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Abstract

Single-cell RNA sequencing (scRNA-seq) permits researchers to study the complex mechanisms of cell heterogeneity and diversity.
Unsupervised clustering is of central importance for the analysis of the scRNA-seq data, as it can be used to identify putative cell types.
However, due to noise impacts, high dimensionality and pervasive dropout events, clustering analysis of scRNA-seq data remains
a computational challenge. Here, we propose a new deep structural clustering method for scRNA-seq data, named scDSC, which
integrate the structural information into deep clustering of single cells. The proposed scDSC consists of a Zero-Inflated Negative
Binomial (ZINB) model-based autoencoder, a graph neural network (GNN) module and a mutual-supervised module. To learn the data
representation from the sparse and zero-inflated scRNA-seq data, we add a ZINB model to the basic autoencoder. The GNN module
is introduced to capture the structural information among cells. By joining the ZINB-based autoencoder with the GNN module, the
model transfers the data representation learned by autoencoder to the corresponding GNN layer. Furthermore, we adopt a mutual
supervised strategy to unify these two different deep neural architectures and to guide the clustering task. Extensive experimental
results on six real scRNA-seq datasets demonstrate that scDSC outperforms state-of-the-art methods in terms of clustering accuracy
and scalability. Our method scDSC is implemented in Python using the Pytorch machine-learning library, and it is freely available at
https://github.com/DHUDBlab/scDSC.
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Introduction
Single-cell RNA sequencing allows researchers to mea-
sure transcriptome-wide gene expression at single-
cell resolution and has gradually transformed our
understanding of cell biology and human diseases
[1]. Despite the unprecedented power of scRNA-seq,
processing single-cell data are inherently difficult,
especially considering high dimension, technical noises,
drop-out events and batch effects in the data [2]. For
scRNA-seq data analysis, a critical task is to characterize
different cell types in multicellular organisms and their

lineage relationships [3]. Knowledge of cell types can
reveal cell heterogeneity and diversity across tissues,
developmental stages and organisms and provide a
deeper understanding of cell and gene function in health
and diseases.

As an unsupervised learning method, clustering has
been widely used for identifying cell types. Early efforts
are mostly based on dimension reduction techniques
and traditional clustering methods. The strategy usually
first reduce the dimension and then apply the baseline
clustering to the low-dimensional data.The widely used
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dimension reduction methods include principal compo-
nent analysis (PCA), t-Distributed Stochastic Neighbor
Embedding (t-SNE), diffusion diagram and Uniform
Manifold Approximation and Projection (UMAP).It is
worth noting that UMAP is a manifold dimension reduc-
tion technology based on the theoretical framework of
Riemannian geometry and algebraic topology, which is
highly competitive in the visualization quality and can
retain more global structures [4]. As traditional clustering
methods developed for bulk data might not be appropri-
ate for the analysis of scRNA-seq data, researchers turn
to devise new methods for clustering single cells. The
method SIMLR [5] can effectively perform tasks such
as reduced-dimension, clustering and visualization for
scRNA-seq data. The essence of SIMLR is to combine
multiple kernels to learn the similarity between samples
and perform spectral clustering. CIDR [6] is a novel and
fast implicit interpolation method, which considers all
zeros in gene expression data as dropout candidates
to reduce the impact of dropout in scRNA-seq data,
and finally cluster single cells using the first few
principal coordinates. Recently, with the breakthrough of
deep neural networks, several deep clustering methods
have emerged, such as deep embedding clustering
(DEC) [7], IDEC [8], DCA [9], scDeepCluster [10] and
scVAE [11]. Specifically, by utilizing an autoencoder to
simultaneously learn feature representation and cluster
assignments, the methods DEC and IDEC, respectively,
adopting different loss functions as the constraint to
improve the resulted cluster cohesion. The method
DCA replaces traditional mean square error (MSE) loss
function with a zero-inflated negative binomial (ZINB)
model-based loss function for better characterizing
scRNA-seq data. scDeepCluster also utilizes the ZINB
model-based autoencoder to optimize the latent feature
learning for the subsequent clustering. The method
scVAE adopts a deep variational autoencoder to cluster
scRNA-seq data.

Although these deep clustering methods have made
great progress [12], they still face two challenges. First,
they usually focus on learning the feature representation
of the data itself, but ignore the structural relationship
among data samples. In reality, such structural informa-
tion is effective in revealing the latent similarity among
cells, and therefore provides a valuable guidance on cell
clustering. In previous studies, several methods, includ-
ing DSC [13], MPSSC [14], conCluster [15] and SDCN [16],
exploit the structural information of data for cluster-
ing. For example, the method MPSSC enhances sparse
structure through L1 penalty to obtain better clustering
performance. The method conCluster is based on KNN
graph and ensemble clustering. SDCN introduces graph
convolutional network to capture the latent relationship
among data samples. As these methods mainly rely on
Laplacian matrix of the whole graph [17], they are sen-
sitive to the change of similarity graph and the selec-
tion of clustering parameters. Meanwhile, the calcula-
tion and storage costs of these methods are high. Due

to the characteristics of scRNA-seq data, the relation-
ship among cells is far more complex than the neighbor
relationship in the geometric space. Even if there is no
direct relationship between two cells, and the potential
similarity can be revealed through their common neigh-
bors. Therefore, it is necessary to extract the relevant
information among cells from a high-order structure.
The latest methods including scGNN [18] and scGSLC [19]
apply GNN structure to clustering scRNA-seq data and
achieve good results in clustering.The method scGNN
utilizes GNN and multimodal autoencoder to formu-
late and aggregate cell–cell relationships.The method
scGSLC integrates GNN and a bag of features model,
calculates the graph similarity through unsupervised
learning and applies it to single-cell clustering problems.
These studies indicate that GNN is able to learn the
low-dimensional representation of the global topology,
exploit neighbor node information and community net-
works to gradually explore the relationship in the graph,
which can been used to obtain structured information
and cell segregation.

