
Knowledge-Based Systems 217 (2021) 106831

B
a

b

c

d

c
i
w
f
b
a
t
h
c
a

(
y

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Towards the optimality of service instance selection inmobile edge
computing
Guobing Zou a, Zhen Qin a, Shuiguang Deng b, Kuan-Ching Li c, Yanglan Gan d,∗,
ofeng Zhang a,∗

School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
College of Computer Science and Technology, Zhejiang University, Hangzhou 310058, China
School of Computer Science and Information Engineering, Providence University, Taichung 43301, Taiwan
School of Computer Science and Technology, Donghua University, Shanghai, 201620, China

a r t i c l e i n f o

Article history:
Received 11 August 2020
Received in revised form 23 December 2020
Accepted 2 February 2021
Available online 5 February 2021

Keywords:
Mobile edge computing
Edge service
Service instance selection
Genetic algorithm
Response time

a b s t r a c t

Mobile edge computing (MEC) has been proposed to significantly reduce the response time of service
invocations for end users. In MEC environment, a service provider can create multiple instances from
a service and deploy them to different hired edge servers, where the deployed instances can be
selected and invoked to decrease the network latency by nearby users. However, service instance
selection in MEC is a challenging research problem from threefold aspects. First, the limitations of
an edge server in terms of computation capacity and coverage range result in serving for only a
certain number of users at the same time. Second, due to variable geographical locations from user
mobility paths in MEC, the mobility of edge users is highly related to data transmission rate and affects
the delay of service invocations. Furthermore, when many users in an edge server covered region
request the same service instance at the same time, they interfere with each other and may reduce
the experience of service invocations if there is no effective strategy to distribute these requests to
appropriate instances deployed on different edge servers. To improve the user experience on service
invocations with a lower response time, we take the above three factors into account and model
the service instance selection problem (SISP) in MEC as an optimization problem, and propose a novel
genetic algorithm-based approach with a response time-aware mutation operation with normalization
for service instance selection called GASISMEC to find approximately optimal solution. Extensive
experiments are conducted on two widely-used real-world datasets. The results demonstrate that our
approach significantly outperforms the six baseline competing approaches.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the rapid development of mobile devices and wireless
ommunication technologies, the number of diverse mobile facil-
ties has surged in recent years [1,2]. It is estimated that there
ould be several billion mobile subscriptions in the following

ive years, out of which around 90 percent would be for mobile
roadband according to Ericsson’s Mobility Report [3]. Addition-
lly, the services required by users are increasingly complex in
erms of functionality and computation demands, which puts a
eavy burden on mobile devices due to their limited battery
apacity and available computing resources. In order to allevi-
te the contradiction, mobile cloud computing (MCC) [4] has

∗ Corresponding authors.
E-mail addresses: gbzou@shu.edu.cn (G. Zou), zhenqin@shu.edu.cn

Z. Qin), dengsg@zju.edu.cn (S. Deng), kuancli@pu.edu.tw (K. Li),
lgan@dhu.edu.cn (Y. Gan), bfzhang@shu.edu.cn (B. Zhang).
ttps://doi.org/10.1016/j.knosys.2021.106831
950-7051/© 2021 Elsevier B.V. All rights reserved.
emerged to allow mobile devices to selectively offload highly de-
manding service requests to remote cloud servers, which greatly
extends the computing resources of mobile devices [5]. However,
the long distance between mobile devices and the cloud server
makes it difficult to guarantee the timeliness and reliability of
data transmission. This phenomenon is specially more obvious
in those services that need to transmit a large amount of data,
such as video rendering, augmented reality, peripheral dynamic
discovery, web content pre-rendering, etc.

To deal with this issue, MEC, emerged as a new distributed
computing paradigm with lower latency and greater scalability,
provides highly accessible and efficient computing capacities and
services at the edge servers, which are geographically distributed
in close proximity to end users [6,7]. As the advancement of
widely-used container technologies, the deployment solution that
provides services at the edge nearby end users without the time
consumption of backbone network transmission is gradually fa-

vored by service providers. In such case, service providers can

https://doi.org/10.1016/j.knosys.2021.106831
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.106831&domain=pdf
mailto:gbzou@shu.edu.cn
mailto:zhenqin@shu.edu.cn
mailto:dengsg@zju.edu.cn
mailto:kuancli@pu.edu.tw
mailto:ylgan@dhu.edu.cn
mailto:bfzhang@shu.edu.cn
https://doi.org/10.1016/j.knosys.2021.106831

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

c
t
u
a
t
t
T
i
n
s
t
s
m
d
i
w
s
a

e
m
d
w
s
a
o
i
e
a
i
a
s
r
o
s

a
9
a
p
b
l
c
a
s
e
i
i
t
w
r
f
o
s

C
t
c
a
u
a
a
D
h
b
s

reate multiple instances of their services that are deployed on
heir hired edge servers to satisfy service requests for the nearby
sers in the coverage areas. That is, when a user needs to invoke
certain service, a suitable service instance is selected to fulfill

he requirement by minimizing the geographical distance from
he edge user to the edge server which hosts the service instance.
hrough this accessible mode of service invocations, it can signif-
cantly lower the latency and lessen the congestion of the core
etwork [8]. In some cases, service providers can flexibly add
ervice instances to enhance the users’ experiences in terms of
heir business needs. The paradigm of service invocation in MEC
ystems has been studied in some researches [1,5]. However, they
ainly focus on selecting the most suitable ones from the candi-
ate services of a pre-defined workflow for a single user, which
gnore the coexistence of multiple end users and the dynamic
orkloads of service instances. Thus, service instance selection is
till a challenging research issue in MEC from the following three
spects.
First, service instances with limited resources deployed on

dge servers are prone to reach high workloads when facing
any simultaneous requests, thereby significantly increasing the
elay to execute these requests. Unlike the cloud center equipped
ith abundant resources, the computation capability of edge
ervers is usually limited in many ways, such as CPU, RAM, stor-
ge and bandwidth. Consequently, a service instance deployed
n an edge server can only handle a limited number of requests
n the coverage range at the same time. Thus, the workload and
xecution efficiency of service instances deployed on edge servers
re often dynamic, which makes difficulty in globally optimiz-
ng and performing the task of distributing users’ requests to
ppropriate nearby service instances deployed on different edge
ervers. Moreover, the heterogeneity of microarchitectures and
untime/hardware systems incurs the performance differences
n edge servers, which makes the modeling of service instance
election problem become a research challenge.
Second, users in dynamic and unstable mobile environments

re highly sensitive to the response time of service invocations [5,
]. The latency of a service invocation consists of execution time
nd data transmission time. According to the model of free space
ath loss in [10], the signal power is related to the distance
etween a mobile device and its connected base station, where a
onger distance will cause a weaker signal power. Since the time
onsumption for transmitting data is primarily determined by the
chievable transmission rate which is positively correlated to the
ignal power, the geographical locations and mobility paths of
dge users can significantly affect the response time of service
nvocations. Moreover, during the time span that an edge server
s executing an edge user’s request along with the mobile state,
he user may be out of the coverage range of the edge server. This
ould cause additional time consumption for transmitting the
eturned data to the user. Thus, the selection of service instances
or edge users should take the geographical context and mobility
f edge users into consideration, which boosts the complexity of
ervice instance selection problem in mobile edge computing.
Third, in the regions with a large number of end users such as

BD, square and the amusement park, when many users invoke
he same service at the same time, due to the acquisition on
ompetitive resources, there may be mutually severe interference
mong these users. Therefore, it would significantly impact the
sers’ experiences of service invocations if there is no good mech-
nism of service instance selection to coordinate these requests
nd optimize the selection effectiveness of computing resources.
espite a straightforward solution that service providers could
ire more computation resources and deploy extra instances to
etter serve those users within the hotspot regions, it would

everely incur the additional operating costs of service providers.

2

It currently lacks of a good service instance selection approach
that can effectively take advantage of the limited number of
instances to serve as many edge users as possible at the same
time. Therefore, how to select appropriate instances for multiple
edge users in a region who invoke the same service at the same
time has become a critical issue to be solved.

To solve above research challenges, this paper is dedicated
to the investigation on service instance selection in MEC. The
innovation of this work lies in the following two aspects. To the
best of our knowledge, our work is the first to propose systematic
model of mobility-aware multi-user service instance selection
problem in MEC. Moreover, we design a novel genetic algorithm-
based approach with a response time-aware mutation operation
with normalization for finding an approximately optimal strategy,
when selecting appropriate service instances for a group of user
requests. More specifically, the contributions of the work are
summarized as below.

• We formally define and model the mobility-aware multi-
user service instance selection problem in MEC and con-
vert it to an optimization problem. Then, we prove the
NP-hardness of the optimization problem;

• We propose a novel GA-based approach named GASISMEC
for solving the service instance selection problem in MEC.
It aims at generating an approximately optimal solution to
improve the experience of edge users by recommending
appropriate service instances to perform their requested
tasks with lower average response time. In GASISMEC, three
key factors are taken into account, including the mobility of
edge users, the resource constraints of edge servers and the
mutual interferences among multiple edge users;

• Extensive experiments on two real-world datasets of base
stations are conducted to verify the correctness of theo-
retical analysis. Moreover, the effectiveness and efficiency
of the proposed approach are demonstrated by comparing
with several benchmark approaches.

The organization of this paper is as follows. In Section 2, we
present the components of an MEC system and illustrate a moti-
vating example and application scenarios. Section 3 defines and
formalizes the problem of service instance selection. In Section 4,
we prove the NP-hardness of the problem, and propose an im-
proved genetic algorithm-based approach to solve the problem. In
this section, we also present how to apply the proposed approach
into real world. Section 5 shows the simulation experiments and
analyzes the experimental results. Sections 6 and 7 provide the
threats to validity and discussions to research challenges, respec-
tively. Section 8 reviews the related work. Finally, we conclude
the paper and point out the future directions in Section 9.

2. Motivations

In this section, we first introduce the architecture components
of an MEC system, and then motivate the research with an ex-
ample to illustrate the problem of service instance selection and
application scenarios.

2.1. Mobile edge computing system

For a given region, the components of an MEC system consist
of four parts, including a group of mobile users, a cloud server, a
group of edge servers attached to their small base stations (SBSs)
and a group of service instances deployed on the cloud server and
part of the edge servers, as shown in Fig. 1. Without loss of gen-
erality, we mainly consider the scenario that a service provider
creates multiple instances based on a certain web service, and

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

t
i
s
a
i
c
e
l
n
t
f
d

o
a
p
r
e
t
t
s

2

M
t
u
a
R
w
1
o
a
t
a

r
p
e
a
a
i
i
t
t
C
t

t
o
i
i
r
i
e
c
t
i
e
c

Fig. 1. The architecture of a mobile edge computing system.

deploys these instances on multiple edge servers as well as the
cloud center. The characteristics in an MEC system are as below.

