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Abstract—Cellular programs often exhibit strong heterogeneity and asynchrony in the timing of program execution. Single-cell
RNA-seq technology has provided an unprecedented opportunity for characterizing these cellular processes by simultaneously
quantifying many parameters at single-cell resolution. Robust trajectory inference is a critical step in the analysis of dynamic temporal
gene expression, which can shed light on the mechanisms of normal development and diseases. Here, we present TiC2D, a novel
algorithm for cell trajectory inference from single-cell RNA-seq data, which adopts a consensus clustering strategy to precisely cluster
cells. To evaluate the power of TiC2D, we compare it with three state-of-the-art methods on four independent single-cell RNA-seq
datasets. The results show that TiC2D can accurately infer developmental trajectories from single-cell transcriptome. Furthermore, the
reconstructed trajectories enable us to identify key genes involved in cell fate determination and to obtain new insights about their roles

at different developmental stages.

Index Terms—Trajectory inference; Consensus clustering; Gene partition; Single-cell transcriptome.

1 INTRODUCTION

ELLULAR programs are governed by inherent stochas-
C ticity and a vast external factors [1]. During the process
of program execution, cells undergo a complex choreog-
raphy of gene regulatory changes, often exhibiting strong
heterogeneity and asynchrony [2]. Understanding cell state
transitions can provide new perspectives into complex cel-
lular dynamic processes, such as cell differentiation, devel-
opment or diseases [3]. Recent advances in single-cell RNA-
sequencing (scRNA-seq) open up new frontiers of studying
the fundamental mechanisms underlying normal develop-
ment and diseases [4, 5]. Based on massive single-cell gene
expression data, such dynamic processes can be modeled
computationally using trajectory inference methods, which
order cells by progression and reconstruct the pseudo-time
trajectories as they undergo some types of biological transi-
tions [6].

To infer the trajectories of cell state transitions, current
computational approaches broadly fall into two categories
[7]. The predominant category of algorithms directly esti-
mates the pseudo-time ordering from cell profiles. Monocle
[8] describes the complex transition structure using a mini-
mum spanning tree (MST), which serves as the pseudo-time
axis to place cells in order. Wanderlust [9] infers a linear
trajectory based on the k-nearest neighbor graph. Wishbone
[10] extends the Wanderlust method to position individual
cells along bifurcating developmental trajectories. DPT [11]
applies a diffusion map and random-walk-based distance to
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directly reconstruct cell differentiation trajectories. STREAM
[12] projects cells to a lower dimensional space using
MLLE embedding and infers trajectories using the Elastic
Principal Graph. In these methods, the high-dimensional
transcriptional profiles are usually projected into reduced
dimensional spaces by using a (non)linear transformation.
The other category of solutions is to take advantage of
clustering in trajectory inference. These methods are based
on the assumption that the high-dimensional cellular pro-
files constitute cell subpopulations at distinct stages, and
therefore various clustering methods can be utilized to
identify these cell subpopulations. Subsequently, the iden-
tified clusters are served as anchor points, which facilitate
the process of trajectory inference. TSCAN [13] proposes
a cluster based minimum spanning tree approach to order
cells. The process of clustering the cells could effectively
reduce the complexity of the tree space. Mpath [14] first
clusters the cells, then designates landmark clusters with
each representing discrete cell states, and finally derives
multi-branching trajectories using neighborhood-based cell
state transitions. Monocle 2 [15] is also based on the con-
struction of a minimum spanning tree, with an intermediate
clustering step. SLICE [16] quantitatively measures the cel-
lular differentiation states based on the calculated single-cell
entropy and further infers a lineage model by constructing
a directed minimum spanning tree among the identified
clusters. PAGA [17] provides an interpretable graph-like
map of the data manifold, by estimating the connectivity
of manifold partitions. GraphDDP [7] starts from a user-
defined cluster assignment and then utilizes a force-based
graph layout approach to detect differentiation pathways.
These existing methods have made significant progress
in trajectory inference. However, due to noise, high dimen-
sionality and data heterogeneity, most of them still suf-
fer from some limitations. Firstly, dimensionality reduction
techniques usually limit their ability to recover the complex
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structures of data [18]. In particular, principal component
analysis (PCA) explains only a small fraction of data vari-
ance and hence does not offer a clear separation for all
factors [19]. Constrained by the global arrangement, multi
dimensional scaling (MDS) easily ends up distorting the
local arrangement [20]. The widely used t-SNE depends on a
perplexity parameter, which is hard to be determined. Incor-
rect values may lead to a layout where data points divided
into several detached groups are arbitrarily positioned [21].
Secondly, as the clustering based methods usually adopt
traditional clustering algorithms, such as k-means, hierar-
chical clustering and spectral clustering, they are sensitive
to noise and high dimensionality [22]. Recently, consensus
clustering has been proposed for RNA-seq data clustering.
The method ECC adopts consensus clustering strategy for
patient stratification [23]. SC3 is proposed to cluster cells
by consensus clustering [24]. These methods achieve high
accuracy and robustness by combining multiple clustering
solutions through a consensus approach. Thus, it implies
a feasible way to develop more robust trajectory inference
methods, and to fuse diverse solutions from multiple het-
erogeneous datasets.