Second, the grand challenge for deep clustering
methods [20] is to accurately simulate on the complex
distribution of scRNA-seq data. Considering the sparsity
and zero-inflated of scRNA-seq data, it is very important
to assume a reasonable distribution of data. Initially,
researchers adopt the normal distribution to simulate
the distribution of scRNA-seq data. Subsequently,
researchers based on the non-negativity of scRNA-seq
data, poisson distribution is adopted to describe the
distribution of data. However, the sample variance and
the mean of Poisson distribution are equal, whereas the
real scRNA-seq data exhibits overdispersion pattern.
Generally speaking, for scRNA-seq data, the difference
between sample variance and sample means value
become larger with the average gene expression level
increases, which does not conform to the nature
of Poisson distribution. On the basis of the Poisson
distribution hypothesis, researchers further propose the
Gammar distribution as the conjugate prior of gamma in
the Poisson distribution from a statistical view and prove
that the data follows the negative binomial distribution
(NB) [21]. Unfortunately, due to the difference among the
sequencing technologies, this assumption is not suitable
for solving the zero-inflated problem retlated with some
kinds of scRNA-seq data. Then, ZINB distribution in
the field of is increasingly favored for scRNA-seq data
analysis [9, 10, 22]. Specifically, DCA adopts the loss
function based on ZINB model rather than the traditional
MSE loss function to better simulate the scRNA-seq
data distribution [9]. scDeepCluster utilizes the ZINB
model to analyze the different expression of microbial
sequencing data, and indicates that it can effectively
characterize discrete, overdispersion and zero-expansion
counting data [10]. However, for scRNA-seq data obtained
from different sequencing platforms, researches have
disputed the adaptability of the ZINB model. Previous
studies have shown that the distribution of UMI count
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is not zero expansion [23], and NB distribution is
suitable for UMI-based scRNA-seq data [21]. Due to this
controversy, it is necessary to explore the characteristics
of scRNA-seq data obtained by different sequencing
technologies and assume a suitable data distribution
for further analysis.

To address these two issues, we propose scDSC, a new
deep structural clustering method for scRNA-seq data
analysis. scDSC formulates and aggregates cell-cell rela-
tionships with graph neural networks (GNN) and learns
embedded gene expression patterns using a ZINB model
based autoencoder module. Specifically, aiming to char-
acterize the sparsity and drop-out events of scRNA-seq
data, we incorporate a ZINB model into the basic autoen-
coder. Then, a mutual supervision module is used to
supervise the end-to-end learning process of structural
information and feature representation and jointly opti-
mize the GNNs and the ZINB-based autoencoder module.
Further, to expand the applicability in different types of
sequencing data, scDSC provides two data distribution
model components (ZINB and NB) for users to choose.
To benchmark the performance of our approach, we
compare the results to a variety of state-of-the-art deep
clustering methods. The extensive experimental results
on six real scRNA-seq datasets demonstrate that scDSC
exhibit obvious advantages over the competing methods.
Specifically, scDSC has made significant improvements
over the best baseline method.

Materials
The framework of deep structural clustering
scDSC
The main architecture of scDSC is proposed to learn
effective representations of cells and genes that are use-
ful for performing cell clustering in scRNA-Seq data. As
illustrated in Figure 1, it consists of three main compu-
tational components, including an autoencoder based
on ZINB model for the gene expression embedding, a
GNN module for cell graph representation and a mutual
supervision module for simultaneous optimization of the
autoencoder and the GNN. According to the pipeline, the
processed scRNA-seq data are first input into the autoen-
coder with a ZINB model, embedding the gene expression
data into a low dimensional space. Meanwhile, according
to the gene expression patterns of cells, we construct a
KNN graph and input it into the GNN module to extract
the structural relationships among cells. Specifically, by
connecting the coding layers of the autoencoder with the
GNN layer-by-layer, we integrate the embedded struc-
tural information and feature representation to further
transmit in the joint framework. Finally, we adopt a
multi-module mutual supervision strategy to achieve
end-to-end training and simultaneous optimization of
the ZINB model-based autoencoder and the GNN. Using
the resulted informative and compact representation,
cell segregation can be performed with high accuracy
and a tractable time complexity.

ZINB model based autoencoder module. To simulate
the distribution of scRNA-seq data and learn the effective
feature representation of the data, here we adopt an
unsupervised autoencoder based on ZINB model. The
ZINB distribution is used to model the highly sparse and
overdispersed gene expression data.

Assuming that the input scRNA-seq data of the model
are X ∈ EC×G, where each row xi represents the i-th
sample, C is the number of cells, G is the number of
genes. The basic autoencoder is composed of two parts:
an encoder and a decoder. The encoder maps the input
Xinto the encoded representation H, and the decoder
maps H into a reconstruction X̄ of the input. Supposing
that the encoder has L layers, for the lth layer, the data
representation learned from this layer is H(l), the weight
is w(l) and the bias vector is b(l). The learning process of
the lth layer of the autoencoder is defined as:

H(l) = φ(w(l)H(l−1) + b(l)) (1)

The encoder stage of the autoencoder maps Xto the
latent representation H as:

H = fenc(WX + b) (2)

The decoder stage of the autoencoder mapsHto the
reconstruction X̄ as:

X̄ = f ′dec(W
′H + b′) (3)

where W and W’, respectively, represent the weight
matrix of the encoder and the decoder, b and b’ are the
bias vectors of the encoder and the decoder.

