignant head and neck tumor cells, demonstrating distinctive differ-
ences in their corresponding regulatory networks.   

1. Introduction 

Cell types or stable states are defined by a particular combination of 
transcription factors (TFs) and their target genes (Lambert et al., 2018). 
Such regulatory interactions among TFs and their target genes are 
usually represented as a gene regulatory network (GRN), where nodes 
are TFs and their target genes, and edges represent the regulatory re-
lationships (Fiers et al., 2018). In different cell types, some gene regu-
latory interactions may be very conserved and ubiquitous and many may 
only occur in certain tissues (Marbach et al., 2016; Iacono et al., 2019). 
Therefore, establishing accurate and comprehensive GRNs that express 
the regulatory interactions is essential to understand gene function in 
complex biological systems, providing key insights into gene-disease 
association (Fazilaty et al., 2019). 

A plethora of methods have been developed to reconstruct gene 
regulatory networks over the past few years (Chen and Mar, 2018; 
Pratapa et al., 2020). While each method has its own unique charac-
teristics in terms of underlying algorithm, one of the most distinctive 
differences between these GRNs methods are what types of data and 
information they are based on (Geurts et al., 2018). Existing network 
inference approaches are usually either in the form of steady-state 

expression data or time series expression data (Castro et al., 2019). 
Accordingly, these methods can be divided into two categories. Methods 
in the first category directly infer gene regulatory networks from input 
gene expression data. For example, GENIE3 uses a tree-based method to 
reconstruct GRNs between target genes and other genes (Irrthum et al., 
2010). PIDC obtains the regulatory relationship between genes based on 
information theory (Chan et al., 2017). PPCOR calculates partial cor-
relation coefficient and semi-partial correlation coefficient between all 
gene pairs and construct a GRN (Kim, 2015). SCENIC is a recent 
single-cell method for identifying stable cell states and network activity 
based on the estimated GRN model (Aibar et al., 2017). The second type 
of method is to use time series data of genes to construct gene regulatory 
networks in addition to expression data. LEAP defines a fixed-size time 
window on pseudo time-ordered data and calculates the Pearson cor-
relation between genes to obtain the regulatory relationship between 
genes (Specht and Li, 2017). For given time-stamped single-cell tran-
scription data, SINCERITIES uses the Kolmogorov-Smirnov(KS) statistic 
to calculate the temporal change in the expression of each gene through 
the distance of the marginal distribution between two consecutive time 
points (Papili Gao et al., 2018). SCODE is a method developed to 
reconstruct a GRN for single-cell transcription data. Specifically, the 
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expression dynamics of transcription factors are described using linear 
ODEs (Matsumoto et al., 2017). SCNS takes single-cell gene expression 
data acquired over a period of time as in put and calculates logic rules 
(Boolean formulas) to simulate the progress and transformation of genes 
from the initial cell state to the later cell state (Woodhouse et al., 2018). 
BiXGBoost is a bidirectional-based method by considering both candi-
date regulatory genes and target genes for a specific gene (Zheng et al., 
2019). 

While these network inference methods have made significant 
progress, their performance on real datasets remains far from optimal. 
Due to the complex relationship between the expression of TF and its 
regulatory activity, it is still a major challenge to accurately inference 
gene regulatory network (Todorov et al., 2019). Previous analysis has 
shown that it would be helpful to further rely on the TF activity inferred 

from the data (Qiu et al., 2020). Network component analysis (NCA) has 
been proved to be a successful approach to infer such regulatory activ-
ities (Liao et al., 2003). As NCA requires prior knowledge of the GRN to 
infer TF activities, research effort has focus on integrating prior 
knowledge from different conditions to boost network inference 
(Arrieta-Ortiz et al., 2015; Miraldi et al., 2019). Methods such as 
Inferelator and Netrex both apply the NCA to generate context-specific 
GRNs improve the accuracy of network inference (Arrieta-Ortiz et al., 
2015; Wang et al., 2018). However, reconstructing GRNs based on only 
a prior network may make the result dependent on the prior network. 