In an MEC system, each SBS corresponds to an edge server
hat is affiliated to it, where the two can be regarded as fully
ntegrated with each other. We assume that some of the edge
ervers are directly interconnected, where the limited direct links
nd all SBSs form an undirected connected graph, as shown
n Fig. 1. Thus, edge servers can be logically interconnected to
ommunicate with each other. The transmission rate between
ach pair of edge servers is different due to the heterogeneity of
inks, the differences in performance of routers and the different
umber of hops between each pair of edge servers, while the
ransmission rate between edge servers and the cloud server is
ixed at a relative slow level in view of the long geographical
istance.
When submitting service requests to edge servers, the region

f an MEC system is divided into a grid of many square edge cells,
nd each edge cell corresponds to an SBS as the network access
oint (AP) for those edge users who are located in it. A service
equest of an edge user is transferred from his directly covered
dge server to a directly or indirectly adjacent one. The execution
ime of service instances on edge servers increase significantly as
he workload of an edge server grows due to the overwhelming
imultaneous number of service requests from edge users.

.2. Motivating example and applications

Fig. 2 illustrates an example of service instance selection in an
EC system, where only one single user and multiple users are

aken into account, respectively. Considering the scenario of one
ser that there is only Bob in this region, no interference occurs
mong users. Assuming Bob requires an instance of service Video
endering to obtain a video album by providing several photos,
hile he is walking from cell A and will arrive at cell B after
0 s. The data he needs to upload is 5 MB and the estimated size
f returned data for generating a video album is 20 MB. There
re two SBSs (edge servers) in this region, i.e., e1 and e2, and
wo instances of Video Rendering available for Bob deployed on e1

nd e2, respectively. According to the current workload of them,

3

Fig. 2. Motivating example of multi-user service instance selection in mobile
edge computing.

the instance on e1 spends 7 s to execute Bob’s request while the
instance on e2 needs to take 11 s. The transmission rate of each
link in this example is marked in Fig. 2. In such case, there are
two possibilities to accomplish Bob’s request. If Bob’s request is
sent to the instance on e1, he uploads the input data to e1 and
then downloads the returned data from e1 in cell A, where the
esponse time of it is 5 ÷ 9 + 7 + 20 ÷ 9 = 9.78 s. Another
ossibility is that Bob’s request is allocated to the instance on
2. He uploads the input data to e2 by the path A ⇒ e1 ⇒ e2
nd then receives the returned data in cell B, because he has
lready arrived at cell B after the request is executed by the
nstance on e2. The bottleneck before executing the request lies
n the data transmission between e1 and e2, which leads to the
ransmission rate of uploading the input data is 3 MB/s. Therefore,
he response time of Bob’s request is 5÷3+11+20÷8 = 15.17 s.
onsequently, the instance e1 is the best choice for Bob, without
he consideration of other edge users.

However, in real-world situations, multiple users who invoke
he same instance at the same time may interfere with each
ther. In such case, the workload of the instance on e1 accordingly
ncreases, which lowers its execution efficiency. Suppose there
s another user Tom in the region who also submits a service
equest to the instance on e1 for generating a video album. The
nfluence on the workload brought by Tom’s request reduces the
xecution efficiency of the instance on e1, e.g., it raises the time
onsumption from the original 7 s to 10 s for the instance on e1
o execute Bob’s request, yielding to receiving the returned data
n cell B by the path e1 ⇒ e2 ⇒ B. Because after the instance on
1 executes Bob’s request, he has already arrived at cell B. In this
ase, the response time of Bob’s request is 5÷ 9+ 10+ 20÷ 3 =

17.2 s, which is worse than that of executing the request on e2,
even though the execution time of service instance on e1 is still
shorter than that on e2.

From the above example, since multiple users interfere with
each other and they keep constantly changing states with real-
time mobility, the time it takes for users’ requests to be executed
and the locations where the users receive the returned data
become difficult to be predicted. Thus, it is not always possible
to find a globally optimal solution by an arbitrary strategy for
the selection of service instances to users’ service requests. To
solve this complex and challenging issue, there is an urgent need
for modeling the problem and designing an effective yet efficient
approach, which generates an approximately optimal solution to
distribute service requests to the appropriate service instances
deployed on different edge servers, satisfying the multiple users
with the overall high quality response time in MEC.

Selecting appropriate service instances in MEC can reduce
the service response time and promote the experience of edge
users. It can be potentially used for many application scenarios.
For example, pushing computing services close to medical de-

vices such as diabetes devices and pacemakers to provide fast

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

r
t
r
s
t
o
t
m
t
n
e
c
v
c
m
s

3

r
a
s

3

D
4

r
b

D

2
E

D
q
d
t

esponses to medical sensors [11], leveraging the proximity to
he user in order to provide location-aware health services with
educed latency and high availability [12], deploying analysis
ervices close to the sensors to provide indoor occupancy estima-
ion with higher execution speed and lower network bandwidth
ccupation [13], deploying AI analysis services near poultry farms
o upgrade the analysis and automation of poultry real-time
onitoring [14], and recommending service instances according

o users’ requirements, users’ location and working status of
earby services instances to better enable the vision of ambi-
nt computing [15]. Therefore, we could abstract some of the
omponents and operations in application scenarios into ser-
ices and deploy several instances of them in a distributed edge
omputing environment, which can greatly decrease the com-
unication or execution latency by selecting appropriate nearby
ervice instances.

. Problem formulation

In this section, we first focus on the understanding of user
equest and its response time by a set of formal definitions,
nd then clearly demonstrate what a mobility-aware multi-user
ervice instance selection problem is in MEC.

.1. User request and service instance

efinition 1 (User Request). A user request r is defined as a
-tuple

(
z I , zO, tq, lw

)
, where

1. z I is the size of input data.
2. zO is the size of returned output data.
3. tq is the minimum execution time of an request, which

is the time span for the service instance with the most
computing capacity and lowest workload to execute this
request.

4. lw is the workload that it brings to a service instance.

In an MEC system, there are n user requests submitted by the
users that constitute a request set R = {r1, r2, . . . , rn}. Each user
equest r is executed on a service instance which is defined as
elow.

efinition 2 (Service Instance). A service instance s is defined as
a 4-tuple (e, tcc, lcu, lmax), where

1. e is the server where an instance is deployed on.
2. tcc indicates the computing capability of an instance and

is within range of [1, +∞). A lower tcc means a higher
performance of the instance. It is the ratio of the time
taken by an instance and the instance with the highest
performance and the same workload percentage to execute
the same request.

3. lcu is the current workload hosted by an instance. Given
a service selection strategy to satisfy a user request set
R, denoted as Θ =

{
θr1 , θr2 , . . . , θrn

}
, whereeach element

represents a service instance selected for a corresponding
user request, lcus is the summation of two parts as in (1)

lcus = l0s +

∑
r∈R:θr=s

lwr (1)

where l0s is the inherent workload of an instance s at the
time before any user requests are distributed, and the
summation aggregates the workloads generated from those
user requests executed on instance s.

4. lmax is the maximum amount of workload that an instance
can withstand, where lcu cannot be larger than lmax.
4

3.2. Response time

In mobile edge computing, the geographical area can be par-
titioned into many adjacent edge cells, each of which provides
service instance with edge server for its located users. An edge
cell is formalized as below.

Definition 3 (Edge Cell). As illustrated in Figs. 1 and 2, the entire
-D region can be divided into a grid with a set of square cells.
ach edge cell c can be defined as a 4-tuple (p, w, e, v), where

1. p is the center coordinate of a cell.
2. w is the side length of a square cell.
3. e is the SBS (edge server) acted as the AP of a cell.
4. v is the transmission speed between the users located in

this edge cell and the AP e of the cell. Here, v and e of each
edge cell is pre-calculated as described in Section 5.

efinition 4 (Response Time). In MEC, after a user submits a re-
uest to the corresponding edge server, he receives the returned
ata after the execution of a service instance within a period of
ime. The response time R of a user request r is defined as the
span between the time that a user starts to upload the input data
and the time that the returned data is fully received by the user.
It consists of three factors that is calculated as in (2)

R = t I + texe + tO (2)

where

1. t I is the time consumption for the user to upload the input
data to the allocated service instance, which is calculated
as in (3)

t I =
z I

vI (3)

where vI is the transmission rate between the user and the
edge server which the selected service instance is deployed
on. It is calculated as in (4)

vI
= min

{
vcup , vecup ,es

}
(4)

where cup refers to the edge cell in which the user is located
and ecup is the AP of cup; es represents the edge server
which service instance s is deployed on. Thus, vecup ,es is
the transmission speed of uploading the user’s input data
between ecup and es. In such case, if ecup and es refer the
same edge server, then vecup ,es is regarded as +∞.

2. texe is the service execution time for the request on a
specific instance. Given the selected service instance s, it
is calculated as in (5)

texe = tq · tccs · f l(lcus , lmax
s) (5)

where tq is the minimum execution time decided by the
request r , and tccs is the computing capacity decided by
the service instance s. f l(lcus , lmax

s) indicates the relationship
between the workload percent of the instance s and its
normalized average execution time. It is observed that
there is a quantitative correlation between the workload
percent and the average execution time [16,17], as shown
in Fig. 3. Specifically, given a request, the average execution
time of a service instance can be approximated by

f = a · exp (b · x) (6)

where x (0 ≤ x < 1) is the ratio of the current workload
to the maximum workload of a service instance, a is the
coefficient indicating the execution time with the lowest
workload for an instance and b represents the performance

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

3

t
o
m
b

D
P
c
w

Fig. 3. The relationship between the workload percentage of service instance
and the normalized average execution time.

of the parallel scheduling strategy used by a computing
system, where a better scheduling strategy corresponds to
a smaller b. When a is normalized to one, we can obtain
the relationship between the workload percent and the
normalized average execution time f l(lcus , lmax

s) as in (7)

f l(lcus , lmax
s) = exp

(
b ·

lcus
lmax
s

)
(7)

According to (5) and (7), texe is calculated as in (8)

texe = tq · tccs · exp
(
b ·

lcus
lmax
s

)
(8)

where all service instances share the same value of b under
the assumption that the same parallel scheduling strategy
is applied in an MEC system.

3. tO is the time consumption required to download the re-
turned output data of the request after the execution of the
selected instance s, which is calculated as in (9)

tO =
zO

vO (9)

Similar to (4), vO is the transmission speed between the
user and the edge server which the selected service in-
stance is deployed on. It is calculated as in (10)

vO
= min

{
vcdl , vecdl ,es

}
(10)

where cdl is the edge cell which the user is located in and
ecdl is the AP of cdl. In the same way, if ecdl and es refer to
the same edge server, then vecdl ,es

is defined as +∞.