Different from the traditional autoencoder, the autoen-
coder based on ZINB model connects three independent
full connection layers with the last layer of the decoding
layer to estimate the three parameters of ZINB [9]:
dropout rate π , dispersion degree θ and mean μ. In fact,
we need to use the matrix form of these parameters for
calculation, and define the matrix forms of π , θ and μ

as:

Dropout = Sigmoid(wπD) (4)

Disp = Exp(wθD) (5)

Mean = diag(Si) × exp(wμD) (6)

where D = fdec(fenc(X)) is the output matrix of the last
layer of the decoding layer, and the size factor Si is
the ratio of the total cell count to the median S. The
ZINB model simulating the scRNA-seq data distribution
is parameterized by the ZINB distribution:

NB(X | μ, θ) = �(X + θ)

X! �(θ)
(

θ

θ + μ
)θ (

μ

θ + μ
)X (7)

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac018/6529282 by Shanghai U

niversity user on 28 February 2022



4 | Y. Gan et al.

Figure 1. The overview of the proposed method scDSC. In the framework, scDSC is mainly composed of ZINB model-based autoencoder module (ZAE),
GNN module (GM) and multiple mutual supervision module (MSM). The coding layers and decoding layers of ZAE are fully connected neural network
layer, x and x̄ are input data and reconstructed data of autoencoder, respectively. We use the encoder hidden layer to learn the embedded feature
representation. In the decoder, we use ZINB model to simulate the distribution of scRNA-seq data. ZINB model is composed of three activation layers
with different activation functions, namely Mean, Disp and Dropout. At the connection of GM and AEM, H(l) and Z(l) represents the representation of the
lth layer of the coding layer and the representation of the Lth layer of the GNN, respectively, and learn more rich information through layer-by-layer
integration and transmission. Finally, we use a multiple mutual supervision strategy to conduct the mutual learning of different modules. In MSM, we
use the target distribution P to calculate the clustering distribution Q and then Q supervises the learning process of P, and P also supervises the learning
process of probability distribution Z. In this way, we put multiple networks in one framework to achieve synchronous updating of AEM and GM.

ZINB(X | π , μ, θ)

= πδ(X)+ (1 − π)

[
�(X + θ)

X! �(θ)
(

θ

θ + μ
)θ (

μ

θ + μ
)X

]
(8)

Finally, we define the loss function as the sum of the
negative log of ZINB distribution. The training objective
of scDSC in this module is to minimize the loss function
of autoencoder based on ZINB model:

Lzinb =
∑

−log(ZINB(X | π , μ, θ)) (9)

GNN based on K-nearest neighbor graph (KNN). To
capture the relationships among cells, we further utilize
GNN based on KNN. As in previous studies [19, 24, 25],
we construct the KNN graph according to the input gene
expression data of cells. In the KNN graph, each node
represents a cell, and the edges between nodes represent
the relationship between cells. For example, assuming
that xi, xj and xk, respectively, represent cell i, cell j
and cell k, if xi and xj are adjacent, and xj and xk are
adjacent, it might be inferred that xi and xk also have
certain similarity, with a potential connecting structure.
To better capture the structural information, we adopt
and compare four widely used methods of constructing
KNN graph, including Cosine Similarity, Pearson correla-
tion coefficient, normalized Cosine Similarity and Heat
Kernel [26]:

(1) Cosine Similarity:

Sij =
∑n

i=1,j=1 xi · xj√∑n
i=1 x2

i

√∑n
j=1 x2

j

(10)

(2) Pearson correlation coefficient:

Sij =
∑n

i=1,j=1(xi − x̄)(xj − x̄)√∑n
i=1(xi − x̄)2

√∑n
j=1(xj − x̄)2

(11)

(3) Normalized Cosine Similarity:

Sij =
∑n

i=1,j=1(
xi−xmin

xmax−xmin
)(

xj−xmin
xmax−xmin

)√∑n
i=1(

xi−xmin
xmax−xmin

)2
√∑n

j=1(
xi−xmin

xmax−xmin
)2

(12)

(4) Heat Kernel:

Sij = e−
∥∥∥xi−xj

∥∥∥2

t (13)

Based on the constructed KNN, we utilize GNN for
information dissemination and integration. The input of
the GNN is the KNN graph structure. Subsequently, GNN
spreads layer by layer through weight calculation to learn

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbac018/6529282 by Shanghai U

niversity user on 28 February 2022



Deep structural clustering for Single-cell RNA-seq data | 5

the representation of the lth layer Z(l) as follows:

Z(l) = φ
(
D̃− 1

2 (A + I)D̃− 1
2 Z(l−1)W(l−1)

)
(14)

where D̃ii = ∑
j(Aij + Iij), A is the self-cycle of each node,

and I is the unit diagonal matrix of adjacent matrix.
According to the above equation, Z(l−1) is transmitted

through the normalized adjacency matrix D̃− 1
2 (A+ I)D̃− 1

2

to obtain the new representation Z(l). Through this infor-
mation spread, we obtain the structured information
among cells. At the same time, we add the representation
learned by the ZINB-based autoencoder to the GNN to
obtain richer representation:

Z̃(l−1) = σZ(l−1) + (1 − σ)H(l−1) (15)

As a result, we obtain two different representations
of data, including the feature representation of gene
expression data and the relationships between cells. To
update the next layer representation of GNN, we use
the integrated representation Z̃(l−1) to generate a new
representation:

Z(l) = φ
(
D̃− 1

2 (A + I)D̃− 1
2 Z̃(l−1)W(l−1)

)
(16)

In the learning process of the GNN, we pay more atten-
tion to the representation learned by coding layer and
hidden layer. Therefore, the last layer of GNN is designed
to connect with the last layer of the hidden layer, and
Softmax is used as the activation function:

z = Softmax(D̃− 1
2 (A + I)D̃− 1

2 Z̃(l−1)W(l−1)) (17)

Finally, we obtain the probability distribution Z(zit ∈ Z),
that is, the probability that cell i belongs to cluster t.

Mutual supervision module. By connecting the cod-
ing layer of the autoencoder with the GNN module, we
obtain a rich representation of the data through layer-
by-layer spread and integration of information. But the
resulted information cannot be directly used for cluster-
ing. Therefore, we adopt a mutual supervision strategy to
train the entire network and perform the clustering task.
In the mutual supervision module, it mainly consists
of three distributions: target distribution P, clustering
distribution Q and probability distribution Z. These three
distributions are mutually supervised and unified in the
same framework to achieve end-to-end network learning
and training.

For cell i and cluster t, we define a soft label: qit ∈ Q,
which represents the similarity between the data rep-
resentation h(i) of the current ith layer coding layer and
the clustering center vector μ(t) initialized by K-means
clustering. Q represents the probability set that all cells
are assigned to the cluster center. In the selection of prob-
ability distribution model, we use Student t distribution

to measure the similarity between h(i) and μ(t):

qit = (1 + ∥∥μt − hi

∥∥2
/v)

− v+1
2

∑
j′(1 + ∥∥μt′ − hi

∥∥2
/v)

− v+1
2

(18)

where v is the degree of freedom.
During this process, the data are expected to be as

close as possible to the clustering center of real data.
Therefore, we use soft label frequency F to get higher
confidence data representation pit ∈ P.

F =
∑

i

qit (19)

pit = q2
it/Ft∑

t′ q2
it′/Ft′

(20)

Finally, we achieve better clustering results by mini-
mizing the binary cross entropy between P and Q:

Lclu = −pitlog(qit) − (1 − pit)log(1 − qit) (21)

The formula (17) (18) show that P is calculated by Q,
and Q supervises P learning. This mutual supervision
strategy can help the autoencoder learn a better repre-
sentation of data to obtain higher quality clustering. In
the layer-by-layer propagation of GNN networks, we get
a representation Z that contains both of the data features
and the relationship between cells. Similarly, we can use
P to supervise Z in the learning process:

Lgnn = KL(P ‖ Z) =
∑

i

∑
j

pijlog
pij

zij
(22)

Thus, in the training process, distribution Q and dis-
tribution Z have a common learning goal, approaching
the target distribution P together. They form an interac-
tive relationship that supervises each other to learn and
optimize the goal. By constructing a ZINB model simu-
lating scRNA-seq data distribution and a GNN with rich
information dissemination, scDSC has four optimization
objectives. The loss function of the model is defined as:

Loss = αLgnn + βLclu + γ Lzinb + εLrec (23)

where α, β, γ and ε are the coefficients that controls the
relative weights of the four losses.

Datasets
The proposed scDSC method is evaluated on six real
scRNA-seq datasets, and each scRNA-seq dataset con-
tains cells whose labels are known as a prior or validated
in the previous studies. The detailed characteristics of
these datasets are summarized in Table 1. The six real
datasets were derived from five different sequencing
platforms. The mouse bladder cell dataset consisted of
2746 bladder cells from mouse bladder tissue, profiled
by Microwell-seq platform [27]. The worm neuron cell
dataset is sequenced by scRNA-seq, including 4186 worm
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Table 1. Summary of the real scRNA-seq datasets

Datasets Sequencing platform Cells Genes Subtypes

Mouse bladder cells Microwell-seq 2746 20670 16
Worm neuron cells sci-RNA-seq 4186 13488 10
MTAB Smart-seq2 1529 4889 5
LPS Array 306 2047 4
PBMC 10X genomics 4271 16449 8
GSE72056 Smart-seq2 4645 16834 7

neuron cells [28]. MTAB dataset is composed of 1529
human preimplantation embryonic cells collected on
days 3, 4, 5, 6 and 7, sequenced by Smart-seq2 [29]. The
LPS dataset includes a total of 306 cells collected at 1, 2, 4
and 6 hours [30], profiled by array. The datasets GSE72056
consisted of 4645 melanoma cells isolated from 19
patients, sequenced by Smart-seq2 [31]. PBMC is from
the 10X genomics platform, including 4271 peripheral
blood mononuclear cells from a healthy donor [32].

As these scRNA-seq datasets obtained from different
platforms, we adopt different strategies of data pre-
processing according to the characteristics of the
datasets. On PBMC, Mouse, and Worm datasets, we
pre-process the original scRNA-seq data by the Python
package SCANPY (version 1.7.2) [33]. First of all, we filter
out the genes with high expression only in a single
cell and filter out the genes expressed in less than
three cells. Then we normalize the data and transform
the data by logTPM. On the GSE72056, LPS, and MTAB
datasets, we first perform feature variance filtering
and normalization on the data and then perform data
imputation by the tool MAGIC [34] according to the data
density to obtain higher-quality count data. Finally, we
use the pre-processed data as the input of scDSC.