Here we introduce a new computational method, named iMPRN, to 
infer regulatory network by integrating multiple prior networks. The 
proposed iMPRN first calculates the activities of transcript factors by 
NCA model based on the initial prior network, then adjust the edges of 

Fig. 1. The schematic flowchart of the proposed iMPRN. (A) Inferring an initial prior gene regulatory network with transcription factors and target genes represented 
as nodes and regulatory links as edges. (B) Estimating the activity of transcript factors and optimized the prior network. (C) Reevaluating regulatory links of each 
network and integrating the optimized prior GRNs to form the final high confidence GRN. 
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the prior network according to the activity of the regulatory genes to 
ensure that the generated network consistent with the biological 
context. For each the optimized network, the regulatory edges are sorted 
according to the calculated confidence scores. Then, iMPRN integrates 
these optimized GRNs to obtain the final gene regulatory network. In the 
model of iMPRN, we optimized and integrated multiple prior networks 
to decrease the impact of noise of scRNA-seq data and the dependence of 
the initial prior network. To evaluate the performance of iMPRN, we 
compare it with four widely-used methods on a simulation dataset of the 
hematopoietic stem cell differentiation process (HSC). The experimental 
results show that iMPRN outperforms state-of-the-art methods in terms 
of accuracy and scalability. Further, to investigate the differences in the 
regulatory mechanisms between malignant and non-malignant tumor 
cells, we apply iMPRN to single-cell RNA-seq data of head and neck 
tumor, identify the key genes of the two inferred GRNs, and observe 
distinctive differences in the gene functions of malignant and non- 
malignant tumor cells. 

2. Materials and methods 

2.1. The iMPRN method 

To investigate the underlying mechanisms of gene regulation, we 
propose a new computational method iMPRN to infer gene regulatory 
network by integrating multiple prior networks. As reconstructing GRNs 
based on only a prior network may make the result dependent on the 
prior network, here we integrate multiple prior networks to decrease the 
dependence. The method consists of three main steps, as illustrated in 
Fig. 1. Firstly, we infer initial prior networks using different network 
inference methods. Secondly, using each prior network as the input to 
the NCA model to infer TF activities, and apply a Proximal Alternative 
Linearized Maximization algorithm to optimize the network based on 
relationships between the inferred TF activities and gene expression. 
Finally, we construct the final GRN by integrating the optimized prior 
GRN. 

Step 1. Inferring initial prior regulatory networks 
For the methods requiring prior knowledge of GRN, the prior 

network usually come from a related tissues or from the same organism 
without sufficient data. It may be far from the underlying true regulatory 
network and import certain bias into the downstream analysis. To 
reduce the bias and improve robustness, iMPRN infers regulatory 
network based on multiple prior networks. Given the expression data 
and prior information, we respectively adopt multiple network inference 
methods to reconstruct the initial networks. The prior information refers 
to any data that contains direct TF-target information. One source of 
such prior knowledge is an ever-growing collection of experimentally 
validated and manually curated databases of regulatory interactions. In 
addition, DNA-binding information also can be used to generate priors 
on mammalian regulatory network structure. According to previous 
evaluation, four state-of-the-art methods are respectively adopted, 
including GENIE3, PIDC, PPCOR and GRNBoost2. Specifically, these 
methods requires one or more parameters to be specified. As a previous 
method does (Siahpirani and Roy, 2017), we perform parameter esti-
mation for each of these methods separately and provide them with the 
parameters that resulted in the best AUROC values. These inferred 
networks are then fed as prior information to the next step. 

Step2. Optimizing the prior network based on NCA model and PALM 
algorithm 

Given each prior network, we respectively approach network infer-
ence by modeling gene expression as a weighted sum of the activities of 
transcript factors. The goal is to estimate the TF activities and optimize 
the network from gene expression data as accurately as possible (Liao 
et al., 2003). As the previous method NetREX (Wang et al., 2018), the 
gene expression data X is represented by a linear relationship between 
regulatory activity A and regulatory relationship network R: 

X(i, :) =
∑

j
R(i, j) × A(j, :) + τ(i, :) (1)  

where X(i, :) denotes the expression data of gene i, R(i, j) denotes the 
potential regulatory relationship between gene i and TF j, A(j, :) repre-
sent the regulatory activity of TF j and τ(i,:) represents noise. 