.3. Service instance selection problem

In MEC, users are generally mobile. There are some researches
hat provide methods for user location prediction [18,19]. In
ur work, the mobility paths of users are predetermined for
ulti-user service instance selection as in [1,5]. It is defined as
elow.

efinition 5 (Mobility Path). Given an edge user, the mobility path
is composed of a series of discrete location points arranged in

hronological order, which can be formalized by a list of tuples
ith each tuple containing two elements,

{
(Ti, pli)

}q
i=1, where

1. i is the sequence number of the discrete time segment.
2. Ti = (ti, ti+1) is the time segment of the ith location point.
3. pli is the coordinate of the ith location point.
5

Fig. 4. An illustration of user mobility path in MEC.

Similar to [20–22], we consider a quasi-static scenario that
the transmission rate remains unchanged during uploading the
input data of user request and downloading the returned output
data. Upon the assumption, Fig. 4 shows the user mobility paths
in MEC [1], where each cell corresponds to the user’s coordinate
within a period of time. In such case, given the mobility path{
(Ti, pli)

}q
i=1 of a user and a specific time t , we can obtain the

location p of the user at time t ∈ (ti, ti+1). That is, the edge cell
where the user is located in at time t and the SBS (edge server)
as the corresponding AP can be obtained.

Definition 6 (Service Instance Selection Problem, SISP). Given a
group of edge users who submit their requests at the same time,
the service instances selection problem is to select a suitable
instance for each of these requests considering the mobility of
multiple users, the dynamic workload of each instance and the
transmission speeds among edge servers. In mobile edge com-
puting, a mobility-aware multi-user service instance selection
problem is defined as a 5-tuple SISP = (R,P,C,E, S), where it
consists of

1. a set of n user requests R = {r1, r2, . . . , rn}.
2. a set of n user mobility paths P = {P1, P2, . . . , Pn} and each

path corresponds to a user’s movement trajectories across
edge cells.

3. a set of m edge cells C = {c1, c2, . . . , cm} split from the
grid and the associated APs with their transmission speeds
between the users and corresponding APs.

4. a set of m edge servers E = {e1, e2, . . . , em} and the
transmission speeds between them.

5. a set of k service instances S = {s1, s2, . . . , sk} and each
instance is deployed on one of the m edge servers.

Given an SISP (R,P,C,E, S), a feasible solution is a strategic
selection of service instances to user requests with n elements,
Θ = {θ1, θ2, . . . , θn}. Each element represents a specific service
instance selected for a corresponding user request. Furthermore,
an optimal solution to an SISP aims to minimize the average
response time of the users’ requests. Due to its NP-hardness,
we propose a globally sub-optimal approach to solve the SISP in
mobile edge computing.

Note that in real-world application scenarios, an edge server
may host multiple service instances with diverse functionalities,
which are deployed by different service providers. Since these
service instances can be separated by multi-tenancy architecture,
they are mutually transparent and cannot perceive the existence
of each other. In such case, without loss of generality, SISP mainly
focuses on a group of edge users who submit their requests for
the same service, and it is reasonably assumed that there is at
most one service instance deployed on each edge server, in order
to make an SISP easier to be understood and solved.

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

4

u
h
p
i
t
a

4

j
q
c

m

w

I

t
i
a
e
b
t
w
i
(
s

4

t
i
L

D
F
f

m

w
i
c

T

P
(
t

w
w
|

a
(
b
p
c
s
t

i
t
d
C
t
s
c
o

. Approach of service instance selection

In this section, we first model a mobility-aware multi-
ser SISP as an optimization problem. Then, we prove the NP-
ardness of SISP based on the optimization model. Next, we
ropose a genetic algorithm-based approach for efficiently find-
ng an approximately optimal solution to SISP, and analyze its
ime computational complexity, respectively. Finally, we provide
n explanation of SISP and a system implementation architecture.

.1. SISP optimization modeling

Given a mobility-aware multi-user SISP, the optimization ob-
ective is to minimize the average response time of all the user re-
uests, while satisfying service instance constraint and workload
onstraint. It can be modeled as follows:

in
1
n

n∑
i

Ri(Θ) (11)

s.t. θi ∈ {1, 2, . . . , k} , ∀i ∈ {1, 2, . . . , n} (12)
n∑
i

lwri · I{θi=j} ≤ lmax
j − l0j , ∀j ∈ {1, 2, . . . , k} (13)

k∑
j=1

I{θi=j} = 1, ∀i ∈ {1, 2, . . . , n} (14)

I{θi=j} ∈ {0, 1} , ∀i ∈ {1, 2, . . . , n} ,

∀j ∈ {1, 2, . . . , k}
(15)

here I{θi=j} is a binary variable indicating that

{θi=j} =

{1, if service instance j is selected
for user request i

0, otherwise
(16)

The objective function (11) minimizes the average response
ime of n user requests, where θ is a strategic set for allocat-
ng these users’ requests to the corresponding service instances
nd R indicates the response time of a request. Constraint (12)
nforces the selection scale, where each user request can only
e satisfied by a service instance deployed on an edge server in
heir available region. Constraint (13) states that the aggregate
orkload demands of simultaneous requests send to a service

nstance must not exceed its upper bound capacity. Constraint
14) ensures that each user request can only be execute on one
ervice instance at most.

.2. Problem hardness

Based on the optimization problem modeling in Section 4.1,
he SISP is NP-hard. To prove the hardness of the SISP, we first
ntroduce a classic NP-hard problem, called Capacitated Facility
ocation problem (CFLP) [23].

efinition 7 (CFLP). Given a facility capacity set C , a facility set
, a demand set D and a cost matrix Cost , a CFLP problem can be
ormulated as

in
∑
i∈F

∑
j∈D

Costi,jyi,j +
∑
i∈F

fixi (17)

s.t.
∑
i∈F

yi,j = 1 (18)∑
djyi,j ≤ cixi (19)
j∈D

6

xi, yi,j ∈ {0, 1} (20)

here yi,j denotes whether demand dj is served by facility i, xi
ndicates whether facility i is open, Costi,j is the consumption
aused by allocating dj to i, and ci is the capacity of facility i.

heorem 1. The SISP is NP-hard.

roof. According to the definitions of an SISP presented in
2) (3) (4) (8) (9) (10), the response time of a user’s request i
o be executed on instance j can be expanded as follows:

Ri,j =
Z I
i

min
{
vcup , vecup ,ej

} + tqi · tccj · exp

(
b ·

lcuj
lmax
j

)

+
ZO
i

min
{
vcdl , vecdl ,ej

} (21)

Then, we make the following assumptions:

1. The average execution time for an instance to execute a
request is constant, which means it does not increase with
the workload of the instance, so that tqi ·tccj ·exp

(
b ·

lcuj
lmax
j

)
in

(21) is transferred to tqi · tccj . Thus, given a user request, its
execution time can be determined by selecting an instance,
while it is no longer affected by the other requests.

2. All users are stationary when invoking services. Thus, for a
user request, the AP accessed when the user uploads and
downloads data is determined by the edge cell he located
in. Then, the time consumption required to upload and
download data can be determined by selecting a certain
service instance.

With these assumptions, an SISP is greatly simplified and we
can obtain a response time matrix RM

[
Ri,j
]
n×k, where n and k are

the number of user requests and service instances, respectively.
According to this matrix, we can obtain the response time of any
request i executed on any instance j. We extract the workload ca-
pacity of all service instances to form the set W. Since there is no
open cost for service instances in SISP, the second part

∑
i∈F fixi in

(17) can be ignored. Thus, given an instance of CFLP(Cost,D, C, F),
e can construct a corresponding instance of SISP(RM ,R,W, S)
ith the reduction above in polynomial time, while |D| = |R| and

F | = |S|, and RM is the response time matrix with the same size
nd effect as the cost matrix Cost . On this condition, the objective
17) can be projected to objective (11), the constraints (18) can
e projected to the constraint (14), the constraint (20) can be
rojected to constraint (12) and (15), and the constraint (19)
an be projected to constraint (13). Consequently, there exists a
olution to the simplified SISP if and only if there is a solution to
he CFLP, which isNP-hard. Thus, the simplified SISP isNP-hard.

However, in a real SISP, the execution time of a user request
s affected by others, and the time consumption of downloading
he output data cannot be determined until all requests are
istributed. Therefore, an SISP in MEC is more complex than a
FLP since all parameters of CFLP are known except the optimiza-
ion variables. Generally, it is difficult to globally and optimally
olve this problem in polynomial time. A brute force algorithm
an find the optimal solution to it with the time complexity
f O(kn) [1], where k is the number of instances and n is the

number of requests. However, it is impractical in real-world
application scenarios due to the limited computing resources and
real-time demands on user requests. Hence, we propose a genetic
algorithm-based approach, called GASISMEC, which can find an
approximately optimal solution to the mobility-aware multi-user
SISP in MEC with a polynomial computational complexity.

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

a
u
c
G
b
e
f
n
a
G
o
o
o
G
s

a
s
t
i
o
m

o

Algorithm 1 Genetic Algorithm-based Service Instance Selection
in MEC Systems (GASISMEC)
Input: An SISP (R,P,C,E, S).
Output: An approximately optimal solution Θ .
1: Set the parameters of Npop, Nit , Pcr , Pmu and Nmu.
2: Randomly initialize Npop chromosomes to form the set H ={

H1,H2, . . . ,HNpop

}
.

3: Calculate the fitness of H.
4: Save the chromosome with the most fitness as Hbest .
5: for i = 1 → Nit do
6: Create an empty set H′ to save the populations of the next

generation.
7: for j = 0 →

Npop
2 do

8: Select two chromosomes Hu, Hv according to the fitness
of service instance selection.

9: if rand(0, 1)1 < Pcr then
10: Crossover: Hu → H ′

u, Hv → H ′
v .

11: if rand(0, 1) < Pmu then
12: Select Nmu loci to mutate according to the response

time corresponding to each locus in H ′
u and H ′

v ,
respectively.

13: end if
14: Put H ′

u, H
′
v to H′.

15: else
16: Put Hu, Hv to H′.
17: end if
18: end for
19: Calculate the fitness of chromosomes in H′.
20: Update Hbest if there is a chromosome in H′ with larger

fitness than Hbest .
21: Set H′ to H.
22: end for
23: return The approximately optimal solution Θ decoded from

Hbest .