Evaluation metrics
To validate the clustering algorithm effectively, we
retrieve those scRNA-seq datasets with cell labels,
which are known as a prior or validated in the previous
studies. For the input scRNA-seq data x ∈ EC×G (C
represents the number of cells and G indicates the
number of genes), we represent the prior cell labels
as a vector L = [l1, l2, l3...lC] ∈ RC. By clustering, we
obtain a set of predicted labels U = [u1, u2, u3...uC] ∈ RC.
Here, three widely used metrics are utilized to evaluate
the clustering performance of different algorithms,
including clustering accuracy (ACC), Normalized Mutual
Information (NMI) [35] and Adjusted Rand Index (ARI).
The larger value means more concordance between the
predicted labels and the real labels.

Clustering ACC is commonly used to measure the dif-
ference between the real labels and the predicted labels.
ACC represents the proportion of the predicted labels
obtained by clustering in the real labels of data. ACC is
calculated as:

ACC =
∑N

i=1 δ(Li, map(Ui))

N
(24)

where δ(x1, x2) is an indicator function, if x1 = x2 then
δ(x1, x2) = 1, otherwise δ(x1, x2) = 0. The map function
represents the distribution of reconstruction between the
predicted and real labels after clustering.

NMI is often used to measure the similarity between
the predicted labels and the real labels. NMI is defined
as:

NMI = MI(L, U)

F(H(L), H(U))
(25)

where MI = ∑N
i=1

∑C
j=1 pi,jlog

(
pi,j

pi,pj

)
calculates the mutual

information between L and U, H(L) = − ∑N
i=1 pilog(pi)

and H(U) = − ∑C
j=1 pjlog(pj), respectively, represent the

information entropy of label vectors L and U. F(x1, x2) can
be max, min or mean function; here we choose the max
function.

The ARI is an improved version of Rand Index (RI) [35],
which solves the problem of insufficient punishment
for RI. ARI is used to measure the similarity between
predicted labels and real labels with a value range of
[−1, 1]. Through calculation, we assume that the overlap
between the two label-groups L and U are summarized in
the contingency table R. Each item in Table R represents
the number of objects shared between L and U, and ARI
can be defined as:

ARI =
∑

i,j

(ni,j
2

) −
[∑

i

(ai
2

) ∑
j

(bj
2

)]
/
(n

2

)
[∑

i
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2

) ∑
j

(bj
2

)]
/2 −

[∑
i

(ai
2

)∑
j

(bj
2

)]
/
(n

2

) (26)

where (.) denotes the binomial coefficient, nij denotes the
data in the contingency table L, and ai is the sum of the i
line of L and bj is the sum of the j column of L.

Results
Analysis of different methods for KNN graph
construction
We utilize GNN based on KNN to capture the relationship
among cells. To better capture the structural informa-
tion, we utilized four different metrics to calculate the
similarity between cells, including the Cosine Similar-
ity, Pearson correlation coefficient, Normalized Cosine
Similarity and Heat Kernel [16]. We use error rate to
evaluate the quality of the constructed KNN graphs and
compare these methods on six real scRNA-seq datasets.
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Table 2. Error rate of the constructed KNN graphs based on different methods

Datasets Cos Pearson nCos Heat Kernel

Mouse bladder cells 0.4632 0.2815 0.3486 0.8817
Worm neuron cells 0.5346 0.1054 0.3365 0.8496
MTAB 0.7947 0.2815 0.8775 0.7481
LPS 0.8143 0.3745 0.8144 0.7392
PBMC 0.8210 0.4103 0.3609 0.8137
GSE72056 0.5343 0.1049 0.4248 0.6134

The lower error rate indicates that the constructed KNN
graph structure is closer to the structure of real-data
relationship.

As listed in Table 2, when we use Pearson coefficient
to calculate the similarity between cells, the constructed
KNN has a significantly lower error rate than those of the
other three methods on five datasets. Compared with the
suboptimal method, the error rate decreases by an aver-
age of 26.74%, and the error rate of Pearson coefficient on
PBMC dataset is slightly higher than that of ncos method.
From the perspective of data processing, the calculation
of Pearson correlation coefficient is a centralized process,
subtracting the mean value of each component of the
vector and calculating the cosine similarity. Therefore,
Pearson correlation coefficient is an improvement of
ncos in the case of missing dimension value, which can
better reflect the correlation of two random variables
under the same benchmark. Overall, the experimental
result demonstrates that Pearson coefficient achieves
the best results in calculating the similarity among cells
and constructing KNN graph, where as the error rate
of the KNN constructed by heat kernel is much higher.
Therefore, we select Pearson coefficient as the similar-
ity metric to construct KNN graphs for the following
analysis.

Evaluation of balance coefficient σ

In order to integrate the feature representation learned
from the autoencoder and the structural information
from the GNN, we introduce a coefficient σ to balance the
weight of two information distributions (Formula(12)).
Aiming to explore the influence of σ value on cluster-
ing performance, we apply scDSC to six real scRNA-seq
datasets to evaluate its performance. We assign σ with
different values ranging from 0 to 1 with step 0.1. Among
them, σ = 0 represents the integrated information of
the next layer only contains the feature information H(l)

learned by autoencoder, where as σ = 1 represents that
the joint information of the next layer only contains
the information Z(l) learned by GNN. Through extensive
experiments, we select a better parameter σ to obtain
the integrated information beneficial for the clustering
performance.