Subsequently, estimation of the TF activities and optimization of the 
network structure of the prior GRN can be consider as finding the 
optimal linear model with several constraints. The constraints may 
delete or add the edges of the prior GRN to make the GRN topology 
related to biological context. The optimization problem after adding 
constraints is represented as: 

min
1
2
‖ E − SA‖

2
F + λ(‖ R0‖0− ‖ R0 ⊙ R‖0+ ‖ R0 ⊙ R‖0)

+ktr(RT LR) + η ‖ R0‖0 + ξ ‖ R‖2
F + μ ‖ A‖2

F

s.t. ‖ R‖∞ ≤ a, ‖ A‖∞ ≤ b.

(2)  

where λ, κ, η, and μ are parameters that control the importance of the 
relevant parts. The part controlled by λ constrains the number of edge 
added or deleted, where R0 is the complement adjacency matrix of the 
prior GRN φ0, i.e R0 + R0 = 1N×M. ‖X ‖ 0 is the l0 norm, which counts the 
number of non-zero items in X. ⊙ is the Hadamard product between 
matrices. Here,‖R0 ‖ 0 − ‖ R0 ⊙ R ‖ 0 represents the number of regulatory 
edges removed compared to φ0. ‖ R0 ⊙ R‖0represents the number of 
regulatory edges added compared to φ0. Therefor, λ can control the 
number of edges in the network structure. The larger the λ, the fewer 
edges can be added or deleted. 

The part controlled by κ (the figure embedded part) encourages that 
if gene i and gene j are correlated with each other, they are more easily 
regulated by the same TF gene k. Where tr() is the rank of the matrix. η in 
Eq. (2) encourages sparsity in the final network structure. In addition, 
the part controlled by the parameter ξ uses the Frobenius norm to 
encourage all TFs to have non-zero values in R. In that case, η ‖ R0‖0 +

ξ ‖ R‖2
F is similar to a l1 elastic network (Zou and Hastie, 2005), here is 

called l0 elastic network. According to the proof of NetREX, the l0 elastic 
network may encourage TFs with similar activities to regulate the same 
set of genes. Finally, the part controlled by the variable μ controls the 
smoothness of the activity matrix A, which makes each element in A 
within the limits of {-b, b}. 

To solve the convergence of the optimization, the proposed iMPRN 
relies on a Proximal Alternative Linearized Maximization (PALM) al-
gorithm (Bolte et al., 2014). PALM can resolve the optimization problem 
of linear regression formulation, which is formulated as: 

min : H(S,A) = F(R,A) + ϕ(R) + ψ(A), R ∈ γ, A ∈ Ω (3)  

where γ and Ω are the constraint sets of R and A and the PALM algorithm 
applies a technique called proximal forward-backward scheme to R and 
A. 

Then, we converts the optimization problem Eq. (2) into the PALM 
algorithm framework introduced in Eq. (3) as below: 

F(R,A) :=
1
2
‖ X − RA‖

2
F + ktr(RT LR) (4)  

ϕ(R) := λ(‖ R0‖0− ‖ R0 ⊙ R‖0+ ‖ R0 ⊙ R ‖ +ξ ‖ R‖2
F) (5)  

ψ(A) := μ ‖ A‖2
F (6)  

The constraint sets γ and Ω are γ = {R| ‖ R ‖ ∞ ≤ a} and 
Ω = {A| ‖ A ‖ ∞ ≤ b}. 

Based on the PALM algorithm, the optimization problem represent 
by Eq. (2) is transformed into the new form as Eqs. (4)–(6). Next, we 
iterate the GRN regulatory relationship matrix R and the TFs activity 

Y. Gan et al.                                                                                                                                                                                                                                     



Computational Biology and Chemistry 93 (2021) 107512

4

matrix A according to Eqs. (4)–(6) until convergence, and the final R and 
A obtained are optimized GRN and TF activities output based on each 
prior network. 