In this study, we present a new method termed TiC2D for
reconstructing cell developmental trajectories from single-
cell RNA-seq data, by introducing a consensus clustering
model to precisely cluster cells and infer cell trajectory based
on the identified clusters. To uncover interesting clusters
from data with noise, outliers and data variation, TiC2D
first adopts a community detection strategy to separate
genes into different groups, and clusters the cells into dif-
ferent partitions for each gene group, then ensembles these
partitions into consensus clusters. Subsequently, an MST
is constructed to connect cluster centers. Furthermore, the
principal curves algorithm is utilized on the MST to get
smooth trajectories. To evaluate the performance of TiC2D,
we applied it to four independent scRNA-seq datasets with
known lineages and developmental time information. Our
analyses show that the proposed TiC2D algorithm can suc-
cessfully reconstruct cellular trajectories that have been pre-
viously experimentally validated. Meanwhile, the compar-
ison with state-of-the-art methods indicates that consensus
clustering significantly helps the generation of more robust
trajectories.

2 MATERIALS AND METHODS
2.1 Datasets and data prepossessing

To demonstrate the effectiveness of TiC2D, we applied it
to four real scRNA-seq datasets from both Homo sapiens
and Mus musculus. The first dataset consists of single-cell
RNA-seq samples collected after stimulating bone-marrow-
derived mouse dendritic cells by lipopolysaccharide (LPS)
[25]. It contains a total of 306 cells collected at 1, 2,4 and 6 h.
The second dataset consists of 372 primary human skeletal
muscle myoblasts (HSMM) single cells collected at 0, 24,
48, and 72 h [8]. The third dataset is germline-human-male-
weeks datasets(Germline), and contains 649 cells collected
at 4,9, 10, 19, 20, 21 and 25 weeks [26]. The fourth dataset
E-MTAB-3929 contains 1,529 cells obtained from 88 human
preimplantation embryos ranging from embryonic day 3 to
7 [27]. The original quantification and cell types of these
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datasets are described in the related articles. In the follow-
ing, we respectively refer to these four datasets as LPS,
HSMM, Germline and MTAB.

For the four datasets, we preprocess the scRNA-seq
dataset as commonly done in previous studies [28], in-
cluding basic filtering of the data, normalization and log2-
transformation. In order to alleviate the effect of drop-out
events on the following analyses, the genes with zero read
count in all cells are firstly filtered out [13]. Then the gene ex-
pression values are normalized, and the resulted values are
further log?2 transformed by adding a pseudo-count of 1. As
the number of remaining genes is still much large, we adopt
the gene filter to remove genes that are either expressed in
less than X% of cells or expressed in at least (100 — X)% of
cells, as the previous method SC3 did (Kiselev et al., 2017).
To select an appropriate value of the filtering parameter X,
we try different values of X ranging from 5% to 20% with
the step 0.025, and find that in general the gene filter does
not greatly affect the accuracy of clustering (Supplementary
Table 1). However, the gene filter significantly reduces the
dimensionality of the data.

2.2 The TiC2D Method

To reconstruct trajectories from a heterogeneous popula-
tion of single-cells, we proposed a new trajectory inference
method TiC2D. The method consists of four main steps, as
shown in Figure 1. First, divide the genes into different
groups using a community detection strategy. Second, for
each gene group, respectively cluster cells into different
subpopulations. Third, ensemble the different partitions of
these gene groups into consensus clusters. Finally, construct
a minimum spanning tree to connect the identified consen-
sus clusters, and then get smooth trajectories by principal
curves algorithm [19].