4.3. Approximately optimal algorithm of SISP

Genetic algorithm (GA) [24] is a well-known metaheuristic
lgorithm derived from the theory of evolution, which is widely
sed to generate high quality nearly optimal solutions to many
omplex problems in polynomial time [25,26]. However, since
A uses a uniform selection strategy during iterations, it can
e easily trapped in local optima, potentially leading to low
fficiency [1]. Although its mutation operation can prevent it from
alling into the local optima to a certain extent, the effect is still
ot satisfactory when dealing with the problems with multiple
pproximately optimal solutions. To improve the effectiveness of
A for solving SISP in MEC, we propose a novel approximately
ptimal algorithm called GASISMEC, which is improved based
n the traditional GA. Algorithm 1 presents the brief structure
f GASISMEC. In what follows, we describe the operations of
ASISMEC in detail, where the improved operation, mutation of
ervice instance selection, is introduced in detail.
In GASISMEC, a feasible solution to an SISP is encoded as
chromosome, where each locus represents a service instance

elected for a corresponding request. During finding an SISP solu-
ion, we set the number of population size as Npop, the number of
terations as Nit , the probability of crossover as Pcr , the probability
f mutation as Pmu, and the number of loci of a chromosome in a
utation operation as Nmu.

1 rand(0, 1) generates a random real number ranged in [0, 1].
7

Initialization of service instance selection: At the start of
GASISMEC, we randomly generate the Npop number of chromo-
somes as the individuals of the initial populations, where each
chromosome represents an selection strategy of SISP and is used
for the following operations of GA.

Fitness Evaluation of service instance selection: For a chro-
mosome i, we first calculate the average response time of all
requests with the strategy encoded in it. Then, the fitness fi of
it is evaluated as the reciprocal of the average response time of
the requests as in (22).

fi = n/
n∑
i

Ri(Θ) (22)

Selection of service instance selection: It is a process of se-
lecting two of the chromosomes each time according to a certain
mechanism, so that chromosomes with high fitness are preserved
for further crossover and mutation genetic operations, whereas
those chromosomes with low fitness are eliminated. Here, we
adopt the widely-used roulette wheel selection mechanism to
perform our chromosome selection operation. Specifically, given
a chromosome Hi with fitness fi, the probability of it to be selected
is calculated as in (23)

p(Hi) =
fi∑Npop
j=1 fj

(23)

Since we select two parent chromosomes to generate two
child ones each time, to guarantee the number of chromosomes
of GASISMEC, the selection operation will be performed Npop/2
times in each iteration.

Crossover of service instance selection: It combines two
chromosomes to generate new child ones, aiming at improving
the quality of response time of service instance selection in the
next generation. In GASISMEC, two points crossover operation
is applied. Let Hu and Hv be the two chromosomes selected for
crossover, given two point i and j, the results of crossover are
btained as in (24)

H ′
u =

[
Hu(1:x1−1),Hv(x1:x2−1),Hu(x2:n)

]
H ′

v =
[
Hv(1:x1−1),Hu(x1:x2−1),Hv(x2:n)

] (24)

where Hu(i:j) means segment from the ith to the jth elements
of the service selection strategy vector encoded in H , and [] is
the operator that concatenates a set of vectors in order. Through
crossover operation, the advantageous parts of service instance
selection strategies encoded in the parent chromosomes may be
merged into the child ones.

Mutation of service instance selection: It is a crucial step of
GA to avoid falling into local optima. There are many conventional
mutation operators such as Uniform, Gaussian, etc. However, they
have not taken into account prior knowledge to improve the
mutation operation, which influences the effect of the genetic
algorithm for a specific problem. In SISP, since the conflicts among
users cause the response time of each request unpredictable,
the average response time of the requests is affected. With the
consideration of unpredictability, there are larger spaces for those
requests with longer response time to be optimized. Since the
number of loci in a mutation operation is limited, performing
mutation operations on the loci corresponding to these request
can potentially increase the degree to which the average response
time is optimized. Based on above observations we propose a re-
sponse time-aware mutation operation in Algorithm 1, to enable
GA to search for a better strategy for SISP in a limited number of
iterations.

Specifically, given a solution to a service instance selection
problem Θ = {θ1, θ2, . . . , θn}, we can calculate the response
time {R ,R , . . . ,R } of each request. Based on these values of
1 2 n

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

w

w
m
i

Fig. 5. An example of the process of response time-aware mutation operations
for service instance selection.

response time, we apply the softmax function [27] to normalize
the response time Ri to pi as in (25)

pi =
exp(Ri)∑n
j=1 exp(Rj)

(25)

here pi denotes the probability of locus i to be selected for
mutation at the beginning of a mutation operation. Fig. 5 illus-
trates an example of the improved mutation operation with 6 loci
for a chromosome of service instance selection strategy. Step 1
of Fig. 5 shows the response time of each locus and its initially
corresponding probability to be selected for mutation operation.
When a locus is selected, it is then randomly modified to another
feasible value. We can find that locus θ3 with the probability of
0.422 is the most likely one to be selected for mutation in step 1.
Once a locus is selected and mutated, the probability of the rest
loci to be selected for mutation is accordingly scaled as in (26):

p′

i = pi ·
1∑n

j=1 pj · I{j/∈L}

(26)

here L is the set of selected and modified loci in a round of
utation operation. The results of probability scaling are shown

n step 2 and 3 of Fig. 5. This process is repeated until Nmu loci
are selected and modified in a mutation operation.

When performing the mutation operations of service instance
selection, Softmax is not the only function that can normalize
the values of response time to probability distributions. For ex-
ample, the function in (23) can also accomplish response time
normalization in Fig. 5. The reason why the softmax function is
chosen for mutation operation is that if the function as in (23)
is applied for normalization, it makes small difference to the
probability of each locus to be selected, which does not ensure
that those loci corresponding to the requests with larger response
time can be selected in the majority of cases. Additionally, there
is another method by directly sorting the loci of service instance
selection in descending order according to the response time of
the corresponding requests. It can always pick out the first Nmu
loci for mutation operations, which corresponds to Nmu requests
with the longest response time. However, this would cause the
loci corresponding to the requests with larger response time to
be always selected for mutation operations, which ignores the
possibility that changing the allocated instances of some requests
with relatively small response time may also reduce the average
response time of all requests. It can also potentially reduce the
ability of GA to jump out of the local optima. For the above
reasons, we apply response time-aware mutation operation with

softmax normalization for service instance selection.

8

Fig. 6. An running example of applying GASISMEC to real-world application
scenarios.

4.4. Analysis of time computational complexity

The complexity of GASISMEC is mainly formed by crossover,
mutation and fitness calculation. Let V represent the computa-
tional consumption of calculating the response time of a user
request, Npop denote the number of chromosomes of service in-
stance selection, Nit denote the number of iterations, Pcr be the
probability of crossover operation, Pmu be the probability of mu-
tation operation and Nmu be the number of mutated loci in a
mutation operation of GASISMEC, the time complexity of finding
an approximately optimal solution to an SISP with n user requests
is O(Npop ∗ V ∗ n + Nit ∗ Npop ∗ Pcr ∗ n + Nit ∗ Npop ∗ Pcr ∗ Pmu ∗

n + Nit ∗ Npop ∗ Pcr ∗ (1 + Pmu) ∗ V ∗ n). It is the summation of
four parts, i.e., the complexity of evaluating the fitness of the
initial n populations, the complexity of the crossover operation
in Nit iterations, the complexity of the mutation operation in
Nit iterations, and recalculating the fitness of the chromosomes
generated by the operations of crossover and mutation.

From the above analysis, it is observed that the time com-
plexity of GASISMEC is O (n), which is a linear algorithm in
regard to the number of user requests that are performed by
allocating service instances in MEC. That is, GASISMEC can obtain
an approximately optimal strategy of service instance selection in
polynomial time.

4.5. System implementation

4.5.1. Explanations of GASISMEC
To intuitively illustrate the implementation process of our

approach, we present a running example as in Fig. 6. The region
is split as nine edge cells {c1, . . . , c9}, and there are three users
with their requests {r1, r2, r3}. We assume the mobility paths of
each user with three location points from pl1 to pl3, and all the
three users upload their requests located in their corresponding

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

p
t

c
M
u
e
c
r
g
9

g
d
t
u
t
w
a

d
u
b
r

l
1 positions. There are four SBSs (edge servers) {e1, e2, e3, e4} and
hree service instances {s1, s2, s3} deployed on one of these edge
servers, respectively.

GASISMEC first randomly generates a group of allocation
strategies {θ1, θ2, θ3} as its initial populations, and then evaluates
the average response time of each strategy. Taking θ1 as an exam-
ple, the first locus is s2, which means the request r1 is executed
on s2. Considering r1 is uploaded when the corresponding user
is in c4 whose AP is e1, r1 will be first uploaded to e1 and then
transmitted to s2 by the link e1 ⇒ e2. The time consumption
of uploading r1 to s2 can be calculated as in (3) and (4). The
execution time consumption of r1 is calculated as in (8). Since
the third locus of θ1 is also s2, when calculating the workload
percentage of s2, the numerator part is the sum of the workload
brought by r1 and r3 plus the inherent workload of s2. If the user
of r1 has reached pl3 when r1 is executed, he will receive the
output data directly from e2 in c8, otherwise if he only reaches
pl2 at this time, the output data will be first transmitted to e1 and
then sent to him in c7. The time consumption of downloading the
output data can be calculated as in (9) and (10). By this means,
the response time R1 of r1 can be calculated. During the response
time-aware mutation operation, the probability of each locus to
be selected for mutation is calculated as in (25) and scaled as
in (26) by their corresponding response time. Specifically, if the
response time of each locus is in the following order R2 > R1 >
R3, then the probability of each locus to be selected for mutation
is also in the following order p2 > p1 > p3.

Fig. 6 illustrates a GASISMEC process with three populations.
During iterations, the chromosomes with lower average response
time are more likely to be retained. After several iterations, the
chromosome with the lowest average response time among the
final populations will be selected as the service instance selection
strategy.

4.5.2. System architecture
To further illustrate how our approach can be applied to

real-world application scenarios, we present an implementation
architecture of decision-making for service instance selection in
MEC systems as in Fig. 7. It consists of mobile users, information
collectors, SBSs, and a selection planner. There are two kinds
of participants, including mobile users and service providers.
Mobile users submit their requests to the system and consume
the services, while service providers publish their services that
are deployed as instances on one or multiple edge servers for use.

The process of service instance selection in mobile edge com-
puting is as below. The information collector distributively runs
on the user’s mobile device and is responsible for collecting the
information of user’s mobility path. When a mobile user submits
a service request, the information collector sends the profile of
the service request along with the mobility path to the centralized
selection planner, which can be deployed on the cloud center
of service instances or on a macro base station (MBS) in the
region. The centralized selection planner periodically gathers the
information of the service instances in the region and decides
which instance is allocated to execute a user request. The real-
time decisions are sent to each user after they submit the service
requests. Once the decisions of assigning service instances for
user are made by the selection planner, they upload the input
data to the specified instances and receive the returned output
data from the corresponding instances.