Step3. Integrating multiple optimized prior networks 
After obtaining the individual optimized prior networks based on 

NCA model and PALM algorithm, they are further integrated to improve 
the inference performance (Fig. 1C). Aggregates are expected to include 
either the most significant edges from each individual networks and the 
most frequent ones. To select the most significant edges, we rank the 
edges in each optimized GRNs by confidence scores B, which measure 
their influence on the overall performance of the linear regression 
model. The confidence score B is computed by the following equation: 

B(i, j) = 1 −
‖ X(i, :) −

∑
k∕=jR(i, k)A(k, :)‖

2
F

‖ E(i, :) − R(i, :)A‖2
F

(7) 

In order to make the results more robust and avoid overfitting, the 
gene expression data is re-sampled in an alternative ways and the above 
process is repeated several times. We compute the average confidence 
score of each edge that have appeared in the networks and ranking the 
edges based on the average scores. Finally, for each optimized prior 
network, we can obtain a ranking of these regulatory edges based on the 
bootstrap strategy. 

Next, we integrate these optimized prior regulatory networks into a 
final GRN. We seek to select the most significant and the most frequent 
edges across these multiple optimized networks. As the previous study 
(Marbach et al., 2010), we calculate the average score of the confidence 
scores of all the edges that appear in these multiple optimized regulatory 
networks. Finally, we sort the average score of the regulatory edges and 
select the top m edges as the output of the final gene regulatory network, 
where m is an given threshold. For the case without any pre-information, 
we apply different parameters and obtains the final ranking of the edges 
by reaching agreement. 

2.2. Datasets and data preprocessing 

For real biological scRNA-seq data, it is usually difficult to obtain the 
real edge tags of the gene regulatory network. In order to validate the 
effectiveness of iMPRN and compare it with existing methods, we first 
use two simulation datasets generated according to the Boolean model 
as the input expression data of regulatory network (Pratapa et al., 2020). 
The advantage of using the Boolean model is that it can be used as a real 
regulatory model to evaluate the performance of GRN (Giacomantonio 
and Goodhill, 2010). The data can simulate the interplay of gene regu-
lation in various development processes. Here, we use two simulation 
datasets, including the hematopoietic stem cell differentiation process 
(HSC) and Gonadal Sex Determination (GSD). These two datasets 
respectively includes 10 data sets composed of 2000 cells, all of which 
are simulated by the Boolean model. In order to test the robustness of 

our method to zero-inflated data, common in transcripts with low 
abundance, we further simulate dropout datasets. Zero measurements 
appear to be a combination of technical errors and genuine lack of 
expression due to stochasticity or biological state (Kharchenko et al., 
2014). We simulated dropout events at a certain rate. Here, expression 
values in the lowest 50% for each gene had a 50% probability of being 
recorded as 0 (Chan et al., 2017). For each dataset in HSC and GSD, we 
divide it into two parts, one is kept as the original dataset and the other 
part is to add a 50% dropout rate to the dataset to test the performance 
of iMPRN in the case of data noise. 

To investigate the differences in the regulatory mechanisms between 
malignant and non-malignant tumor cells, we then use the single-cell 
gene expression data of human head and neck cancer cells 
(GSE103332) as the input data for reconstructing gene regulatory net-
works (Puram et al., 2017). The GSE103322 data was downloaded from 
the data repository NCBI Gene Expression Omnibus. Specifically, the 
dataset GSE103322 contains 5902 cells (2215 malignant tumor cells and 
3363 non-malignant tumor cells) from human head and neck tumor. We 
divide the gene expression data of head and neck tumor cells into two 
datasets, malignant cells and non-malignant cells. In order to focus on 
highly variable genes, we sort these genes according to the variance of 
gene expression level from high to low. We take the data of genes with 
the top 5% variance as the input to iMPRN. Based on the gene expression 
of non-malignant and malignant tumor cells, iMPRN reconstructs two 
gene regulatory networks respectively. Subsequently, key genes in the 
inferred regulatory networks are extracted and analyzed. 