Step 1. Partitioning genes into different groups

We treated the preprocessed gene expression data after
gene filtering as a matrix Eys.n with M genes expressed in
N cells. Element E;; represents the expression level of the ith
gene in the jth cell. The filtered gene set was partitioned into
different subgroups using a community detection algorithm.
Concretely, we first constructed a kNN graph and identified
gene subgroups by detecting communities of densely inter-
connected genes. Here, we applied the method Louvain for
community discovery, which is an accurate and efficient
algorithm based on multi-level optimization of modularity
[29]. Subsequently, E. v is partitioned into K submatrices
Ey, E,, ---, Ex. Ej represent the gene expression sub-
matrix of N cells in the kth gene group.

Step 2. Clustering cells for each gene group

For each gene group Ej, we clustered N cells into Ry,
basic partitions using a clustering method (e.g. Louvain, k-
means). Based on the basic partitions, a binary similarity
matrix is constructed according to the corresponding cluster
labels of cells. The binary matrix is represented as By«g,-
For each row, only one element is 1, the others are 0,
representing that this cell only belongs to this cluster. Totally,
for all the K gene subgroups, we obtained K basic partitions
for these N cells and correspondingly K binary matrices
BN«R.» BN+Rs» " BN+Rk-

Step 3. Ensembling clusters from different cluster sets
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Step 4. Pseudo-time ordering

Based on the consensus clusters, a minimum spanning
tree with the smallest total edge length is constructed to
connect all the cluster centers. The minimum spanning tree
determines the initial structure of the trajectory. To further
infer the origin of the trajectory, we calculated the average
similarity of the mth cluster, denoted by a.SC,,, is computed
as follows:

S i Sig
_ == Jj=lg#i 7"
05Cm = = G Cm — 1) @

S; ; denotes the similarity between two cells i and j, and
C,, is the number of cells in the mth cluster. The similar-
ity can be defined as cosine similarity, Pearson correlation
coefficient or Jaccard coefficient, etc. This metric evaluates
the average similarity among the cells in the cluster. As
previous studies have shown that differentiation pathways
follow the gradient of similarity from higher progenitors
towards lower mature cell types [7], the cluster with the
highest average similarity may be regarded as the starting
point of the differentiation path.

Next, the individual cells are further projected onto
tree edges to infer the cell-level trajectory along the main
path and each branches. The pseudo-time is constructed
separately for the main path and each branches by using the
principal curves algorithm (implemented in the princurve R
package) [19]. For each path, the pseudo-time ordering is
determined by projecting all related data points onto the
curve and calculating the distance from the starting point of
the curve to each projected data point. Then this algorithm
smoothens the trajectory iteratively until convergence.

2.3 Evaluation metrics

We adopted the adjusted Rand index (ARI) to measure the
accuracy of clustering methods [30]. For a set of N cells and
two different partitions of these cells, the overlap between
the two partitions can be summarized in a contingency
table, in which each entry denotes the number of objects
in common between the two partitions. The ARI is then
calculated as follows:

i) - 26D X,6)1/6)
(3235 +32,G)1/2 = 12,5 2,61/ (3)

where (.) denotes a binomial coefficient, n; ; is the element
from the contingency table, a; is the sum of the ith row of
the contingency table, b; is the sum of the jth column of the
contingency table. The range of ARI is [-1,1]. The larger the
value, the more consistent the clustering result is with the
reference one.

For a trajectory inference algorithm, the cell ordering
accuracy is evaluated based on Pseudo-temporal Ordering
Score (POS) [13] and Kendall’s tau correlation [12, 15]. It is
assumed that external information not used in pseudo-time
reconstruction is available to evaluate the pairwise order of
cells. Its main idea is characterizing how well the ordering
of cells in the inferred trajectory matches the true one.

The POS of a trajectory is defined as:

ARI =

@)

4

N-1
POS =" > g(i,j) ®)

alig) = {0 i T(i) = T(5)

(T'(j) —T(i))/D otherwise @)

where N is the number of cells, the ith and jth cells in
the inferred trajectory are respectively collected from time
points 7'(¢) and T'(j), and D is chosen to normalize POS
so that POS € [—1,1]. If two cells are collected at the
same time point, g(4,j)=0; otherwise, g(i,j) is positive if
T(i) represents an earlier time point, or negative if T(4)
represents a time point later than 7'(j). POS = 1 represents
that the inferred order of cells perfectly matches the order
determined by the cells collection time. POS = —1 means
that the inferred order is in the opposite direction of the true
situation. A higher absolute value of POS score indicates
that the algorithm can more accurately infer the pseudo-
time trajectory.

