
Yanglan Gan is a professor in the School of Computer Science and Technology at Donghua University, Shanghai, China. She received the Ph.D. degree in Computer
Science from Tongji University in 2012, China. She has worked as a Visiting Scholar in the Department of Computer Science and Engineering at Washington
University in St. Louis from 2009 to 2011, USA. Her research interests include bioinformatics, data mining, and Web services. She has published more than 40
papers on international journals and conferences, including Bioinformatics, IEEE/ACM TCBB, BMC Bioinformatics, BMC Genomics, Knowledge-based Systems, and
Soft Computing. She served as a program committee member on BIBM 2021 and GIW 2018. She worked as a reviewer for a variety of international journals and
conferences, such as BMC Bioinformatics,IEEE TCBB, Knowledge-based Systems.
Cheng Guo is currently a master student in the School of Computer Science and technology, Donghua University, China. Before that, he received a Bachelor degree
in Taiyuan University of Technology, 2020. His research interests include data mining and bioinformatics.
Wenjing Guo is an assistant professor in the School of Computer Science and Technology at Donghua University, Shanghai, China. She received the Ph.D. degree
from East China Normal University, Shanghai, China, in 2014. Her research interests include data mining, routing of the wireless and sensor networks.
Guangwei Xu is a professor in the School of Computer Science and Technology at Donghua University, Shanghai, China. He received the M.S. degree from Nanjing
University, Nanjing, China, in 2000, and the Ph.D. from Tongji University, Shanghai, China, in 2003. His research interests include data secure storage, data integrity
verification and privacy protection, secure computing and sharing of outsourced data, QoS and routing of the wireless and sensor networks.
Guobing Zou is an Associate Professor in the School of Computer Engineering and Science, Shanghai University, China. He received his PhD in Computer Science
from Tongji University, Shanghai, China, 2012. His current research interests focus on data mining, intelligent algorithms and services computing. He has
published around 70 papers on premier international journals and conferences,including Information Sciences, Expert Systems with Applications,
Knowledge-Based Systems, IEEE Transactions on Services Computing, AAAI, ICWS and ICSOC.
Received: February 18, 2022. Revised: May 11, 2022. Accepted: May 12, 2022
© The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

Briefings in Bioinformatics, 2022, 23(4), 1–12

https://doi.org/10.1093/bib/bbac225
Advance access publication date: 14 June 2022

Problem Solving Protocol

Entropy-based inference of transition states and cellular
trajectory for single-cell transcriptomics
Yanglan Gan, Cheng Guo, Wenjing Guo, Guangwei Xu and Guobing Zou
Corresponding author: G. Zou, School of Computer Engineering and Science, Shanghai University, 200444 Shanghai, China.
E-mail: gbzou@shu.edu.cn

Abstract

The development of single-cell RNA-seq (scRNA-seq) technology allows researchers to characterize the cell types, states and transi-
tions during dynamic biological processes at single-cell resolution. One of the critical tasks is to infer pseudo-time trajectory. However,
the existence of transition cells in the intermediate state of complex biological processes poses a challenge for the trajectory inference.
Here, we propose a new single-cell trajectory inference method based on transition entropy, named scTite, to identify transitional
states and reconstruct cell trajectory from scRNA-seq data. Taking into account the continuity of cellular processes, we introduce a
new metric called transition entropy to measure the uncertainty of a cell belonging to different cell clusters, and then identify cell
states and transition cells. Specifically, we adopt different strategies to infer the trajectory for the identified cell states and transition
cells, and combine them to obtain a detailed cell trajectory. For the identified cell clusters, we utilize the Wasserstein distance based
on the probability distribution to calculate distance between clusters, and construct the minimum spanning tree. Meanwhile, we
adopt the signaling entropy and partial correlation coefficient to determine transition paths, which contain a group of transition
cells with the largest similarity. Then the transitional paths and the MST are combined to infer a refined cell trajectory. We apply
scTite to four real scRNA-seq datasets and an integrated dataset, and conduct extensive performance comparison with nine existing
trajectory inference methods. The experimental results demonstrate that the proposed method can reconstruct the cell trajectory
more accurately than the compared algorithms. The scTite software package is available at https://github.com/dblab2022/scTite.
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Introduction
The rapid development of scRNA-seq technology enables
researchers to study the cell types, states and transitions
along various biological processes at single-cell resolu-
tion [1]. Specifically, understanding cell state transitions
can provide new perspectives into cell differentiation,
development, diseases and other complex cellular pro-
cesses [2]. An important task for describing the cell state
changes over time is to infer pseudo-time cell trajectories
[3], which generally reconstructs the trajectory of cells
according to the degree of similarity between cells and
further infer the pseudo-time ordering to sort the cells
[4]. The inferred trajectory helps us to identify branches

and instrumental genes at the branching points, as well
as study gene expression dynamics during a biological
process [5].