2.3. Performance metrics 

We evaluate the regulatory network inferred by each algorithm using 
a widely used evaluation criteria AUROC. By comparing the inferred 
regulatory networks with the true network used to simulate data, the 
numbers of correctly and incorrectly assigned edges can be computed as 
the threshold for edge inclusion is varied. Accordingly, AUROC is 
calculated from the area under the ROC curve, which is a plot of the 
false-positive rate (FPR) on the x axis versus the true-positive rate (TPR) 
on the y axis. These metrics are calculated as: 

TPR =
TP

TP + FN

FPR =
FP

FP + TN

(8)  

where TP and FP indicate the numbers of true and false positives, and TN 
and FN are true and false negatives. 

Fig. 2. Performance comparisons between iMPRN and iMPRN without optimization process. The performance was evaluated by AUROC on synthetic HSC datasets. 
(A) The HSC dataset, (B) The HSC dataset with 50% dropout rate. 
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3. Results 

3.1. Performance evaluation on Synthetic datasets 

As iMPRN requires prior knowledge of multiple prior networks, here 
we respectively adopt four network inference method, including 
GENIE3 (Irrthum et al., 2010), PIDC (Chan et al., 2017), PPCOR (Kim, 
2015) and GRNBoost2 (Moerman et al., 2019), to infer the prior net-
works. These algorithms are currently widely used gene regulatory 
network inference algorithms. Specifically, GENIE3 is an algorithm 
based on random forests to predict the interaction between target genes 
and other genes. PIDC obtains the regulatory relationship between genes 
based on information theory. PPCOR calculates the partial correlation 
coefficient and semi-partial correlation coefficient between all gene 
pairs, and constructs a regulatory network. GRNBoost2 is an algorithm 
for inferring the network by using stochastic gradient Boosting Machine 

regression and early-stopping regularization. Based on each initial prior 
networks, we utilize NCA model and PALM algorithm to simultaneously 
estimate the TF activities and optimize the structure of regulatory 
network, and integrate these optimized network into a final GRN. In the 
pipeline of iMPRN, the optimization of the prior network based on NCA 
model and PALM algorithm is an important step. To evaluate the 
importance of the optimization process, we compare the performance of 
iMPRN and that without optimization step. As shown in Fig. 2, 
compared with the results of iMPRN, the accuracy of the integrated 
networks without optimization decreases about 10% in most cases, 
which demonstrates that the optimizations step can indeed improve the 
performance. It is effective for the following integration step. 

To evaluate the effectiveness of the iMPRN, we compare it with the 
four initially used algorithms. We apply the GRN inference algorithms to 
simulated datasets from curated models, which is created by previous 
study to evaluate different network inference methods (Pratapa et al., 

Fig. 3. Performance comparisons among iMPRN, GENE3, PIDC, PPCOR and GRNBoost2 on two synthetic datasets. (A) The HSC dataset, (B) The HSC dataset with 
50% dropout rate, (C) The GSD dataset, (D) The GSD dataset with 50% dropout rate. 

Fig. 4. Performance comparisons among different combinations of GENE3, PIDC, PPCOR, GRNBoost2 on the synthetic HSC datasets. (A) The HSC dataset, (B) The 
HSC dataset with 50% dropout rate. 
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2020). The simulated HSC dataset and GSD datasets respectively in-
cludes 10 data sets composed of 2000 cells, all of which are simulated by 
the Boolean model. For each dataset, we divide them into two parts. One 
part is the original dataset and the other is to add 50% dropout rate to 
the dataset, to test the performance of network inference methods in the 
case of data noise. We set each synthetic network as the ground truth 
and adopt the following strategy to evaluate the GRNs inferred by each 
algorithm. We respectively compare the GRNs for these 10 simulated 

datasets against the ground truth. We plotted ROC curves and measured 
the areas under these curves across the 10 different datasets of HSC and 
HSC with 50% dropout rate, GSD and GSD with 50% dropout rate. Fig. 3 
plots AUROC values of these network inference algorithm. We observe 
that iMPRC has a higher AUROC across a majority of HSC, achieving an 
average AUROC about 0.70 on different dataset HSC, while PPCOR is 
less than 0.60. The performance of GENIE3 and PIDC are intermediate 
between iMPRN and PPCOR. We also evaluate the stability of the results 

Fig. 5. The significant gene regulatory network reconstructed by iMPRN for malignant head and neck tumor cells.  