3 RESULTS
3.1 Trajectory inference and pseudo-temporal ordering

To evaluate the effectiveness of TiC2D, we performed exten-
sive analyses on four widely used real scRNA-seq datasets
(LPS, HSMM, Germline and MTAB), which were produced
by different techniques from a variety of contexts in human
and mouse. In order to reconstruct reliable pseudo-time tra-
jectories, the preliminary requirement is to correctly identify
cell clusters, serving as anchor points of the paths. Different
from traditional methods, we proposed a consensus clus-
tering approach to identify more reliable clusters. The gene
sets are firstly partitioned into different subgroups using a
community detection algorithm. For each gene group, we
clustered the cells to obtain basic partitions, and then fused
the basic partitions into consensus clusters. To evaluate
the performance of the proposed method, we compared
it with traditional clustering methods (PCA+K-Means and
PCA+Louvain). The result indicates that the performance
of the consensus clustering is superior on these four real
datasets (Figure 2), which imply that the consensus clus-
tering helps us reduce the effect of noise and high dimen-
sionality, which ensures the stability and accuracy of the
final results. As shown in Figure 3(A), TiC2D respectively
identifies 4, 4, 7, 5 clusters with the highest ARI scores from
the datasets LPS, HSMM, Germline and MTAB.

With the identified clusters, we calculated the average
pairwise similarity between all cells in each cluster to mea-
sure the average similarity of cluster. Figure 3(B) shows
the aSC,, of the identified consensus clusters in the four
datasets. By investigating the cells in these clusters, we
noticed that the denser clusters usually represent progenitor
cells, whereas the mature cell types exhibit lower similarity.
For the dataset HSMM [8], this cell population comprises
single-cell RNA-seq samples from differentiating human
skeletal muscle myoblasts. TiC2D first identifies four clus-
ters, which mainly correspond to the cell groups collected at
0, 24, 48 and 72 h. Correspondingly, the average similarities
of these clusters are 0.747, 0.735,0.722 and 0.440. Meanwhile,
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Fig. 2. The performance comparison among TiC2D, PCA+K-means and
PCA+Louvain on four real scRNA-seq datasets (HSMM, LPS, Germline
and MTAB).

confluent differentiation would materialize in the connec-
tions among clusters of similar similarity. This trend is also
obvious in the other datasets. In the dataset LPS, we also
identified 4 clusters. These clusters are in agreement with
the original four cell groups, collected at 1, 2, 4 and 6 h
after stimulating bone-marrow-derived dendritic cells by
lipopolysaccharide. For the dataset Germline, we identified
7 subpopulations, corresponding to a variety of cell types
collected at different stages. On the whole, by analyzing the
average similarities of these clusters, we observed that a de-
creasing similarity pattern exists in these clusters, implying
that the progenitor cells on average are more similar than
their mature descendant cells.

Subsequently, a minimum spanning tree is constructed
to determine the structure of trajectory. Figure 3(C) shows
the reconstructed trajectories corresponding to these four
datasets. We took the cluster with the highest average
similarity as the starting point. Specifically, for the dataset
HSMM, TiC2D obtains only a single main path. In the pre-
vious results reported by Monocle and TSCAN, a main path
and a branch path have been inferred. However, the branch-
ing path in the minimum spanning tree constructed by Mon-
ocle and TSCAN was caused by contaminated interstitial
mesenchymal cells [13]. Thus, the main path inferred by
TiC2D is consistent with myoblast differentiation that is the
biological process of interest. For the dataset MTAB, based
on the five identified clusters, we also reconstructed a single
path corresponding to the cell differentiation process from
embryonic day 3 to 7. In the dataset LPS, cluster 1 has the
highest average similarity, then we accordingly considered
it as the origin of the pseudo-time trajectory. Cluster 2 and
cluster 3 have similar average similarity, which respectively
lie in two branches. Through constructing the minimum
spanning tree from the identified consensus clusters, we
gained two branching paths in the trajectory: O — @) and
@ — . For the dataset Germline, based on the constructed
minimum spanning tree and the computed aSC, TiC2D
identifies a trifurcating event in the pesudo-time trajectory:

DOD—-0,D—->3and D — @.
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To evaluate the efficiency of these methods, we com-
pared the execution time on different datasets. Specifically,
to test whether TiC2D can scale well with larger scRNA-
seq dataset, we applied it to simulated dataset generated
by the Splatter simulator, which is used by previous studies
[26, 31]. The simulated dataset contains a larger number of
cells, consisting of 10000 cells and 4000 genes. The compar-
ison result on the real and simulated datasets is shown in
Supplementary Table 1. Among these methods, TSCAN has
the highest efficiency. The efficiency of TiC2D is similar with
Slingshot. As multiple steps of clustering on cells are carried
out in our method, it consumes more time. However, since
the individual clustering of cells are conducted on smaller
partitions of gene set, which may lead to a comparable
execution time.

3.2 Gene expression analysis along the inferred trajec-
tories

Having demonstrated that TiC2D can accurately recapitu-
late the pseudo-times, we further analyzed to what extent
a gene is involved in the trajectories. By ordering the gene
expression with the pseudo-time, each part of the trajectory
can be understood in terms of the behavior of certain genes.
As in previous work [32], we adopted random forests to
evaluate the importance of each gene with respect to the
inferred trajectory. For each dataset, the genes are ranked by
their importance, and the top ranked genes are further clus-
tered into coherent gene modules. The number of clusters
is automatically determined with the Bayesian information
criterion [33].

To investigate the behavior of these important genes,
we plotted the expression profiles of the top 100 genes
of each dataset along the inferred pseudo-time trajectory.
In Figure 4(A), the top ranked genes in the datasets LPS
and Germline are respectively plotted. According to their
expression levels in the cellular dynamic progress, these
important genes are further divided into several modules.
For the dataset LPS, we examined the expressions of the
top ranked genes over time and found these genes exhibit
three different expression patterns. In Modulel and Mod-
ule2, the genes exhibit a gradually decreasing or increasing
expression pattern, whereas the genes in Module3 show
an approximately switch-like behaviour. To show more
details, we displayed the expression of one representative
gene along the pseudo-time trajectory for each module, as
shown in Figure 4(B). For Modulel, we can observe that
the genes have high gene expression at the starting time
while their expression levels decrease as the progression
moves forward. On the contrary, in Module2, genes such
as CCL22, TCF4 and NLRC5 are lowly expressed in the
beginning, but are highly expressed in the post-progression.
In Module 3, the expressions of genes (MS4A6D, SLAMEF?,
TRIM30A, etc) exhibit a switch-like pattern along the stimu-
lation progression. For the dataset Germline, the top ranked
genes are clustered into four modules. From the expression
heatmap, we observed different expression patterns along
the pseudo-time trajectory. For the datasets HSMM and
MTAB, the expressions of the top ranked genes and their
related modules are shown in the Supplementary Figure 1
and 2.
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Fig. 3. TiC2D reconstructs the trajectory and pseudo-temporal ordering for four real scRNA-seq datasets (HSMM, LPS, Germline and MTAB). (A)
Cell clusters identified by consensus clustering. Here t-SNE are used for the dimensionality reduction and display of these datasets. (B) The average
similarities of identified clusters in each dataset. (C) The reconstruction of trajectory based on the identified clusters. The paths are reconstructed
by concatenating pairwise shortest-paths between successive stable states in the minimum spanning tree of cells.() indicates the origin of each

trajectory.
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Furthermore, we conducted gene function analysis to
identify biological processes significantly enriched by the
genes from each module (adjusted p value<0.05, DAVID
gene ontology analysis). Based on the analysis, we observed
that genes in each module not only exhibit coherent expres-
sion pattern, but also have very similar functions. For the
dataset LPS, modules 2 and module 3 primarily contain
genes that are involved in response to virus and immune
system process (e.g. OAS1A, OASL1, STAT?) [34], as shown
in Figure 4(C). The expression levels of these genes are
relatively low in the progenitor cells, but rapidly increase
after the stimulation. Specifically, OAS1A is known to be
involved in the response to viral and bacterial stimulus,
and its expression level is expected to increase after LPS
stimulation. For the dataset Germline, the top ranked genes
are grouped into four modules. In detail, Module 1 consists
of genes that are involved in Homeobox and signaling
pathways regulating pluripotency of stem cells, while genes
in module 3 are mainly involved in cell differentiation and
spermatogenesis (e.g. FKBP6, MORC1).