In recent years, many trajectory inference algorithms
have been proposed to infer pseudo-lineages of cells.
These algorithms can be divided into two major cate-
gories [2, 6]. One category of algorithms infers trajectory
based on the tree structure. The minimum spanning tree
(MST) is constructed as the main path, and subsequently
various measures are adopted to obtain the pseudo-
time ordering and lineage structure. TSCAN constructs
MST based on cluster centroid and then infers pseudo-
time ordering of cells, which effectively reduces the
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complexity of the tree space [7]. Monocle2 iteratively
determines the stable positions of cells projected in a
low-dimensional space based on the DDRTree algorithm,
and the generated MST represents the inferred lineage
structure [8, 9]. Slingshot constructs a cluster-based MST
to represent the global lineages, and fits smooth branch-
ing curves to these lineages using simultaneous principal
curves algorithm [10]. TiC2D firstly adopts consensus
clustering to identify cell clusters, and then constructs
the MST based on these clusters [11, 12]. The other
category of algorithms infers cell trajectories mainly
based on graph structures. These algorithms represent
data as an undirected or directed neighborhood graph of
single cells, where nodes correspond to cells and edges
represent the neighborhood relations among cells. Then
a suitable path in the graph is chosen to trace the biolog-
ical process from progenitor cells to different fates. Wan-
derlust constructs inter cellular graph based on a KNN
graph, choosing the shortest path in the graph to infer a
linear trajectory [13]. Wishbone improves the Wanderlust
method to identify bifurcated trajectories [14]. SLICER
first constructs a K-Nearest Neighbors (KNN) graph
among cells, then finds the shortest path between the ini-
tial cell and the final cell as a pseudo-time trajectory [5].
GraphDDP starts from a user-defined cluster assignment
and then utilizes a force-based graph layout approach to
infer differentiation trajectories [15]. PAGA constructs
a KNN graph and applies the Louvain algorithm to
partition the graph with multiple resolutions [16]. Based
on a cell–cell similarity matrix, SoptSC infers pseudo
time from a cell-to-cell graph, and predicts cell-lineage
relationships between clusters using the minimal span-
ning tree of a cluster-to-cluster graph [6]. These trajectory
inference algorithms have made significant progress
in reconstructing cell trajectories. Generally, these
algorithms are effective in reconstructing trajectories for
the phenotypically and molecularly distant cell states.
However, they are less robust in identifying intermediate
or transitional cell states and inferring the corresponding
trajectories related with transitory states [17].

A transitional state is an intermediate state during
complex cellular process in which a cell exhibits a mixed
identity between two or more states [18]. To study the
dynamics of cellular programs governing fate transitions,
it is crucial to identify the transition cells and to trace the
critical transitions. Till now, only a few methods focus
on the possible existence of transition cells between
cell subpopulations. As a measure of variability [19],
different forms of entropy have been applied to analyze
single-cell transcriptomic data. These entropy can be
roughly divided into two categories, including IntRA-
cellular and IntERcellular entropy [20]. IntRAcellular
entropy is used to quantify the heterogeneity of cell
transcription state. IntERcellular is used to quantify the
heterogeneity of gene transcription in a group of cells.
There are several algorithms for trajectory inference
using intracellular entropy. SLICE introduces single-
cell entropy (scEntropy) to measure cell differentiation
states and predict cell differentiation lineages via the

construction of entropy directed cell trajectories [21].
On the basis of signaling entropy, SCENT quantifies
the expression heterogeneity in single-cell populations,
and reconstructs cell-lineage trajectories from time-
course data [22, 23]. CellRouter identifies complex cell-
state transition trajectories by using flow networks to
explore the subpopulation structure of single-cells [24].
Due to the high similarity between transition cells and
differentiated cells, identifying the cellular states and
transitional states and inferring the trajectories based
on scRNA-seq data profiles remain great challenges.

To overcome these challenges, we propose a new
single-cell trajectory inference method based on tran-
sition entropy, named scTite, to identify transitional
states and reconstructs cell trajectory from scRNA-
seq data. Taking into account the continuity of cellular
processes, we introduce transition entropy to measure
the uncertainty of cells belonging to different cell states.
Based on the transition entropy, we identify transition
cells and partition the other cells into different cell
clusters. Correspondingly, we adopt different strategies
to infer the trajectory for the identified cell states and
transition cells. We utilize the Wasserstein distance
based on the probability distribution to calculate the
distance between these clusters, and construct the min-
imum spanning tree. Meanwhile, we adopt the signaling
entropy and partial correlation coefficient to determine
transition paths. Then, the constructed transitional
paths and MST are combined to obtain a more detailed
cell trajectory. To evaluate the performance of scTite, we
apply it to four real scRNA-seq datasets and an integrated
dataset with a complex branching structure containing
known lineage structures and developmental time
information. The experimental results demonstrate that
the proposed method can more accurately reconstruct
the cell trajectory than the compared algorithms.