Fig. 6. The significant gene regulatory network reconstructed by iMPRN for non-malignant head and neck tumor cells.  
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of each algorithm as we vary the samples. Among these methods, iMPRN 
and GENIE3 exhibit more stable performance. In addition, it is worthy 
noting that the AUROC of iMPRN on noisy HSC-Dropout50 data are as 
good as on the HSC dataset. For the simulated GSD datasets, we also 
observed the similar results. These results show that the proposed 
iMPRN is robust to noises and variations in sampling, which may attri-
bute to integration of multiple prior networks. 

Furthermore, to test the robustness of the proposed iMPRN, we 
respectively take one prior GRN out of the model and integrate the 
remaining prior networks. Then we compare the accuracy of these 
different integrated networks. The results is illustrated in Fig. 4. From 
the figure, we observe that each combination result in a partly incon-
sistent networks, which lead to different accuracy. In most cases, the 
integration of GENIE3+GRNBoost2+PPCOR achieves a higher AUROC 
than the other three combinations. Overall, iMPRN had the highest 
median AUROC scores across a majority of the networks, indicating that 
the integration of four prior networks can gain a higher robustness. 

3.2. Applying to real scRNA-seq tumor data sets 

Discovering cancer-related biological pathway is a critical task of 
cancer research. Reconstructing the gene regulatory network can pro-
mote the understanding of the regulatory mechanisms of cancer. To 
investigate the differences in the underlying regulatory relationship of 
malignant and non-malignant tumor cells, we respectively apply iMPRN 

to infer gene regulatory networks from the scRNA-seq data of malignant 
and non-malignant head and neck tumor (Argiris et al., 2008; Puram 
et al., 2017) (GSE103322). For visualization and subsequent analysis of 
the regulatory network, we take the output of the two regulatory net-
works of iMPRN and respectively rank the top 300 edges from each 
inferred gene regulatory networks. 

The malignant tumor GRN and non-malignant tumor GRN are shown 
in Figs. 5 and 6  respectively. In these GRNs, the more edges that a gene 
is connected, the greater the degree is. The genes that have high degree 
will have larger size and darker color. According to the degree, we rank 
these genes and take the top 10 genes in a network as the key genes. The 
key genes in the malignant tumor GRN are: KRT6A, S100A2, KRT14, 
KRT5, PPP1R15A, EPCAM, ANXA2, RPS12 and DUSP1. The key genes in 
the non-malignant tumor GRN are: FITM3, CNN3, SERPING1, C1R, C1S, 
SPARCL1, A2M, IGFBP7, RPS12 and SRGN. These identified key genes 
are highly related to tumors. Most of these identified genes are closely 
related with a number of cancers, which may be a useful marker for 
cancers. Specifically, down-regulation of ANXA2 and SPARCL1 occurs in 
patients with head and neck squamous cell carcinoma (Choi et al., 
2016). The gene S100A2 gene is significantly overexpressed in head and 
neck cancer (Imazawa et al., 2005). Only the gene RPS12 is shared in the 
two GRNs. From this perspective, there is a big difference between the 
GRNs of the malignant and non-malignant head and neck tumor. 

Further, to investigate the functions of these key genes related to 
malignant and non-malignant tumor cells, we use TOPPCLUSTER (Kai-
mal et al., 2010) to perform gene function enrichment analysis respec-
tively. The Go annotations of these key genes are divided into three 
aspects, including molecular function, cellular component and biolog-
ical process, as listed in Table 1. In terms of molecular function, the key 
genes in the GRNs of non-malignant tumor are related to “serine-type 
peptidase activity” (A2M, C1R, R1S, SERPING1). Correspondingly, the 
key genes of the malignant cell are related to “transferase activity” 
(KRT14, KRT5, KRT6A), “cell adhesion mediator activity” (ANXA2, 
EPCAM) and “structural molecule activity” (KRT14, KRT5, KRT6A, 
RPS12). In terms of biological process, the key genes of the 
non-malignant tumor cells are related to “negative regulation of com-
plement activation”, “negative regulation of humoral immune response 
and blood coagulation” (A2M SERPING1), “protein activation cascade” 
and “humoral immune response” (A2M, C1R, C1S, SERPING1). The key 
genes of the malignant tumor cells are enriched in “membrane assembly 
and membrane biogenesis” (ANXA2, KRT14, KRT5, KRT6A), “hemi-
desmosome assembly, cornification and cornified envelop assembly” 
(KRT14, KRT5, KRT6A). 