During the selection of service instances, the user requests
within the same period are taken into account to interfere with
each other. Considering a service instance as a multi-tenant sys-
tem, and each tenant is regarded as a time period, if there are
many uncompleted requests remaining in the previous period,
the corresponding computing resources allocated to the next pe-
riod can be appropriately reduced to avoid affecting the execution
9

Fig. 7. System architecture of decision-making of service instance selection in
GASISMEC.

for the remaining requests in the previous period. In such case,
the inherent workload of an instance in GASISMEC is applied as
the remaining workload of the previous periods. To guarantee
the uncompleted requests at the end of the previous period are
not affected by the new arrival of requests in current period, the
inherent workload, the maximum workload and the coefficient of
basic execution time of each instance are periodically updated to
ensure the validity of the previously planned decisions on service
instance selection and satisfy the application demands of service
instance execution.

5. Experiments

5.1. Datasets and experimental setup

To validate the effectiveness and the efficiency of our ap-
proach, extensive experiments are conducted on two benchmark-
ing datasets that are widely used in edge computing, including
EUA dataset2 and Shanghai-Telecom dataset.3 The EUA dataset
ontains the locations of base stations and end users within the
elbourne CBD area, which has 125 base stations and 816 end
sers as illustrated in Fig. 8(a). It has been widely used in many
xisting research works [2,22,28]. The Shanghai-Telecom dataset
ontains 3233 base stations within Shanghai, China. We select a
egion in the center of the city, and then randomly and uniformly
enerate users within the coverage of the SBSs, where there are
3 base stations and 1000 users as illustrated in Fig. 9(a).
To further simulate various user distributions, we randomly

enerate diverse groups of users gathered together with Gaussian
istribution to replace some users in Figs. 8(a) and 9(a), respec-
ively. In the experiments, we generate two datasets where end
sers are far away from the SBSs as in Figs. 8(b) and 9(b), respec-
ively. Simultaneously, two additional datasets are also generated
here end users are conversely close to the SBSs as in Figs. 8(c)
nd 9(c), respectively.
In our experiments, the coverage radius of each SBS is ran-

omly sampled from [150, 200] m. The mobility paths of edge
sers are generated by the well-known random waypoint mo-
ility model (RWP) [29], where the speed of mobile users is
andomly sampled from [1, 10] m/s. As in [5], the transmission
rate between two edge servers is randomly sampled from [1, 10]
MB/s and the transmission rate between an edge server and the
cloud server is fixed at 1 MB/s. The AP of each edge cell is the
closest SBS to its center point. The transmission rate of a users
in an edge cell is set to the same value, and is ranged in [1, 10]
MB/s which is linear to the distance between the center point of
the cell and its AP and decreases as the distance increases.

2 https://github.com/swinedge/eua-dataset.
3 http://www.sguangwang.com/TelecomDataset.html.

https://github.com/swinedge/eua-dataset
http://www.sguangwang.com/TelecomDataset.html

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831
Fig. 8. Different distributions of users and small base stations of EUA dataset.
Fig. 9. Different distributions of users and small base stations of Shanghai-Telecom dataset.
The input data of a user request is randomly assigned with the
size ranged in [5, 20] MB. According to [30], the time consump-
tion of executing a service request can be modeled as linearly
related with the size of input data of the request. In the experi-
ments, we range the minimum execution time tq of a user request
in [5, 10] seconds in terms of the size of input data. The size of
the returned output data of a user request is modeled as being
proportional to the size of the input data, where pIO = z I/zO is the
proportion. The computing capability of service instances tcc is
ranged in [1, 1.5], and the inherent workload of service instances
lo is ranged in [0, 50]. Considering the limited resources of edge
servers and the abundant resources of the cloud center, we set the
maximum amount of workload lmax of edge servers to [400, 500],
while the corresponding lmax of the cloud center is set to 5000.

All the experiments were carried out on our workstation
equipped with an Intel(R) Xeon(R) Gold 6130 @ 2. 60 GHz CPU.
We implemented a prototype system of the proposed approach
GASISMEC and its variations with Python 3.7.4. We repeated
200 times of experiments with each parameter setting, and the
average values are reported as the results.

5.2. Baselines

To evaluate the effectiveness and efficiency of our proposed
approach GASISMEC, we compare it with seven competing ap-
proaches, including a random baseline, three greedy-based ap-
proaches, two GA-based approaches and a our self-developed
variation of GASISMEC.

• Random: It randomly selects an available service instance to
execute a user request.

• Greedy-Workload: It evaluates the additional workload of a
user request to all the service instances, and selects the
service instance with the lowest workload percentage to
execute the request.

• Greedy-Execution: It calculates the execution time of a user
request on all the service instances, and selects the service
instance with the shortest execution time to perform the

request.

10
• Greedy-Response: It calculates the response time of a user
request on all the service instances with the consideration
of user mobility, and selects the service instance with the
shortest response time to satisfy the request.

• GA: It applies the conventional genetic algorithm to find a
solution to service instance selection problem where the
initialization operation randomly generates a set of popu-
lations for an SISP.

• GA-GI: It also leverages the traditional genetic algorithm
to solve an SISP, and the primary difference from the GA
approach lies in its initialization operation in GA where the
above three Greedy-based approaches are used to generate
the strategies of an SISP as the initial populations of service
instance selection.

• GASISMEC-GI: It is a variation of GASISMEC, where the above
three Greedy-based approaches are also taken into account
to initialize the populations of GASISMEC for an SISP, instead
of the randomness of initialization operation in GASISMEC.

Note that in the three Greedy-based approaches, the work-
load, execution time and response time of a user request are
calculated one by one. That is, once service instances are selected
in a greedy way for the previous requests, the decision-making
of them cannot be changed anymore, although the selection
of service instance for the latter requests affects the previous
requests.

5.3. Experimental results and analysis

In the experiments, the number of users n is set to 512, the
proportion of the number of service instances to the number of
edge servers pIns is set to 0.40, and the proportion of z I to zO of
user requests pIO is set to 0.5. The users are randomly sampled
from the user set of the corresponding dataset. Under the uniform
parameter settings, we compare the proposed approach GASIS-
MEC with the six baselines and an our self-developed variation.
The experimental results on EUA datasets and Shanghai-Telecom
datasets with different user distributions are summarized in Ta-
bles 1 and 2, where the best and second-best values in each
column are marked in dark and light gray, respectively.

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

t
i
d
t
a
T
a
r
3
a
t
t
d
u
T
u
r
3

a
a
f
t
R
W
c
i
G
G
o
v
m
t

o
o
C
f
o
p
o

Table 1
Experimental results on EUA datasets with different user distributions.
Methods EUA dataset 1 EUA dataset 2 EUA dataset 3

AVG RESP time CPU time AVG RESP time CPU time AVG RESP time CPU time

Random 29.438 0.0132 30.321 0.0144 28.663 0.0147
Greedy-Workload 28.312 0.0047 29.358 0.0059 27.602 0.0016
Greedy-Execution 27.781 0.0072 28.787 0.0043 27.113 0.0090
Greedy-Response 28.447 0.3253 29.179 0.3247 28.308 0.3215
GA 27.458 0.3593 28.460 0.3504 26.605 0.3424
GA-GI 26.594 0.6773 27.621 0.6999 25.706 0.6715
GASISMEC 23.649 0.5773 25.148 0.5784 22.377 0.5634
GASISMEC-GI 23.352 0.8976 24.799 0.9550 22.104 0.8796
Table 2
Experimental results on Shanghai-Telecom datasets with different user distributions.
Methods Shanghai-Telecom dataset 1 Shanghai-Telecom dataset 2 Shanghai-Telecom dataset 3

AVG RESP time CPU time AVG RESP time CPU time AVG RESP time CPU time

Random 32.393 0.0089 33.536 0.0137 30.361 0.0136
Greedy-Workload 31.476 0.0051 32.641 0.0015 29.258 0.0039
Greedy-Execution 31.023 0.0023 32.079 0.0077 28.817 0.0065
Greedy-Response 30.952 0.2379 31.853 0.2429 29.250 0.2581
GA 30.596 0.3440 31.770 0.3535 28.356 0.3456
GA-GI 29.765 0.5929 30.941 0.6348 27.489 0.6157
GASISMEC 27.366 0.5581 29.004 0.5671 24.626 0.5608
GASISMEC-GI 27.037 0.8348 28.678 0.8270 24.379 0.8149
The results demonstrate that the average response time on the
hree Shanghai-Telecom datasets with different user distributions
s relatively longer than that in the corresponding three EUA
atasets among all the competing approaches. It is triggered by
he different distributions of SBSs in the two groups of datasets
nd the less number of instances deployed in the Shanghai-
elecom dataset. Moreover, the average response time of each
pproach achieves the best performance (i.e., the shortest average
esponse time) on EUA dataset 3 and Shanghai-Telecom dataset
, whereas it obtains the worst performance on EUA dataset 2
nd Shanghai-Telecom dataset 2. This phenomenon is caused by
he different user distributions, where edge users are much closer
o their nearby SBSs in EUA dataset 3 and Shanghai-Telecom
ataset 3. On the contrary, it has much father distance from edge
sers to their covered servers in EUA dataset 2 and Shanghai-
elecom dataset 2. In such case, those users can more quickly
pload and download their requests with higher transmission
ate, leading to the shortest average response time in EUA dataset
and Shanghai-Telecom dataset 3, and vice versa.
Compared to the baselines, GASISMEC and GASISMEC-GI

chieve the shortest average response time among all the EUA
nd Shanghai-Telecom datasets. Specifically, GASISMEC outper-
orms the competing approaches on EUA dataset 3 with an advan-
age of 12.95% over GA-GI, 15.89% over GA, 20.95% over Greedy-
esponse, 17.47% over Greedy-Execution, 18.93% over Greedy-
orkload and 21.93% over Random. Furthermore, GASISMEC-GI

an receive better performance on average response time with an
mprovement of 14.01% over GA-GI, 16.92% over GA, 21.92% over
reedy-Response, 18.47% over Greedy-Execution, 19.92% over
reedy-Workload and 22.88% over Random. The main reason
f the advantage of our proposed approach GASISMEC and its
ariation GASISMEC-GI lies in their integration of heuristics into
utation operations, yielding to the shortest average response

ime.
To more deeply validate the effectiveness of the heuristics in

ur proposed approach, we compare the average response time
f GASISMEC with GA and GASISMEC-GI with GA-GI, respectively.
omparing the corresponding results between GASISMEC and GA
rom Tables 1 and 2, GASISMEC has an improvement of 12.30%
n average. In the same way, we find that GASISMEC-GI is su-
erior to GA-GI with an improvement of 10.70% on average. It is

bserved from the comparisons that the heuristics of response

11
time-aware mutation operation can bring a great performance
improvement for GASISMEC and GASISMEC-GI. Furthermore, we
compare GASISMEC with its variation GASISMEC-GI from Tables 1
and 2 and find out that the performance on average response time
of GASISMEC-GI is 1.20% better than that of GASISMEC on aver-
age. Additionally, we also compare GA-GI with GA from Tables 1
and 2 and it achieves a 3.07% improvement on average, which is
higher than the enhancement by introducing the Greedy-based
strategies into the initial populations in GASISMEC. The underly-
ing reason why GASISMEC brings less enhancement by leveraging
Greedy-based strategies for generating initial populations than
GA can be explained that the response time-aware mutation
operation itself can boost the results of service instance selection,
which potentially reduces the importance of initialization to the
GA-based approaches to a certain extent.