Materials and methods
The overview of scTite
To reconstruct cell trajectories from scRNA-seq data,
we propose scTite, a new single-cell trajectory inference
algorithm based on transition entropy. The metric tran-
sition entropy is introduced to identify transition cells
and cell states. Based on the potency state of cells, the
Wasserstein distance is used to construct MST for cell
clusters. Partial correlation analysis is adopted to infer
the transition path between clusters. The algorithm con-
sists of four main steps, as illustrated in Figure 1. Firstly,
we reduce the dimension of the pre-processed scRNA-seq
dataset using the UMAP algorithm [25], and partition the
cells into different subpopulations based on the Expecta-
tion Maximization clustering algorithm. Secondly, based
on the probability of each cell belonging to these parti-
tions, we define and measure a new metric transition
entropy and identify the transition cells whose transition
entropy is higher than a given threshold. Thirdly, the
signaling entropy is used to measure the differentiation
potential of the cells and identify different cell clusters
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[23]. We estimate the probability densities of these cell
clusters, calculate the Wasserstein distance based on
the probability densities, and construct the minimum
spanning tree which is the approximate path among
the identified cell clusters. Finally, the transition paths
containing transition cells are constructed, and cells are
projected onto the paths to obtain detailed cell trajecto-
ries as well as pseudo-time ordering.

Step 1. Performing dimension reduction and
single-cell clustering

The input to scTite is a single-cell gene expression
matrix X of size m×n, with m genes and n cells. The
rows correspond to genes and columns correspond to
cells. Each element xij of X represents the expression of
gene i in cell j. To reduce the effect of noises and high-
dimensionality, we adopt the UMAP algorithm to reduce
the dimension of the data. Specifically, UMAP algorithm
is a widely-used dimension reduction method based on
manifold learning. Here, we compare UMAP with other
five dimensionality reduction algorithms, including a
classical algorithm (t-distributed Stochastic Neighbor
Embedding (t-SNE) [26]) and four newly-developed
algorithms (IVIS [27], PHATE [28], DCA [29] and SAUCIE
[30]). We respectively utilize these six dimensionality
reduction algorithms to obtain the low-dimensional
representation of data. Then, Expectation Maximization
(EM) algorithm is used to identify cell clusters, which are
evaluated by Adjusted Rand index (ARI). We run each
method 20 times on two test datasets (the Fibroblast
and ESC dataset) and calculate the average ARI. From
the supplementary Table 1, we observe that UMAP
outperforms all the five compared methods in the test
datasets, implying that it can better preserve the global
structure of data.

In order to infer accurate cell trajectories, we partition
cells into different states, at the same time we want
to identify transition cells across different but related
states. Here, we adopt the EM clustering algorithm to
cluster the cells. The EM algorithm is a soft clustering
method, which does not compute actual assignments
of cells to clusters, but classification probabilities. Put
differently, each cell belongs to each cluster with a cer-
tain probability. Correspondingly, we obtain a probability
matrix P of size n×k as follows:

Pi,k = P(xiεCk) with
K∑

k=1

Pi,k = 1 (1)

where xi is the ith cell, Ckε(C1, ...CK) is the kth cluster and
Pi,k represents the probability of cell i belonging to cluster
k. The number of clusters K is determined using Bayesian
Information Criterion (BIC).

Meanwhile, we can assign these cells into different
clusters based on the largest probability belonging to the
specific cluster and keep the distribution probabilities of
cells belonging to different clusters.

Step 2. Identifying cell clusters and the transition
cells based on transition entropy

Based on the EM clustering algorithm, each cell is
assigned to each cluster with a certain probability. From
the probability matrix P, we can observe that a small
part of cells have similar probabilities belong to all cell
clusters, which implies that these cells exhibit a mixed
identity between two or more subpopulations and might
be involved in several functional groups. Then, these cells
are identified as transition cells. On the contrary, the low
transition entropy indicates that the cell is dominantly
belong to a certain cell cluster, and cell i is assigned to
the unique clusterk if the probability Pi,k is much higher
than those in other clusters. Therefore, the probability
matrix P provides an intuitive way to identify transition
cells and cell clusters. To quantitatively assess the ability
of a cell transiting to other cell states, we introduce a new
metric single-cell transition entropy (transEntropy) as a
measure of cell plasticity. Similar to the Shannon entropy,
transition entropy is defined as:

H(i) = −
∑

Pi,klog(Pi,k) (2)

Pi,k = di,k∑
jεK di,j

(3)

where Pi,k is the probability that cell i belongs to the
kth cluster, K is the number of cell clusters and H(i)
represents the transition entropy of cell i.

When the probabilities of a cell belonging to different
clusters are similar, the transition entropy is high. Here,
we select the top m% of cells with the highest transition
entropy as transition cells, which may be in an inter-
mediate state during complex cellular processes. Other-
wise, the low transition entropy indicates that the cell is
dominantly belong to a cell state. In order to determine
the appropriate threshold of transition entropy, we calcu-
late the transition entropy of each dataset and perform
scTite to get the pseudo-time ordering under different m
values. Using POS as evaluation metric, we compare the
accuracy of the pseudo-time ordering under different m
values and choose the most suitable value. The detailed
experimental results are described in the Supplementary
Note 4. For different datasets, m ranging from 5 to 20 can
achieve good performance.

Step 3. Constructing the minimum spanning tree
based on the Wasserstein distance

Based on the above step, we obtain a set of cell clus-
ters and a set of transition cells. Specifically, these dis-
tinct cell clusters reveal the biologically relevant het-
erogeneity, which also implies that these cells are in
states of different functional plasticity [23]. For example,
pluripotent cells have the capability to differentiate into
other major cell lineages, exhibiting high differentiation
potential and functional plasticity. In contrast, differenti-
ated cells activate lineage-specifying signaling pathways
and therefore have lower functional plasticity. There-
fore, quantification of the functional plasticity for each
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4 | Gan et al.