Figure 2 shows the clustering performance (ARI) of
scDSC on six real datasets under different σ parameters.
We observe that scDSC has poor clustering performance
on most datasets at σ = 0, when σ increase to 0.1, the
clustering performance begins to improve significantly,

Figure 2. Comparison of clustering performance ( ARI ) of scDSC on six
real datasets under different σ parameters.

indicating that the structural information between cells
learned by GNN plays a key role in the whole framework.
At the same time, different datasets have different
sensitivity to parameter σ . For example, the clustering
performance of worm neuron cells dataset fluctuates
greatly with the increase of σ , whereas the clustering
performance of other datasets gradually tends to be
stable after σ ≥ 0.2. The experimental results show
that the six datasets have better clustering performance
on σ = 0.5, and the MTAB, LPS, Worm datasets have
the best clustering performance on σ = 0.5, which
indicates that GNN and ZINB model-based autoencoder
are almost equally important in the proposed deep
structural clustering model. When σ = 1, scDSC also
obtains better clustering performance on six datasets.
The result indicates that the model can also learn
a better feature representation of data based on the
mutual supervision of multiple modules, even if the
feature representation learned by the autoencoder is not
included.

Performance comparison with previous methods
To further evaluate the clustering performance of scDSC,
we compare it against eight competing methods. These
methods can be categorized into three groups, including
traditional clustering methods, the clustering methods
based on deep neural network and the clustering meth-
ods based on GNN.

• scDeepCluster adds a ZINB distribution (ZINB) model
simulating the distribution of scRNA-seq data to the
denoising autoencoder, learns feature representation
and cluster through the explicit modeling of scRNA-
seq data.

• SDCN [16] is a deep clustering method that uses
graph convolutional network to integrate structured
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information into deep learning network. It has been
applied to clustering images and texts, yet has not
been used for the clustering of scRNA-seq data.

• IDEC [15] is based on the DEC. It adds the reconstruc-
tion loss to retain the partial structure information of
the data and to learn better information.

• SC3 [14] combines multiple clustering solutions
through a consistent method to obtain high precision
and robust clustering results.

• scGNN [19] utilizes GNN and multimodal autoen-
coder to formulate and aggregate cell–cell relation-
ships. The scGNN graph-embedding contains high-
order structural information and preserves topolog-
ical relationships in cell graphs.

• CIDR [6] regards all zeros in gene expression data as
dropout candidates to reduce the impact of dropout
in scRNA-seq data and finally cluster single cells
using the first few principal coordinates.

• SIMLR [5] combines multiple cores to learn the
similarity between samples and perform spectral
clustering, which can perform tasks such as dimen-
sionality reduction, clustering and visualization.

• DCA [14] is a deep count autoencoder based on noise
reduction. It uses a loss function based on the ZINB
model instead of the traditional MSE loss function to
better simulate the scRNA-seq data distribution.

In the comparative analysis, we utilize three widely used
metrics (ACC, NMI and ARI) to evaluate the clustering
performance of each method. As the number of cell
clusters k is unknown in real applications, we adopt the
Elbow [7, 20, 36] method to determine the optimal value
of k. Elbow determines the k value by judging the critical
point of distortion degree along the variation of k value,
which can be calculated and visualized by using the
yellowbrick library of python 3.6 [20].

Figure 3 shows the performance of these clustering
methods on the six real scRNA-seq datasets. We observe
that scDSC performs better than the other eight com-
petitive methods. Specifically, it is significantly better
than the latest scDeepCluster method on Mouse, Worm,
MTAB, LPS and GSE72056 datasets and slightly better
on PBMC datasets. In particular, on the MTAB dataset,
scDSC significantly increases by 7.22% in ACC, 7.05% in
NMI and 12.46% in ARI compared with the suboptimal
method scGNN. On the Mouse dataset, compared with
the suboptimal method scDeepCluster, scDSC signifi-
cantly increased by 6.12% on ACC, 1.97% on NMI and
9.78% on ARI. On Worm dataset, compared with scDeep-
Cluster, scDSC significantly improves ACC by 7.17%, NMI
by 4.93% and ARI by 9.82%.

In order to show the intuitive clustering effect and
validate the effectiveness of the model in extracting
the low-dimensional representation of high-dimensional
data, we use t-SNE to project the features learned from
the encoding layer of ZINB model-based autoencoder
into the two-dimensional space and visualize the final

data embedding. As shown in Figure 4, each point repre-
sents a cell, and different colors represent the predicted
cell type. In particular, we select two real datasets
with more subtypes and higher complexity, including
mouse bladder cells (Figure 4A) and worm neuron cells
(Figure 4B). In Figure 4A, we observe that scDSC achieves
a good separation of mouse dataset with 16 different
cell subtypes and the boundary is clear. On the contrary,
other methods tend to mix different subtypes of cells.
For scDeepCluster, although clear cluster boundaries
such as the Dendritic cell_Cd74’ and Dendritic cell_Lyz2’
cells represented by red and orange points can also be
seen, there are still some outliers mixed with Smooth
muscle cell’ and NK cell’ represented by pink and blue
points. We have similar observations on the Worm
dataset. As shown in Figure 4B, on the Worm dataset,
compared with scDSC, SDCN, DCA and scDeepCluster
can also identify different types of clusters in a sparse
manner. However, the identified clusters are dispersed,
and the boundaries between clusters are mixed. For
example, in SDCN, DCA and scDeepCluster, the flp-1(+)
interneurons’ and other interneurons’ cells represented
by black and red are mixed together and are not well
distinguished. In SC3 and IDEC, the clustering results are
not clear. The touch receptor neurons’ cells represent
by blue are distributed on the whole figure and are
mixed with other types of cells. It is difficult to obtain
a clear boundary between clusters. Compared with
other clustering methods, the proposed method scDSC
identified distinct clusters and clear boundaries between
clusters.