From the time consumption in Tables 1 and 2, GASISMEC-GI
takes the longest CPU time to generate a service selection strategy
owing to the extra computation brought by the response time-
aware mutation operation and the initialization of populations
with the Greedy-based approaches. GA-GI takes the second most
time, while GASISMEC and GA take the third and fourth most
time, respectively. It indicates that the response time-aware mu-
tation operation takes less CPU time than that of initializing the
populations with the Greedy-based approaches, while it brings
significant improvement on the average response time. Greedy-
Workload and Greedy-Execution consume the shortest CPU time,
even less than Random approach. The reason is that for a user
request, Random approach needs to first calculate which service
instances can withstand the workload brought by the request
and then randomly select a service instance for the request.
Comprehensively, GASISMEC is superior to the other competing
approaches with the consideration of both CPU time and average
response time. Additionally, GASISMEC-GI can generate service
instance selection strategy with the shortest average response
time, although it consumes relatively more CPU time. Based on
the previous analysis, we draw the conclusion that GASISMEC and
its variation, GASISMEC-GI can significantly outperform the other
competing approaches for service instance selection in mobile

edge computing.

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831
Fig. 10. Performance comparisons of average response time on EUA dataset 1 with the variations of three parameters.
Fig. 11. Performance comparisons of average response time on EUA dataset 2 with the variations of three parameters.
Fig. 12. Performance comparisons of average response time on EUA dataset 3 with the variations of three parameters.
5.4. Performance impact of parameters

To evaluate the performance impact of competing approaches,
we vary the following three parameters of the datasets, includ-
ing the number of users n, pIns and pIO. The results of perfor-
mance comparisons among competing approaches are illustrated
in Figs. 10–15, where each shows the trend of the performance
impact with the changes of the three parameters on one of the
EUA and Shanghai-Telecom datasets. When one parameter varies
in the experiments, the others are fixed to the same values as in
Tables 1 and 2.

The subfigure (a) of Figs. 10–15 shows the performance com-
parisons of average response time along with the changes of the
number of users, where it varies from 64 to 768 in steps of
64. As the number of users increases, GASISMEC and GASISMEC-
GI significantly outperform the competing approaches in terms
of average response time. More specifically, at the beginning
the gap among the competing approaches is not that different,
because there are only a few users whose requests can be fully
satisfied with little interference by providing adequate resources
of service instances deployed on multiple edge servers, in such
circumstance, the effect of the Greedy-based approaches has not
been greatly affected. However, as the number of users gradually
12
increases where the interference among users becomes more
distinct, the gap between our proposed approaches and the other
competing ones becomes larger. The reason why our approaches
can remarkably lower the average response time is that, GASIS-
MEC and GASISMEC-GI consider the influence of user interference
by applying the response-time aware mutation operation, which
can partially handle the possibility of the additional response
time due to the uncertainty of execution time. Conversely, regard-
ing our two proposed approaches themselves, when the number
of users is small, the gap between GASISMEC and GASISMEC-GI
is large, while the gap gradually narrows along with the increas-
ing number of users. The main reason is that as the number
of users grows larger, the performance of the three Greedy-
based approaches becomes closer to Random approach. Thus,
they make less effect on the initial populations in GASISMEC-
GI. Furthermore, in terms of diverse datasets with different user
distributions, the results demonstrate that GASISMEC receives
relatively less improvement among all the competing approaches
in Fig. 11(a) compared with that in Fig. 12(a). It can be explained
that end users corresponding to Fig. 11(a) are almost located
in the places far away from the SBSs where the transmission
rate to APs is low, yielding to less possibility of improvement.
Nevertheless, end users corresponding to Fig. 12(a) are much

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

c
b
S
F
i
p

p

a
r
a
c
h
s
o
c
a
s
n
e
o
t

Fig. 13. Performance comparisons of average response time on Shanghai-Telecom dataset 1 with the variations of three parameters.
Fig. 14. Performance comparisons of average response time on Shanghai-Telecom dataset 2 with the variations of three parameters.
Fig. 15. Performance comparisons of average response time on Shanghai-Telecom dataset 3 with the variations of three parameters.
loser to SBSs, which leads to higher transmission rate and is
eneficial to lowering the average response time. The results on
hanghai-Telecom datasets follow a similar trend in Fig. 14(a) and
ig. 15(a). Thus, GASISMEC dominates the competing approaches
n the application scenarios where many users are located in the
laces close to SBSs.
The subfigure (b) of Figs. 10–15 shows the performance com-

arisons of average response time along with the changes of pIns,
where it varies from 0.1 to 0.5 in steps of 0.05. When pIns is at
low level, there are insufficient service instances serving user

equests in the region. In such case, GASISMEC and GASISMEC-GI
chieve a relatively small improvement compared with the other
ompeting approaches, because each service instance undertakes
igh workload leading to the increase of the execution time of
ervice instances, which accounts for most of the response time
f user requests. That is, although GASISMEC and GASISMEC-GI
an deal with the interference among users, it still needs to take
long time to execute user requests, due to the resource-scarce
ituations where computing capacities are provided with limited
umber of service instances, making it difficult to reduce the av-
rage response time. However, as pIns grows slowly, the number
f service instances accordingly increases, and the workload of
hese instances decreases. In such circumstance, GASISMEC and
13
GASISMEC-GI take the most advantage of the superiority over
the competing approaches by considering the interference among
edge users and the unpredictability of response time, which leads
to significantly lower the average response time against the other
competing approaches.

The subfigure (c) of Figs. 10–15 shows the performance com-
parisons of average response time along with the changes of
pIO, where it varies from 0.25 to 1.25 in steps of 0.25. In the
experiments, the range of the size of input data is fixed, and the
size of output data is determined by input data and pIO. As shown
from the performance comparisons, when pIO is at a low level, the
size of output data is large, which results in significant advance-
ments on average response time by GASISMEC and GASISMEC-GI
compared with the other competing approaches. The main reason
of the advantage of our proposed approaches is that they take the
uncertainty caused by the interference among users into account,
which is very beneficial to reducing the time consumption of
downloading the returned output data. Therefore, GASISMEC and
GASISMEC-GI can effectively lower the average response time in
the application scenarios with large size of output data. However,
along with the increase of pIO, the superiority of GASISMEC and
GASISMEC-GI against the other competing approaches gradually
decline due to the size of output data becomes smaller and
smaller.

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831
Fig. 16. Time consumption of finding a solution to service instance selection
among competing approaches on Shanghai-Telecom dataset 1 with the variations
of edge users.

To better evaluate the applicability of our approaches, we
compare the time consumption of finding a solution to ser-
vice instance selection among competing approaches with the
changes of the number of users, which varies from 64 to 768
in steps of 64. As illustrated in Fig. 16, the time consumption of
Random, Greedy-Workload, Greedy-Execution keeps almost un-
changed along with the increasing number of users. And the time
consumption of the remaining competing approaches ascends
along with the increasing number of users, which follows an
approximately linear trend relative to the number of users. When
the number of users is 64, GASISMEC and GASISMEC-GI consume
0.0793 s and 0.1283 s to find a solution to service instance
selection for user requests, respectively. On the other side, when
the number of users is 768, GASISMEC and GASISMEC-GI consume
0.8606 s and 1.3702 s, respectively. Since the elapsed CPU time
of the Greedy-based approaches to generate initial populations
for the optimization of service instance selection increases with
the number of users, the more and more additional CPU time is
taken in GASISMEC-GI than in GASISMEC as the number of edge
users grows. As demonstrated from the results of all competing
approaches, the time consumption keeps within an acceptable
range, indicating the feasibility of these approaches in real-world
applications.

The experimental results show that by considering the influ-
ence of user interference, GASISMEC and its variation, GASISMEC-
GI can outperform the other competing approaches on average
response time in high efficiency. In general, GASISMEC-GI is the
best approach for finding an approximately optimal solution to
service instance selection in relatively small-scale number of
edge users. In large-scale application scenarios where edge users
cannot be provided with sufficient computing resources of service
instances, GASISMEC is the best option for its second-highest
effectiveness on average response time and its high efficiency on
CPU time.

6. Threats to validity

Threats to comparison validity. The SISP studied in this research
has not been investigated before in this domain. Thus, to verify
the performance of our proposed approach GASISMEC, we com-
pare it with a random baseline, three greedy-based approaches
and two GA-based approaches, which are intuitive, commonly
used but lack careful design. In such situation, GASISMEC is likely
to obtain better experimental results, which threats the validity
of the demonstrated effectiveness of our approach for solving the
SISP. In order to minimize the threats under existing conditions,
we conduct experiments on two widely-used datasets with three
14
varying parameters. By this means, the performance of GASIS-
MEC could be reliably evaluated by the comparisons with the
benchmarking approaches.

Threats to application validity. The threats to the validity of
application of our work are whether our approach can be gen-
eralized to other real-world scenarios in mobile edge computing.
Currently, there is no real dataset containing user distribution,
user mobility path, and edge server distribution at the same time.
Therefore, we synthesized the EUA dataset and the Shanghai-
Telecom dataset with simulated user distribution and mobility.
However, as illustrated in Tables 1 and 2, different distribution of
edge servers and the aggregation of end-users affect the effective-
ness of application scenarios. To eliminate the application threats,
we evaluated GASISMEC across a breadth of application scope, in
terms of the variations of the number of users, the number of
service instances and the proportion of the output data size to
the input data size, to simulate as many application scenarios as
possible. What is more, we randomly sampled a certain number
of users from all users in each round of experiments to boost
the generalizability and feasibility of GASISMEC in real-world
applications.

7. Discussion

7.1. The selection of genetic algorithm

To efficiently find an approximately optimal solution to an
SISP, we select a widely-used metaheuristic algorithm GA as the
basis, where a heuristic strategy is incorporated into the mutation
process of the genetic algorithm to achieve a better performance
over the baselines.