Figure 1. The overview of scTite. (A) Reducing the dimension of data and clustering cells. (B) Calculating the transition entropy of each cell, and the cells
with the top 5 20 highest transition entropy are selected as transition cells. (C) Computing the signalling entropy (SR) of the cells, identifying the potency
state, calculating the Wasserstein distance based on the probability density of the potency state in the cell clusters, and constructing the minimum
spanning tree. (D) Constructing the network connection diagram between transition cells through partial correlation analysis. The transition trajectory
is obtained by combining MST. Finally, the starting point is manually determined and the cells are projected onto the transition trajectory. Pseudo-time
ordering is performed according to the projection length of the cells from the starting point.

identified cell cluster is critical to accurately infer cell
trajectories. In previous studies, signaling entropy (SR) is
introduced to measure the functional plasticity of cells.
As in the method SCENT, the computation of signaling
entropy need to estimate the interaction probabilities
of proteins, which is assumed to be proportional to the
normalized expression levels of the coding genes in the
cell. Based on a curated protein-protein interaction (PPI)
network, the edges between proteins are considered as
signaling interactions, and the weights are interpreted as
interaction probabilities. In detail, the weight of the edge
between protein i and protein j is calculated as [22]:

wi,j = ni,j∑
kεN(i) ni,k

= ni,j

(An)i
(4)

where N(i) represents the neighbors of node i in the
PPI network, A is the adjacency matrix of the PPI net-
work, (An)i represents the sum of interaction probabili-
ties between the neighbors and protein i, wi,j represents
the signaling probability between node i and node j.

Then, the entropy rate over the weighted network is
defined as signaling entropy of the cell:

SE(
−→
X ) = −

m∑
i=1

πi

∑
jεN(i)

wi,jlog(wi,j) (5)

nSE(
−→
X ) = SE(

−→
X )

maxSE
(6)
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where πi denotes the invariant measure, satisfying πiP =
πi and the normalization constraint π t1 = 1. nSE(

−→
X ) is

the normalized entropy rate, ranging from 0 to 1. maxSE
indicates the maximum entropy in the cell.

According to the level of signal entropy, we can divide
the cells into potency cell states. The optimal number
of potency states is also determined by the Bayesian
Information Criterion. For the identified potency states,
we define the distribution probability of potency state j
in cell cluster i as:

qi,j = number(j)∑h
j=1 number(j)

(7)

where h represents the number of potency states, deter-
mined by Bayesian Information Criterion and number(j)
represents the number of cells belong to potency state j
in the cell cluster.

For two cell clusters Ci and Cj, suppose there are S
potency states. We can estimate the probability distri-
butions of cell cluster Ci and Cj by Equation (7) as Ci =
{qi1, ..., qih}, Cj = {qj1, ..., qjh}. As the Wasserstein distance
is usually used for measuring the distance between two
probability distributions. Then we calculate the Wasser-
stein distance between different cell clusters as below
[31, 32]:

W(Ci, Cj) = infγ∼∏
(Ci,Cj)

E(x,y)∼γ [‖ x − y ‖] (8)

where
∏

(Ci, Cj) is the set of the joint distribution of Ci

and Cj, the real sample x and the generated sample y
are obtained by sampling from γ in the joint distribution,
‖ x − y ‖ denotes the distance between samples, and
E(x,y)∼γ [‖ x − y ‖] is the expectation value of the samples
for the distance under the joint distribution γ .

Finally, we use the Wasserstein distance as a distance
metric to construct the minimum spanning tree, deter-
mining the main path of cell trajectory.

Step 4. Inferring transition trajectory and obtaining
Pseudo-time ordering

Previous studies have shown that constructing MST
at the cell cluster level can reduce the variability and
complexity of the tree space [7]. However, when the iden-
tified cell clusters are close to each other, it is likely to
ignore the influence of transition cells. In order to tackle
these issues and more accurately infer cell trajectory,
we further optimize the paths obtained from construct-
ing MST by inferring the transition trajectory between
clusters.

Partial correlation analysis refers to the analysis of the
two variables only after excluding the influence of other
variables when the two variables are related to other
variables at the same time [33, 34]. When the number
of cells is large, the calculation of the partial correla-
tion coefficient may be time-consuming. To improve the
time efficiency, we calculate partial correlation coeffi-
cient between cells based on the following strategy:

First, we project the transition cells onto the nearest
edge of the constructed MST. For the transition cells on

the same edge, we rank these cells in a descending order
based on the signaling entropy.

Further, to determine the path along these transi-
tion cells, we calculate the partial correlation coefficient
rij between the adjacent transition cell i and cell j. If
the partial correlation coefficient rij > 0, cell i and
cell j are connected, and the edge is assigned a weight
rij. If rij ≤ 0, the transition cell i and cell j are not
connected. The cluster centroid is connected to the tran-
sition cells with the maximum and minimum signaling
entropy, and construct a local directed graph for the
transition cells on the path.