In addition, we conducted the clustering visualization
analysis on MTAB and LPS datasets with time series
information. The MTAB dataset is obtained from 88
human preimplantation embryos, including 1529 cells
per embryonic day from E3 to E7. With embryonic stem
cells development, the expression pattern of MTAB
exhibits heterogeneity. In MTAB time series data, scDSC
restores a good data structure and implies a obvious
trajectory of cell development from Day 3 to 7 (Figure 4C).
The LPS datasets consist of scRNA-seq samples of mouse
dendritic cells, including 306 cells collected at 1, 2, 4, and
6 hours. Figure 4D shows that scDSC well separates four
mouse dendritic cells at different time intervals (1, 2, 4
and 6 hours, expressed in different colors), which are well
conformed with the cell trajectories. In general, scDSC
recover a structure that is not well represented by the
raw data, showing a well-aligned trajectory path of cell
development.

Ablation study
The proposed scDSC is mainly composed of a ZINB
model, an autoencoder and a GNN module. Further,
aiming to expand the applicability in different types
of sequencing data, scDSC provides two data distri-
bution model components (ZINB and NB) for users to
choose. Therefore, to explore the contribution of the
ZINB model and the GNN module to the clustering
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Figure 3. Comparison of clustering performances of scDSC, scDeepCluster, SDCN, IDEC, SC3, scGNN, CIDR, SIMLR and DCA, measured by ACC, NMI and
ARI.

performance of scDSC, we set three variants of scDSC:
scDSC (NB) (using NB model instead of ZINB to validate
the effectiveness of zero inflation), scDSC-G (removing
ZINB model to validate the effectiveness of our added
ZINB model) and scDSC-Z ( removing GNN module to
validate the effectiveness of GNN in learning structural
information).

As shown in Figure 5, scDSC achieves the best
performance compared with its three variants. This
result demonstrates that the GNN module and the ZINB
model both played an important role in the performance
improvement of the whole model. On the PBMC dataset,
variant scDSC-Z almost reached the same clustering
performance level as scDSC, whereas scDSC-G had
poor clustering performance. The reason might be that
when constructing KNN graphs, the error rate of the
constructed KNN graph is relatively high. This KNN
graph further makes the GNN module contain more error
information when integrating structural information of
cell population with feature representation, resulting
in poor clustering performance. Therefore, in order to
accurately identify clusters, it is important to obtain
a high-quality KNN graph for the GNN module. The
experimental results also demonstrate that scDSC (NB)
and scDSC achieved similar clustering performance on
the scRNA-seq datasets using UMI sequencing, including
PBMC, Worm and Mouse. Therefore, Although ZINB has
advantages in clustering performance, we recommend
using NB model components on Mouse, Worm and other
large datasets based on UMI sequencing. Because NB is
simpler than ZINB, it can save a certain amount of com-
puting cost and obtain considerable clustering results.

Scalability and efficiency
In order to verify the scalability and efficiency of the pro-
posed model, we test scDSC on simulated datasets with
different sizes and analyze the running time. Specifically,
we use the Splatter package of the R language to generate
seven simulated datasets, respectively, containing 1k, 3k,
5k, 10k, 30k, 50k, 100k cells with 2000 genes.

Here, for obtain a reasonable comparison, the recorded
running time includes the time for pre-training and for-
mal training. The results on the seven simulated datasets
are shown in Figure 6. From the Figure, we observe that
the running time of scDSC does not increase quadrati-
cally or exponentially with the number of cells, and its
running time increases linearly with the number of cells.
In addition, we also compare the accuracy of scDSC on
these seven datasets with different sizes. The experimen-
tal results demonstrates that scDSC can obtain stable
clustering performance on different scale datasets (Sup-
plementary Figure S2).

Conclusion
As the scRNA-seq technology allows researchers to
collect large volumes of transcriptomes of individual
cells, clustering analysis has been routinely conducted
to define cell types from these data. However, existing
clustering methods are usually limited to extract the
feature representations from gene expression data of
individual cells, while ignoring the high-order structural
relationships of cell population. In order to overcome
this limitation, we proposed a new method, named
scDSC, to integrate the structural information of cell
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Figure 4. The visualization of the identified clusters of scDSC and eight competitive methods are drawn. These points represent each sample cell, and
different colors represent different labels of data. (A) The mouse bladder cells. (B) The worm neuron cells dataset. (C) The MATB dataset. (D) The LPS
dataset.

Figure 5. Performance comparison (ARI) of scDSC and its three different variants.

populations into deep clustering of scRNA-seq data.
The proposed scDSC consists of three main modules,
including a ZINB-based autoencoder, a GNN module
and a mutual-supervision module. We integrate the

structural information among cells with the learned
data representation of autoencoders through GNNs and
propagate them layer by layer to obtain rich information
in two network structures. Next, the mutual supervision
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Figure 6. The running time of scDSC on different scale simulation
datasets, including pre-training, formal training and total running time.

module is utilized to unify the target distribution,
clustering distribution, probability distribution in the
same framework, in order to realize end-to-end network
learning and training. Moreover, we add the ZINB model
to the decoding layer, which was specially designed for
scRNA-seq data clustering, and it has proved to better
simulate the distribution of scRNA-seq data. To validate
the effectiveness of scDSC, we compared it with five
state-of-the-art methods on six real scRNA-seq datasets.
The extensive experimental results demonstrate that our
model scDSC outperforms most of the advanced deep
clustering methods on these real scRNA-seq datasets.