There are also some metaheuristic algorithms such as ant
colony optimization (ACO) and particle swarm optimization
(PSO), which also have excellent performance in solving com-
binatorial optimization problems. However, we have not used
these algorithms in our research. Because for ACO, it is mainly
applied to solve the problem of graph structure, such as traveling
salesman problem (TSP). Although researchers have extended
ACO to tackle integer programming problem such as assignment
problem, it is still not suitable for the SISP in MEC. The underlying
reason is that if ACO is applied in SISP to generate allocation
strategies, the service instance for each request needs to be
selected one by one in order. Under these circumstances, the
estimated response time of the previously selected instances
is affected by the later selection. What is more, due to the
introduction of user mobility, the heuristic value of ACO in the
moving process of each ant needs to be recalculated for each
round instead of pre-stored in a matrix as in TSP or assignment
problem, which brings a very large computational complexity.

As for PSO, although it can randomly search for suitable service
instances for all requests at the same time, which can remedy the
disadvantages of the ACO with regard to SISP, it is observed that
most researches based on PSO algorithms focus on solving con-
tinuous optimization problems while SISP is a discrete problem.
From the above analyses and explanations, we conclude that the
selected genetic algorithm and its variations are suitable to solve
service instance selection problem in MEC.

7.2. Challenges of SISP

Challenges from heterogeneity. Mobile edge computing sys-
tems are characterized with fragmentation and heterogeneity.
To consider the performance difference caused by the hetero-
geneity of edge servers, we assign differential computing power
and maximum workload to multiple edge service instances de-
ployed on different edge servers. However, to simplify the SISP

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

m
a
s
s
s
t
i
t
i
r

m
p
s
a
u
s
d
a
o
s
a
p

r
o
r
t
a
r
m
r
a

8

m
c
e
n
s
a
d
i
c
b
a
f

t
i
l
r
s
t
w

8

p
v
w
a
f

odeling, we have ignored the diversity of edge servers’ micro-
rchitectures and the differences in the runtime and the hardware
ystems of the deployed instances. For example, we model the
ervice instances deployed on different edge servers with the
ame performance of parallel scheduling strategy, which leads
o share the same value of b in (8). However, different service
nstances may have different parallel scheduling strategies due to
he heterogeneity of their runtime and hardware systems. Thus,
t brings certain challenges to the universality of our approach in
eal-world applications.

Challenges from user mobility. In our SISP, we assume that the
obility paths of edge users can be pre-acquired by location
rediction techniques. However, user position prediction may
till have certain errors in real-world applications, and there is
lso the possibility that the user suddenly deviates from the
sual mobility path. What is more, the assumption of the quasi-
tatic status during uploading/downloading request data may be
ifficult to apply in these scenarios where mobile devices move
t a high speed. These challenges greatly increase the complexity
f SISP. However, to control the complexity of SISP that can be
olved to efficiently find a suboptimal solution, we reasonably
ssume a quasi-static status and pre-acquirable user mobility
aths.
Challenges from server connectivity. In our SISP, we assume that

andomly two edge servers are logically interconnected by one
r more hops, and they are assigned with different transmission
ates. However, it might be too luxurious in real-world applica-
ions if all SBSs are fully interconnected or even not necessarily
chievable, when they are set up by different Mobile Telecom Car-
iers. Once this kind of network topology is introduced into SISP
odeling, the complexity would be greatly increased. Thus, we

easonably assume that edge servers are logically interconnected
s infrastructures for service instance deployment.

. Related work

With the development of Everything as a Service technology,
ore and more traditional industries migrate applications to the
loud and use them as public services for invocation [31]. The
mergence of mobile edge computing allows users to choose
earby services on the Internet to improve the experience of
ervice invocations. Nowadays, there are many researchers lever-
ging mobile edge computing architecture to better support the
evelopment of healthcare [11,12], smart city [13], smart farm-
ng [14], unmanned aerial vehicle systems [32] and ambient
omputing [15]. However, the limited resources of edge devices
ring an urgent need of designing an effective approach to select
ppropriate service instances for the increasing demand of users
or the immediacy of services in mobile edge computing.

To the best of our knowledge, our work is the first to tackle
he mobility-aware multi-user service instance selection problem
n MEC. We also realistically and innovatively address this prob-
em with an improved genetic algorithm-based approach with a
esponse time-aware mutation operation with normalization for
ervice instance selection, aiming to enhance user experiences. In
he following, we review the advancements highly related to our
ork.

.1. Service selection for composition in MEC

In recent years, with the development of mobile cloud com-
uting (MCC) and MEC, some researchers started to explore ser-
ice selection for composition. In [1], a service selection approach
as proposed to select candidate services to build a workflow,
iming at minimizing energy consumption of invoking the work-

low by a certain user in the mobile state. In [5], the authors

15
proposed a mixed metaheuristic approach to select the optimal
services from the candidate service set, where user mobility
path is taken into account to generate a composite service for a
predefined task. However, these service selection approaches are
primarily for selecting candidate services to make up a workflow
instance for a certain user, where the interference among users
is dismissed.

8.2. Computation offloading

Computation offloading is another research issue related to
service instance selection. Chen et al. [20] proposed a distributed
game theoretic approach aiming to achieve a Nash equilibrium,
minimizing the total energy consumption and offloading latency
with single-channel wireless setting in mobile cloud computing.
In this work, data transmission of users with the same channel
at the same time has interference with each other. In [21], Chen
et al. further extended their previous work to mobile edge cloud
computing with multi-channel wireless setting. However, both of
them did not take the mobility paths of users into consideration.
Deng et al. [33] proposed a computation offloading system for
service workflow in mobile cloud computing, which splits the
workflow and decides whether to offload for each part of the
workflow. In [34], Chen et al. proposed a Lyapunov optimization-
based approach to determine the energy harvesting policy and
task offloading strategy for the mobile device equipped with an
energy harvesting equipment. In [22], Zhao et al. proposed a
computation offloading framework for partitionable applications
aiming to minimize the offloading latency and energy consump-
tion of a group of users, where the mobility paths of users
were taken into consideration. However, existing researches on
computation offloading either have not taken the interference of
multiple users into account in terms of application scenarios, or
did not consider user mobility when performing the offloading
task.

8.3. Edge user allocation

Edge user allocation is also related to service instance selection
problem. In [2], Lai et al. first introduced edge user allocation
(EUA) problem, which is modeled as a bin packing problem and
solved with the Lexicographic Goal Programming technique. It
aims to distribute as many users as possible to edge servers and
consume as few edge servers as possible. Based on their previous
work, Lai et al. [35] extended EUA problem by allocating users
to edge servers with different levels of computation resources to
improve the quality of experience of edge users. To further reduce
the complexity of the allocation algorithm, He et al. [28] proposed
a game-theoretic approach called EUA game to allocate users to
edge servers in a distributed manner. Cui et al. [36] proposed a
game-theoretic approach to achieve the trade-off between multi-
tenancy and interference to pursue a cost-effective user allocation
strategy. However, the influence of user mobility paths is ignored
in these researches.

8.4. Nature-inspired algorithms

Since combinatorial optimization problems are always with
high complexity, nature-inspired metaheuristic algorithms can be
implemented to solve these problems with sufficient efficiency
without guaranteeing optimality. For example, Wang et al. [37]
proposed an artificial bee colony algorithm with a novel approx-
imate approach for the neighborhood search, which can effi-
ciently and effectively search for services in the discrete space.
Vimal et al. [38] proposed a reinforcement learning based multi-
objective ant colony optimization algorithm to provide accurate

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831

s
o
s
b
m
b
r
s

9

i
u
i
f
a

D
d
K

olutions to the resource allocation problem in Industrial Internet
f Things. Dey et al. [26] summarized a large number of case
tudies of nature-inspired algorithms, such as electrocardiogram
aseline drift estimation based on particle swarm optimization of
orphological filters, retinal anatomical structures examination
ased on the spider monkey optimization algorithm, etc. These
esearches have brought inspirations to our approach for solving
ervice instance selection problem in MEC.

. Conclusion and future works

In this paper, we studied service instance selection problem
n MEC. Specifically, we have taken the mobility paths of the
sers, the interference among the users and the workload of the
nstances into consideration, which makes this problem valuable
or practical application. It is modeled as an optimization problem
nd proven to be an NP-hard problem. To reduce the com-

putational complexity, we proposed a novel genetic algorithm-
based approach called GASISMEC, which is an improved genetic
algorithm-based approach to find an approximately optimal so-
lution to service instance selection problem in polynomial time.
Extensive experiments conducted on two real-world datasets val-
idate the effectiveness and efficiency of the proposed approach
and its variation against the six baseline competing approaches.

Although service instance selection problem in mobile edge
computing paradigm has been investigated in this work, there
are still limitations, such as relatively primitive competing ap-
proaches and lacking of experimental results in real-world appli-
cation environment. In the future, we plan to focus on exploring
temporal-aware online algorithms to find service instance se-
lection strategies with better effectiveness and efficiency, and
extending SISP to the application scenarios of multiple users and
services.

CRediT authorship contribution statement

Guobing Zou: Investigation, Conceptualization, Methodology,
Writing - review & editing. Zhen Qin: Methodology, Software,
ata curation, Formal analysis, Validation, Writing - original
raft. Shuiguang Deng: Visualization, Writing - review & editing.
uan-Ching Li: Writing - review & editing. Yanglan Gan: Super-

vision, Validation, Resources, Funding acquisition. Bofeng Zhang:
Supervision, Resources, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was partially supported by National Key Research
and Development Program of China (2017YFC0907505), Shang-
hai Natural Science Foundation, China (18ZR1414400), National
Natural Science Foundation of China (61772128).

References

[1] Shuiguang Deng, Hongyue Wu, Wei Tan, Zhengzhe Xiang, Zhaohui Wu, Mo-
bile service selection for composition: An energy consumption perspective,
IEEE Trans. Autom. Sci. Eng. 14 (3) (2015) 1478–1490.

[2] Phu Lai, Qiang He, Mohamed Abdelrazek, Feifei Chen, John Hosking, John
Grundy, Yun Yang, Optimal edge user allocation in edge computing with
variable sized vector bin packing, in: International Conference on Service
Oriented Computing, 2018, pp. 230–245.
16
[3] Jonsson Peter, Carson Stephen, Blennerud Greger, Kyohun Shim Jason,
Arendse Brian, Husseini Ahmad, Lindberg Per, Ohman Kati, Ericsson mobil-
ity report november 2019, 2019, https://www.ericsson.com/4acd7e/assets/
local/mobility-report/documents/2019/emr-november-2019.pdf.

[4] Niroshinie Fernando, Seng W. Loke, Wenny Rahayu, Mobile cloud
computing: A survey, Future Gener. Comput. Syst. 29 (1) (2013) 84–106.

[5] Hongyue Wu, Shuiguang Deng, Wei Li, Jianwei Yin, Xiaohong Li, Zhiyong
Feng, Albert Y. Zomaya, Mobility-aware service selection in mobile edge
computing systems, in: IEEE International Conference on Web Services,
2019, pp. 201–208.