In the directed graph, we take the adjacent cluster
centroid as the starting and ending point, and use the
Dijkstra algorithm to find the path with the maximum
sum of partial correlation coefficients, which is regarded
as the transition path between clusters. Next, we adopt
the principal curve algorithm to project the cells in the
identified clusters to the transition path [35]. According
to the projection value of the cells, we sort the cells and
infer the pseudo-time ordering.

Datasets and data preprocessing
To demonstrate the effectiveness of scTite in inferring the
cell trajectory, we apply the proposed algorithm to four
real scRNA-seq datasets from Homo sapiens and Mus
musculus, as well as an integrated dataset. The first data
set is fibroblast-reprogramming-treutlein (Fibroblast)
datasets, containing 355 cells directly reprogrammed
from mouse embryonic fibroblasts (MEF) to induced
neuronal (iN) cells on days 0, 2, 5, 20 and 22 [4]. The
second dataset consists of 372 primary human skeletal
muscle myoblasts (HSMM) single cells collected at 0, 24,
48, and 72 h [8]. The third dataset is germline-human-
male weeks datasets (Germline), and contains 649 cells
collected at 4, 9, 10, 19, 20, 21 and 25 weeks [4]. The
fourth data set is mouse embryonic stem cells (ESC)
and includes 2717 cells collected from days 0, 2, 4 and
7 [36]. The integrated dataset integrates snRNA-seq and
scRNA-seq data, containing 11549 genes and 43791 cells
reprogramming from adult dermal fibroblasts to primed
and naive iPS cells [37]. The detailed information about
the quantification and cell types of these datasets is
described in the related articles. In the following, we
respectively refer to these five datasets as Fibroblast,
HSMM, Germline, ESC and Hrpi.

As previous studies did [38], we preprocess these
four scRNA-seq datasets with three steps, including
gene filtering, normalization, and log2-transformation.
First, genes with zero gene expression values in all
cells are filtered out [7]. The remaining gene expression
values are subsequently normalized. To avoid a negative
infinity result, when performing log2 transformation,
we add a pseudo-count of 1 to the gene expression
values. To further reduce the dimensions of the data,
we choose the top v% of genes with the greatest
change in expression in all single cells. To determine
an appropriate value for the filtering parameter v, we
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vary v from 5 to 20 in three datasets (Fibroblast, HSMM
and ESC). Then, we use UMAP algorithm to obtain the
low-dimensional representation of scRNA-seq data, and
apply EM algorithm in mclust package to cluster cells.
Adopting ARI as the evaluation metric, we compare
the clustering accuracy under different v values, and
select the most suitable value. The detailed experimental
results are summarized in the Supplementary Note 3.
For the Germline dataset, as the dimensionality has
been reduced in the downloaded data, it is not further
filtered in our analysis. As the dropout-events result in
underestimating gene expression values and masking
the correlation, dependency and other characteristics
of the data, we need to further mitigate the effects of
dropout-events. As MAGIC is an effective method to
handle the dropout-events in single-cell datasets [39,
40], we apply it as an important data preprocessing step.
To evaluate the effectiveness of MAGIC, we compare the
clustering accuracy with and without MAGIC method
(the Supplementary Note 5). The results demonstrate
that the using of MAGIC can indeed improve the accuracy
of clustering on the four datasets, which is important
for further trajectory inference. For the Hrpi dataset, we
directly utilize the processed Seruat objects from the
original literature and select 10% of the cells for further
analysis (the Supplementary Note 2).

Evaluation metrics
To evaluate the accuracy of the trajectory inference algo-
rithms, we adopt the pseudo-temporal ordering score
(POS) to measure how well the ordering of cells in the
inferred trajectory matches the true one [7]. Here, it is
assumed that external information is available to evalu-
ate the pairwise order of cells. The POS is calculated as:

POS =
N−1∑
i=1

∑
j:j>i

g(i, j) (9)

g(i, j) =
{

0 if T(i) = T(j)
(T(j) − T(i))/D otherwise

(10)

where N represents the number of cells, D is the normal-
ization parameter, allowing POS ∈ [-1, 1], g(i, j) is the score
of each pair of cells < i, j >.

Assume that the real collection time for each cell is
known in the dataset, the POS of the inferred pseudo-
time ordering is defined as the degree to which the
order of each pair of cells < i, j > in the pseudo-time
ordering matches the real collection time. If two cells are
collected at the same time point, g(i, j) = 0; otherwise,
g(i, j) is positive if T(i) represents an earlier time point,
or negative if T(i) represents a time point later than T(j).
POS = 1 indicates that the inferred pseudo-time order-
ing is completely consistent with the real order. POS =
−1 represents that the inferred pseudo-time ordering is
exactly the opposite of the true situation.

Meanwhile, we measure the robustness of the trajec-
tory inference algorithm using Spearman’s rank correla-
tion coefficient [1], which is calculated as follows:

ρ =
∑N

i=1(truei − true)(ranki − rank)√∑N
i=1(truei − true)2

√∑N
i=1(ranki − rank)2

(11)

where rank(i) denotes the rank of cell i in the pseudo-
time ordering, true(i) denotes the rank of cell i in the
real order, ρ ∈ [−1, 1]. The closer the ρ value is to 1, the
more consistent the pseudo-time ordering is with the real
order.