3.3 Performance comparison

We performed a comparative evaluation of TiC2D with
state-of-the-art trajectory inference methods on four real
scRNA-seq datasets. In the previous comparison [26],
TSCAN, Monocle2 and Slingshot outperform most existing
methods, and they are regarded as three excellent trajectory
inference methods. Thus, we compared TiC2D with these
three representative methods. Specifically, TSCAN deter-
mines the lineage structure by drawing an MST on the
cluster centers [13]. Monocle2 constructs an explicit tree
based on a scalable RGE algorithm DDRTree to order cells
[15]. Slingshot also adopts a cluster-based MST to identify
the global lineages and fits smooth branching curves to
these lineages by simultaneous principal curves [31].

For each trajectory inference method, we ran ten times
to get the average result. Figure 5(A)shows the performance
comparison result based on POS. For all the four datasets,
TiC2D has a higher POS than the compared three methods.
For dataset LPS, the POS of TiC2D is about 0.87, while the
highest POS of the other three methods is about 0.78. For
dataset HSMM, TiC2D has a POS of 0.43, whereas the POS
values of TSCAN and Monocle2 are just around 0.2. For
dataset Germline, the POS of TiC2D is 0.41, only followed
by the score of TSCAN (0.39). For dataset MTAB, Slingshot
has similar performance with TiC2D. On the whole, TiC2D
outperforms the three compared methods, indicating that
the consensus clustering strategy and aSC,, measure are
effective in reconstructing better pseudo-time. To further
comprehensively compare the performance of these meth-
ods, we evaluate the inferred trajectories by the Kendall’s
tau correlation between the pseudotime assignment and the
reference ordering (Qiu et al., 2017, Chen et al., 2019). The
experiment results are shown in the Figure 5(B).

Subsequently, we compared the expression patterns of
the marker genes along the true pseudo-time and the in-
ferred orderings obtained by TiC2D, TSCAN, Monocle2 and
Slingshot. The comparison results are shown in Figure 5.
Generally, the gene expression profiles along the trajectories
predicted by TiC2D exhibit much more similar patterns with
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the true pseudo-temporal trajectories than the other three
methods. For dataset LPS, the expressions of the marker
genes (CCL5, STAT2 and RSAD?) first increase and then
slightly decrease along the true pseudo-time. The proposed
TiC2D successfully reveals the increasing pattern of these
genes (Figure 6(A)). By contrast, Monocle2 and Slingshot
could not accurately reveal the temporal order, and the
expression patterns of these genes are also less consis-
tent with the true situation. For the dataset HSMM, the
expression patterns of the marker genes (MEF2C, MYH3
and ENO3) along the trajectories predicted by TiC2D are
more consistent with those along the true pseudo-order. For
datasets Germline and MTAB, we observe similar trends.
From a different perspective, these results validate that more
accurate pseudo-time trajectories are inferred by TiC2D,
which is consistent with the conclusion drawn from the
results of POS.

4 CONCLUSION

While the advent of single-cell RNA-sequencing has shed
new insights into cellular dynamic processes, it also raises
new computational challenges. On the one hand, the expres-
sion data obtained by scRNNA-seq is rather noisy, and thus
computational models should take this factor into account.
On the other hand, as in most cases no known markers exist
to assign cells, it is hard to determine the starting points
of the developmental pathways. In this paper, we proposed
a new computational method TiC2D for inferring cellular
trajectories and pseudo-time order from scRNA-seq data.
To alleviate the effect of noise and high dimensionality, we
adopted a consensus clustering model to precisely cluster
cells on partitioned gene groups. Meanwhile, a measure-
ment of cluster average similarity is applied to determining
the origins of trajectories.

Using TiC2D, we reconstructed experimentally validated
trajectories of four independent scRNA-seq datasets (LPS,
HSMM, Germline and MTAB). The results show the fea-
sibility and high predictive accuracy of TiC2D in deter-
mining cellular states and inferring cellular trajectories. By
comparing TiC2D to the state-of-the-art methods, we found
that TiC2D can improve the accuracy of inferred trajectories
from single cell transcriptome. The good performance of
TiC2D implies that the consensus clustering strategy and the
average similarity of cluster are effective in improving the
pseudo-time trajectory inference. Furthermore, the recon-
structed trajectories enable us to identify key genes involved
in cell fate determination and to obtain new insights about
their roles in dynamic cellular programs.
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