[6] Yun Chao Hu, Milan Patel, Dario Sabella, Nurit Sprecher, Valerie Young,
Mobile edge computing-a key technology towards 5G, ETSI White Pap. 11
(2015) 1–16.

[7] Shuiguang Deng, Zhengzhe Xiang, Javid Taheri, Khoshkholghi Ali Moham-
mad, Jianwei Yin, Albert Zomaya, Schahram Dustdar, Optimal application
deployment in resource constrained distributed edges, IEEE Trans. Mob.
Comput. (2020).

[8] Rui Dong, Changyang She, Wibowo Hardjawana, Yonghui Li, Branka
Vucetic, Deep learning for hybrid 5G services in mobile edge computing
systems: Learn from a digital twin, IEEE Trans. Wireless Commun. 18 (10)
(2019) 4692–4707.

[9] Le Thanh Tan, Rose Qingyang Hu, Mobility-aware edge caching and
computing in vehicle networks: A deep reinforcement learning. IEEE
Transactions on Vehicular Technology 67 (11) (2018) 10190–10203.

[10] Theodore S. Rappaport, Wireless Communications - Principles and Practice,
Prentice Hall, 1996.

[11] David Klonoff, Fog computing and edge computing architectures for pro-
cessing data from diabetes devices connected to the medical internet of
things, J. Diabetes Sci. Technol. 11 (4) (2017) 647–652.

[12] Luca Greco, Gennaro Percannella, Pierluigi Ritrovato, Francesco Tortorella,
Mario Vento, Trends in IoT based solutions for health care: Moving AI to
the edge, Pattern Recognit. Lett. 135 (2020) 346–353.

[13] Krati Rastogi, Divya Lohani, Edge computing-based internet of things
framework for indoor occupancy estimation, Int. J. Ambient Comput. Intell.
11 (4) (2020) 16–37.

[14] Olivier Debauche, Saïd Mahmoudi, Sidi Ahmed Mahmoudi, Pierre Man-
neback, Jérôme Bindelle, Frédéric Lebeau, Edge computing and artificial
intelligence for real-time poultry monitoring, Procedia Comput. Sci. 175
(2020) 534–541.

[15] Sonia Ben Mokhtar, Pierre-Guillaume Raverdy, Aitor Urbieta, Roberto Spe-
icys Cardoso, Interoperable semantic and syntactic service discovery for
ambient computing environments, Int. J. Ambient Comput. Intell. 2 (4)
(2010) 13–32.

[16] Xiaocheng Liu, Bin Chen, Xiaogang Qiu, Ying Cai, Kedi Huang, Scheduling
parallel jobs using migration and consolidation in the cloud, Math. Probl.
Eng. 2012 (2012) 1–8.

[17] Said El Kafhali, Khaled Salah, Performance modelling and analysis of
internet of things enabled healthcare monitoring systems, IET Netw. 8 (1)
(2018) 48–58.

[18] Abebe Belay Adege, HsinPiao Lin, LiChun Wang, Mobility predictions for
iot devices using gated recurrent unit network, IEEE Internet Things J. 7
(1) (2020) 505–517.

[19] Josh Ying, Wang Lee, T. Weng, Vincent S. Tseng, Semantic trajectory mining
for location prediction, in: ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, 2011, pp. 34–43.

[20] Xu Chen, Decentralized computation offloading game for mobile cloud
computing, IEEE Trans. Parallel Distrib. Syst. 26 (4) (2014) 974–983.

[21] Xu Chen, Lei Jiao, Wenzhong Li, Xiaoming Fu, Efficient multi-user compu-
tation offloading for mobile-edge cloud computing, IEEE/ACM Trans. Netw.
24 (5) (2015) 2795–2808.

[22] Hailiang Zhao, Shuiguang Deng, Cheng Zhang, Wei Du, Qiang He, Jian-
wei Yin, A mobility-aware cross-edge computation offloading framework
for partitionable applications, in: IEEE International Conference on Web
Services, 2019, pp. 193–200.

[23] Lingyun Wu, Xiangsun Zhang, Juliang Zhang, Capacitated facility location
problem with general setup cost, Comput. Oper. Res. 33 (5) (2006)
1226–1241.

[24] David E. Goldberg, Genetic Algorithms in Search Optimization and Machine
Learning, Addison-Wesley, 1989.

[25] Zhou Zhou, Fangmin Li, Huaxi Zhu, Houliang Xie, Jemal H. Abawajy,
Morshed U. Chowdhury, An improved genetic algorithm using greedy
strategy toward task scheduling optimization in cloud environments,
Neural Comput. Appl. (2019) 1–11.

[26] Nilanjan Dey, Amira S. Ashour, Siddhartha Bhattacharyya, Applied
Nature-Inspired Computing: Algorithms and Case Studies, 2020.

[27] Christopher M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[28] Qiang He, Guangming Cui, Xuyun Zhang, Feifei Chen, Shuiguang Deng, Hai
Jin, Yanhui Li, Yun Yang, A game-theoretical approach for user allocation
in edge computing environment, IEEE Trans. Parallel Distrib. Syst. 31 (3)
(2019) 515–529.

http://refhub.elsevier.com/S0950-7051(21)00094-0/sb1
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb1
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb1
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb1
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb1
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb2
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb2
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb2
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb2
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb2
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb2
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb2
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
https://www.ericsson.com/4acd7e/assets/local/mobility-report/documents/2019/emr-november-2019.pdf
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb4
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb4
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb4
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb5
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb5
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb5
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb5
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb5
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb5
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb5
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb6
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb6
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb6
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb6
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb6
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb7
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb7
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb7
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb7
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb7
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb7
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb7
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb8
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb8
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb8
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb8
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb8
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb8
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb8
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb9
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb9
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb9
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb9
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb9
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb10
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb10
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb10
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb11
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb11
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb11
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb11
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb11
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb12
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb12
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb12
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb12
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb12
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb13
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb13
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb13
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb13
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb13
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb14
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb14
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb14
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb14
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb14
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb14
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb14
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb15
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb15
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb15
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb15
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb15
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb15
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb15
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb16
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb16
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb16
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb16
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb16
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb17
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb17
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb17
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb17
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb17
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb18
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb18
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb18
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb18
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb18
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb19
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb19
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb19
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb19
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb19
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb20
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb20
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb20
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb21
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb21
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb21
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb21
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb21
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb22
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb22
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb22
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb22
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb22
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb22
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb22
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb23
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb23
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb23
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb23
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb23
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb24
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb24
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb24
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb25
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb25
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb25
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb25
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb25
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb25
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb25
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb26
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb26
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb26
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb27
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb27
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb27
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb28
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb28
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb28
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb28
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb28
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb28
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb28

G. Zou, Z. Qin, S. Deng et al. Knowledge-Based Systems 217 (2021) 106831
[29] Christian Bettstetter, Hannes Hartenstein, Xavier Pérez-Costa, Stochastic
properties of the random waypoint mobility model, Wirel. Netw. 10 (5)
(2004) 555–567.

[30] Haichuan Ding, Yuanxiong Guo, Xuanheng Li, Yuguang Fang, Beef up
the edge: Spectrum-aware placement of edge computing services for the
internet of things, IEEE Trans. Mob. Comput. 18 (12) (2018) 2783–2795.

[31] Prith Banerjee, Rich Friedrich, Cullen Bash, P. Goldsack, Bernardo A.
Huberman, J. Manley, Chandrakant D. Patel, Parthasarathy Ranganathan, A.
Veitch, Everything as a service: Powering the new information economy,
Computer 44 (3) (2011) 36–43.

[32] Amartya Mukherjee, Nilanjan Dey, Debashis De, Edgedrone: QoS aware
MQTT middleware for mobile edge computing in opportunistic internet of
drone things, Comput. Commun. 152 (2020) 93–108.

[33] Shuiguang Deng, Longtao Huang, Javid Taheri, Albert Y. Zomaya, Compu-
tation offloading for service workflow in mobile cloud computing, IEEE
Trans. Parallel Distrib. Syst. 26 (12) (2014) 3317–3329.

[34] Weiwei Chen, Dong Wang, Keqin Li, Multi-user multi-task computation of-
floading in green mobile edge cloud computing, IEEE Trans. Serv. Comput.
12 (5) (2019) 726–738.
17
[35] Phu Lai, Qiang He, Guangming Cui, Xiaoyu Xia, Mohamed Abdelrazek,
Feifei Chen, John Hosking, John Grundy, Yun Yang, Edge user allocation
with dynamic quality of service, in: International Conference on Service
Oriented Computing, 2019, pp. 86–101.

[36] Guangming Cui, Qiang He, Feifei Chen, Hai Jin, Yun Yang, Trading off be-
tween multi-tenancy and interference: A service user allocation game, IEEE
Trans. Serv. Comput. (2020) http://dx.doi.org/10.1109/TSC.2020.3028760.

[37] Xianzhi Wang, Xiaofei Xu, Quan Z. Sheng, Zhongjie Wang, Lina Yao, Novel
artificial bee colony algorithms for QoS-aware service selection, IEEE Trans.
Serv. Comput. 12 (2) (2019) 247–261.

[38] S. Vimal, Manju Khari, Nilanjan Dey, Rubén González Crespo, Yesud-
has Harold Robinson, Enhanced resource allocation in mobile edge
computing using reinforcement learning based MOACO algorithm for IIOT,
Comput. Commun. 151 (2020) 355–364.

http://refhub.elsevier.com/S0950-7051(21)00094-0/sb29
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb29
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb29
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb29
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb29
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb30
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb30
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb30
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb30
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb30
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb31
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb31
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb31
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb31
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb31
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb31
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb31
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb32
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb32
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb32
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb32
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb32
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb33
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb33
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb33
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb33
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb33
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb34
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb34
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb34
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb34
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb34
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb35
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb35
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb35
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb35
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb35
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb35
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb35
http://dx.doi.org/10.1109/TSC.2020.3028760
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb37
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb37
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb37
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb37
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb37
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb38
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb38
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb38
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb38
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb38
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb38
http://refhub.elsevier.com/S0950-7051(21)00094-0/sb38

	Towards the optimality of service instance selection in mobile edge computing
	Introduction
	Motivations
	Mobile edge computing system
	Motivating example and applications

	Problem formulation
	User request and service instance
	Response time
	Service instance selection problem

	Approach of service instance selection
	SISP optimization modeling
	Problem hardness
	Approximately optimal algorithm of SISP
	Analysis of time computational complexity
	System implementation
	Explanations of GASISMEC
	System architecture

	Experiments
	Datasets and experimental setup
	Baselines
	Experimental results and analysis
	Performance impact of parameters

	Threats to validity
	Discussion
	The selection of genetic algorithm
	Challenges of SISP

	Related work
	Service selection for composition in MEC
	Computation offloading
	Edge user allocation
	Nature-inspired algorithms

	Conclusion and future works
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