Results
Trajectory inference for real single-cell datasets
To assess the performance of scTite for inferring cell
trajectories, we apply it to four real scRNA-seq datasets
(Fibroblast, HSMM, Germline and ESC), which all contain-
ing pseudo-time information derived from the original
study and labels for cell classification. For the four real
datasets, we first perform soft clustering to identify the
transitional cells and cell clusters. Then we construct
the minimum spanning tree to connecting the identi-
fied clusters based on the Wasserstein distance, calcu-
late the partial correlation coefficients between tran-
sition cells projected onto the same edge of the mini-
mum spanning tree, and select the edge with the high-
est sum of similarities as the transition path. Finally
the cells are projected onto the corresponding edges to
obtain a pseudo-time ordering based on the projection
length from the starting point. The reconstructed trajec-
tories of these four datasets are respectively shown in
Figure 2.

For the four dataset, the Bayesian Information Crite-
rion is used to determine the optimal number of clus-
ters. There are respectively 7, 4, 7 and 3 clusters in the
Fibroblast, HSMM, Germline and ESC datasets, which is
consistent with previous studies. Based on the defined
transition entropy, we identify a set of transition cells in
each dataset, which are labeled by heavy brown in the
figure. The Fibroblast dataset mainly contains a range of
cell subpopulations from mouse embryonic fibroblasts
(MEF) to induced neuronal (iN) cells, and scTite identifies
two branch trajectories, including start → 1 and start → 2
(Figure 2A). This finding is consistent with the tree-like
topology for the differentiation trajectory of these cell
subpopulations, as mentioned in previous study [4]. For
the HSMM data set, previous studies have shown that the
dataset contains two differentiation trajectories, one is
affected by contaminated interstitial mesenchymal cells
and the other is the main differentiation trajectory [7,
12]. As shown in Figure 2B, scTite also reconstruct two
trajectories: start → 1 and start → 2, after identifying
subpopulations of cells corresponding to the 0, 24, 48
and 72h, which is consistent with the differentiation
process of the HSMM dataset. For the Germline data set,
scTite identifies seven cell subpopulations according to
the Bayesian Information Criterion, respectively corre-
spondent to the cells collected at weeks 4, 9, 10, 19, 20, 21
and 25. Subsequently we identify two branch trajectories,
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Entropy-based inference of transition states | 7

Figure 2. The proposed algorithm scTite reconstructs the pseudo-time trajectories of four scRNA-seq datasets (Fibroblast, HSMM, Germline and ESC).
The heavy brown cells in the figure represent transition cells. (A) Pseudo-time trajectory of Fibroblast data set. (B) Pseudo-time trajectory of HSMM data
set. (C) Pseudo-time trajectory of Germline data set. (D) Pseudo-time trajectory of ESC data set.

Table 1. The comparison results between Wasserstein and other
five distance metrics

Distance metric Fibroblast HSMM Germline ESC

Wassertein 0.971 0.734 0.626 0.742
Euclidean 0.927 0.719 0.622 0.709
Manhattan 0.877 0.635 0.585 0.666
Chebyshev 0.926 0.716 0.586 0.719
Cosine 0.745 0.600 0.554 0.599
Jensen-shannon 0.745 0.602 0.588 0.591

including start → 1 and start → 2 (Figure 2C). For the ESC
dataset, based on the constructed minimum spanning
tree, scTite infers the differentiation trajectories contain-
ing two branches: start → 1 and start → 2 (Figure 2D),
respectively.

To further validate the effectiveness of scTite on com-
plex datasets, we apply it to the integrated dataset (the
Hrpi dataset), which has been analyzed with Monocle3.
The Hrpi dataset contains 43791 cells and 11549 genes
reprogramming from adult human dermal fibroblasts
into primed and naive iPS cells. We directly download
the Seruat object processed by Liu et al. [37], includ-
ing the preprocessed dataset and detailed experimental
data. Then we extract about 10 % of the cells. Secondly,
we use the BIC strategy to determine the number of
clusters, which is set as 21. Finally, we apply scTite to
infer the trajectory on the Hrpi dataset. As shown in

Supplementary Figure 1, scTite identifies transition cells
and reconstructs the branch trajectory of adult human
dermal fibroblasts reprogramming into primed and naive
iPS cells. The first branch trajectory start → 1 corre-
sponds to the differentiation from fibroblasts into refrac-
tory cells; the second trajectory start → 2) corresponds to
the differentiation from fibroblasts into primed iPS cells;
the third trajectory start → 3 corresponds to the Tro-
phectoderm branch during reprogramming; the fourth
trajectory start → 4 corresponds to the differentiation
from fibroblasts into naive iPS cells. This inferred tra-
jectory is consistent with the branch topology found in
the original literature. Subsequently, we project the cells
onto the trajectory to get the pseudo-time ordering of the
cells. This result demonstrates that scTite is capable of
inferring complex trajectory from large datasets.