Further, although scRNA-seq data can reveal RNA
abundance with high throughput, accuracy and sensi-
tivity, it captures only a static snapshot at a point in
time. That is to say, it is hard to reveal the kinetics of
cell subpopulation along important biological process.
On the contrary, RNA velocity describes the rate of
gene expression change for an individual gene at a
given time point based on the ratio of its spliced and
unspliced messenger RNA. In the future, we plan to study
subpopulation kinetics and continuous trajectory based
on RNA velocity data.

Key Points

• Characterizing different cell types in multicellular
organisms is critical to reveal cell heterogeneity and
diversity, especially using various clustering methods.
A dominant issue in clustering scRNA-seq data is the
problems of zero expansion and high dispersion caused
by the complex data distribution.

• To tackle this issue, we propose scDSC, a new deep struc-
tural clustering method for scRNA-seq data analysis.
scDSC introduces ZINB model-based autoencoder and
GNN into the deep clustering framework and realize
the synchronous learning of feature representation and
high-level structural information of the data.

• Specifically, we add a ZINB model to the basic autoen-
coder, which can effectively learn the data representa-
tion from the sparse and zero-inflated scRNA-seq data.
The GNN module is introduced to capture the struc-
tural information among cells. By joining the ZINB-based

autoencoder with the GNN module, the model trans-
fers the data representation learned by autoencoder to
the corresponding GNN layer. The multi-module mutual
supervision strategy is adopted to realize the simultane-
ous learning of different types of information and jointly
optimize the entire network.

• The experimental results on six real scRNA-seq datasets
show that scDSC achieves superior performance com-
pared with state-of-the-art methods.

Data availability
The mouse bladder cells are obtained from the Microwell-
seq platform and originated from the Mouse Cell Atlas
project (https://figshare.com/s/865e694ad06d5857db4b).
We download the count matrix of all 400 000 single cells
sorted by tissues and select the cells from the bladder
tissue about 2186 cells as experimental data [37]. The
worm neuron cells are obtained from the sci-RNA-seq
platform [38]. We select the subset of neural cells from
the nematode Caenorhabditis elegans at the L2 larval stage,
and remove the cells with the label Unclassified neurons’
in bladder tissue. Finally, we obtain 4186 neural cells
as experimental data. MTAB is obtained by Smart-seq2
analysis. After quality control, the author [39] retained
1529 high-quality single-cell transcriptomes from 88
human preimplantation embryos, including 1529 cells
per embryonic day (E3–E7). The author use tlr ligands to
stimulate mouse primary BMDC and analyzed the gene
expression changes on the Affymetrix arrays, using 5 at
9 time points (0.5, 1, 2, 4, 6, 8, 12, 16, 24 hours) A tlr ligand
(LPS, pIC, PAM, CpG, GRD) stimulates BMDC. We obtain
the LPS dataset consisting of scRNA-seq samples of
mouse dendritic cells, which contains 306 cells collected
at 1, 2, 4 and 6 hours [30]. 10X PBMC is the 4271 peripheral
blood mononuclear cell data of a healthy donor obtained
from the 10X scRNA-seq platform [32]. 10X PBMC dataset
is downloaded from the website of 10X genomics. The
true labels of these datasets are obtained from the
corresponding references. GSE72056 is obtained by
Smart-seq2 analysis and contains 4645 melanoma tumor
cells isolated from 19 patients. Clusters of non-malignant
cells are annotated as T cells, B cells, macrophages,
endothelial cells, cancer-associated fibroblasts (CAFs)
and NK cells on the basis of preferentially or uniquely
expressed marker genes [42].

The datasets were derived from the following sources
in the public domain: the Mouse bladder cells datasets
from https://figshare.com/s/865e694ad06d5857db4b the
Worm neuron cells datasets from http://atlas.gs.washing
ton.edu/worm-rna/docs, the MTAB datasets from https://
www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-3929/
?query=1529+ the lps datasets from https://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE17721, the GSE72
056 datasets from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi, the PBMC datasets from https://support.10
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xgenomics.com/single-cell-gene-expression/datasets/2.1
.0/pbmc4k.

Implementation
scDSC is implemented in Python 3 (version 3.6) using
PyTorch (version 1.71+cu101). We set the sizes of encod-
ing layers in ZINB model-based autoencoder as (512, 256,
256), the structure of the decoding layer is opposite, and
the sizes of embedding layers as (256, 128, 32). We utilize
all the data to pre-train the basic autoencoder to obtain
a better pre-trained model. Initially we set the learning
rate lr = 0.001, epoch = 200 and batchsize = 256, then
adopt Adam to adjust the learning rate. During formal
training, the size of each layer in the autoencoder module
is the same as the pre-trained autoencoder. The initial
learning rate lr= 0.001, batchsize = 256, then we used
Adam optimizer to train 300 epochs. In hyperparameter
search, the GridSearch method is applied to determine
and report the best result {0.1, 0.01, 1, 0.1} of the hyper-
parameter α, β, γ and ε. We run more than 20 times
on all datasets and report the average results to ensure
data accuracy. All experiments are conducted on NVIDIA
Geforce GTX 1080Ti GPU(11G).
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