4. Discussion 

As gene regulatory relationship usually related with the biological 
context, the context-specific regulatory network inference is an impor-
tant task to understand the regulatory mechanisms. Despite the ad-
vances in single-cell sequencing technology and genomics, it is still 
impractical to infer gene regulatory networks for each organism, tissue, 
cell and condition by accumulating a large number of measurements of 
specific conditions. We need a method that can make use of prior net-
works. We propose a gene regulatory network inference algorithm 
iMPRN based on integrated multiple prior networks. Starting with 
multiple prior networks, iMPRN uses gene expression data to interac-
tively optimize new regulatory networks. This algorithm optimizes gene 
regulatory networks based on biological topology by adding and delet-
ing edges. iMPRN adopt linear regression, graph embedding modules 
and elastic networks to make the network closer to the underlying true 
network. Meanwhile, we utilize the PALM algorithm to ensure the 
convergence of optimization process. To make the GRN robust against of 
the sampling error and the bias of individual prior network, we integrate 
the information of multiple prior networks. In that case, the robustness 
and accuracy of the final network are further improved. The comparison 
conducted on the simulated HSC dataset demonstrates that iMPRN 

Table 1 
Functional enrichment of key genes in the GRNs inferred by iMPRN from ma-
lignant and non-malignant human head and neck tumors.  

Category Term name Malignant Non- 
malignant 

GO: Molecular function p-Values (logP) 
GO:MF Serine-type peptidase activity  5.24 
GO:MF Hydrolase activity, acting on acid 

phosphorus-nitrogen bonds  
5.2103 

GO:MF Serine hydrolase activity  5.2103 
GO:MF Structural constituent of cytoskeleton 4.7807  
GO:MF Protein-glutamine gamma- 

glutamyltransferase activity 
4.6608  

GO:MF Transferase activity, transferring amino- 
acyl groups 

4.5704  

GO:MF Cadherin binding involved in cell-cell 
adhesion 

4.4344   

GO: Biological process p Values 
GO: BP Membrane assembly 10  
GO: BP Membrane biogenesis 10  
GO: BP Regulation of complement activation, 

lectin pathway  
10 

GO: BP Regulation of humoral immune response  10 
GO: BP Protein activation cascade  5.8827 
GO: BP Hemidesmosome assembly 4.9325  
GO: BP Humoral immune response  4.8685 
GO: BP Cornification 4.8629  
GO: BP Platelet degranulation  4.6891 
GO: BP Complement activation, classical 

pathway  
4.5913 

GO: BP Blood coagulation, intrinsic pathway  4.568 
GO: BP Peptidyl-serine dephosphorylation 4.4741  
GO: BP Humoral immune response mediated by 

circulating immunoglobulin  
4.4659 

GO: BP Regulation of immune effector process  4.3587 
GO: BP Intermediate filament organization 4.2083  
GO: BP Blood coagulation, fibrin clot formation  4.2083  

GO: Cellular component p Values 
GO: CC Blood microparticle  10 
GO: CC Platelet alpha granule lumen  5.5638 
GO: CC Keratin filament 5.0784  
GO: CC Collagen-containing extracellular matrix  4.496 
GO: CC Extracellular matrix  4.1018 
GO: CC Intermediate filament 4.0215   
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performs well in the aspect of accuracy and robustness. Based on the real 
scRNA-seq data of human head and neck cancer, iMPRN reconstructs 
gene regulatory networks for malignant and non-malignant tumor cells. 
We further analyze the gene function enrichment of the key genes in the 
two inferred regulatory networks, further deepen the understanding the 
regulatory mechanisms of different tumor subtypes. 
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