To validate the effectiveness of the Wasserstein dis-
tance for constructing MST, we replace it with five other
widely used distance metrics in scTite and compare the
corresponding performance. Here, we utilize POS to eval-
uate the performance of scTite with different distance
metrics. The comparison results are shown in Table 1.
On the Fibroblast data set, the POS of scTite using the
Wasserstein distance is 0.971, which is 4.4% higher than
that with the Euclidean distance. On the HSMM data
set, the POS achieved by scTite using the Wasserstein
distance is 0.734, which is 1.5% higher than that with the
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Euclidean distance. On the Germline data set, the POS
obtained by the algorithm is 0.626. On the ESC data set,
the accuracy of the algorithm using the Wasserstein dis-
tance is 0.742, 2.3% higher than the Chebyshev distance
with the second score. The results on these four datasets
demonstrate that using the Wasserstein distance as a
distance metric to construct the inter cluster MST out-
performs the compared distance metrics.

Performance comparison
We further perform a comparative evaluation of scTite
with state-of-the-art trajectory inference methods. As
the previous comparison shows that TSCAN, Slingshot,
MATCHER [41], PhenoPath [42] and CellTrails [43] are
excellent trajectory inference methods, outperforming
most existing methods. Here, we compared scTite with
these five representative methods. Also, our comparison
study includes four newly developed methods (TiC2D,
SCOUT, Monocle3 [44], PAGA).

• TSCAN constructs MST to connect the cluster cen-
troid after clustering similar cells, and further infers
the lineage structure of cells.

• Slingshot also constructs the MST based on cluster
centroid, utilizes simultaneous principal curves to
merge the shared region of the smooth branching
curves, and finally obtains the entire lineage struc-
ture.

• TiC2D adopts the Louvain algorithm to group genes
and then performs ensemble clustering to obtain
consensus subgroups of cells, construct the MST
based on cluster centroid, and utilizes the principal
curve algorithm to infer smooth differentiation
trajectory.

• SCOUT uses the fixed-radius near neighbors algo-
rithm based on cell density to find landmarks repre-
senting cell states, and constructs the MST based on
landmarks. Then, the projection of Apollonian circle
or a weighted distance is selected to determine the
pseudo-time trajectory.

• PAGA allows graph partitions in low-dimensional
space with different resolutions, and combines the
highly confidence path with the distance metric
based on random walk to sort cells.

• MATCHER uses Gaussian process latent variable
model to infer the pseudo-time value of each type
of data, and uses a non-linear function to map the
pseudo-time value to the ”master time” value.

• PhenoPath utilizes the Bayesian statistical frame-
work that integrates linear regression and latent vari-
able modeling, as well as the covariants to learn the
pseudo-time axis shared by different data objects.

• CellTrails exploits the k nearest neighbor information
of cells in the low-dimensional space to estimate
the geometric proximity of states, and then uses the
trajectory fitted by straight lines passing through the
geometric median of adjacent states.

Figure 3. The performance comparison of scTite with nine state-of-
the-art pseudo-time trajectory inference algorithms. The accuracy is
measured by POS.

• Monocle3 is improved version of Monocle2, which can
used for large scRNA-seq dataset. The main improve-
ment strategy include using UMAP for dimension
reduction and learning the principal graph based on
PAGA graph.

In the comparative analysis, we utilize the widely
used metric POS to evaluate the accuracy of the
inferred pseudo-time trajectories. Figure 3 shows the
performance of these trajectory inference algorithms
on four real scRNA-seq datasets. On the whole, we
observe that scTite performs better than the other
nine competitive methods. Specifically, it is significantly
better than the suboptimal method on HSMM, Germline
and ESC datasets, and slightly better on Fibroblast
datasets. In particular, on the Fibroblast data set, the POS
of scTite is about 0.973, slightly higher than that of the
suboptimal method MATCHER. For the dataset HSMM,
the POS of scTite is about 0.738, which is about 7.7%
higher than that of the suboptimal algorithm CellTrails.
For the Germline dataset, the POS of scTite is about 0.621,
while the highest POS of the other nine methods is about
0.591. For the ESC dataset, scTite significantly increases
by 15.6% in the POS compared with the suboptimal
method Monocle3.

Meanwhile, we evaluate the robustness of these
compared algorithms based on the Spearman rank
correlation coefficient. Figure 4 shows the comparison
result of these ten trajectory inference algorithms on the
four real scRNA-seq datasets. In detail, for the Fibroblast
dataset, the Spearman coefficient of scTite is about
0.931, which is about 0.1% higher than the suboptimal
algorithm MATCHER. For the HSMM data set, compared
with the second method MATCHER, scTite significantly
increased the Spearman coefficient by 3.7%. For the
Germline dataset, the Spearman coefficient of scTite
is about 0.771. It is about 4.6% higher than that of the
suboptimal algorithm Slingshot. For the ESC dataset,
the Spearman coefficient of scTite is about 0.654, which
significantly increases by 10.8% compared with the
second ranking method Slingshot. Overall, the result
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Entropy-based inference of transition states | 9

Figure 4. The performance comparison of scTite with nine state-of-the-art pseudo-time trajectory inference algorithms. The robustness is measured
by the Spearman rank correlation coefficient.

demonstrates that scTite outperform the other nine
algorithms with the respect of robustness.

To evaluate the efficiency of the proposed method,
we compare the time cost of scTite with the other nine
algorithms on four datasets. The experimental results
demonstrate that scTite exhibits a high efficiency in
inferring trajectory, which is similar with Slingshot and
TSCAN. The detailed comparison is shown in the Supple-
mentary Note 6.

Gene expression analysis
Further, to better understand complex biological process,
we investigate to what extent the important genes are
involved in the cell trajectories. Specifically, by ordering
the expression of the important genes along the pseudo-
time ordering, each part of the cell trajectory can be
studied in terms of the behavior of certain genes.

Random Forest is a classifier composed of multiple
decision trees, each of which can predict the category
of input sample data independently. When classifying
sample data, random forest can also calculate the
importance score of each variable to evaluate the role

of each variable in classification. Based on the input
gene expression matrix, previous work [12] uses random
forest to calculate the mean decrease in mean squared
error (MSE) caused by genes, so as to obtain the
importance score of genes for pseudo-time ordering.
Subsequently, we perform descending order according to
the importance score of genes. For each dataset, we select
the top three genes with the highest importance for
further analysis. We compare the spearman coefficients
between the expression patterns of these marker genes
along the true pseudo-time and the inferred orderings
obtained by different methods.The comparison results
are shown in Figure 5. On the whole, the gene expression
profiles along the trajectories predicted by scTite are
highly correlated with those along the real trajectories.
In detail, for the Fibroblast dataset, we select Timp1,
S100a6 and Tagln2 genes, which are related to positive
regulation of fibroblast proliferation and epithelial cell
differentiation. The spearman coefficients of scTite are
0.811, 0.848 and 0.790, respectively, which are slightly
higher than the suboptimal algorithm SCOUT. For the
HSMM dataset, we select TPD52L1, CCND3 and RNF41,
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Figure 5. The performance comparison of scTite and other nine algorithms. The Spearman correlation coefficient is utilized to evaluate the consistence
of the expression patterns of the marker genes along the true pseudo-time and those of the inferred orderings obtained by different methods.

which are associated with G2/M transition of mitotic cell
cycle and T cell proliferation. The spearman coefficients
of scTite are 0.656, 0.614 and 0.647, respectively, which
are generally higher than the suboptimal algorithm
Monocle3. On Germline data set, the three genes (KRT-
CAP3, NEFL and CDYL) exhibit the highest importance,
which are associated with Neurotransmitter receptors
and postsynaptic signal transmission. For these genes,
the Spearman coefficients of scTite are 0.797, 0.835
and 0.713, respectively, which are generally higher
than the suboptimal algorithm Slingshot. For the ESC
data set, we select Tbx3, Actg2 and Klhl30, which are
associated with regulating pluripotency of stem cells.
The spearman coefficients of scTite are 0.760, 0.715 and
0.749, respectively, which are slightly higher than the
suboptimal algorithm Slingshot. For the three important
genes in each dataset, scTite can obtain higher spearman
score, which means that the gene expression pattern of
the important genes along the trajectory generated by
scTite is more consistent with the real gene expression
pattern than other algorithms, demonstrate that scTite
can infer a more accurate pseudo-time ordering.

Conclusion
Recent studies have considered cell differentiation to be
a continuous process of differentiation. The clustering

approach assumes that cells are in a discrete state and
cannot reflect the essence of cell differentiation. On the
one hand, scRNA-seq datasets are noisy and heteroge-
neous, resulting in unstable trajectory inferred at the
single cell level. On the other hand, the pseudo-time
trajectory inferred in tree space does not capture the
continuity of cell differentiation. To address the above
issues, we propose a new trajectory inference algorithm
scTite, designed to identify transition cells to describe
the continuous differentiation process of cells. We first
cluster single cells based on EM clustering, which can
assign a cell to different clusters with a probability dis-
tribution. As transition state is an intermediate state in
which a cell exhibits a mixed identity between two or
more state. We define a new metric transition entropy
to identify transition cells, adopt the Wasserstein dis-
tance to measure the distance between the identified
clusters and construct the minimum spanning tree, and
conduct partial correlation analysis to infer the detailed
path between transition cells. Finally, we reconstruct
cell differentiation trajectories on four real scRNA-seq
datasets and compare the algorithm with nine state-of-
the-art trajectory inference algorithms. The comparison
results demonstrate that scTite can more accurately and
robustly identify the pseudo-time trajectory of scRNA-
seq data.
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Key Points

• The development of scRNA-seq technology enables
researchers to study the cell types, and state transi-
tions along various biological processes. The existence
of transition cells in the intermediate state of complex
biological processes poses a challenge for the trajectory
inference.

• To tackle this issue, we propose scTite, a new method
to infer cell trajectory from scRNA-seq data based on
transition entropy. Taking into account the continuity of
the cell differentiation process, we define a new metric
transition entropy to estimate the uncertainty of cells
belonging to different cell clusters, and identify transi-
tion cells and cell states.

• Specifically, based on these identified cell clusters, we
adopt the Wasserstein distance based on the probabil-
ity distribution to calculate the distance between these
clusters. Meanwhile, we utilize the signaling entropy and
partial correlation coefficient to determine transition
paths. Then, scTite combines the transitional paths and
the MST to obtain a more detailed cell trajectory.

• The experimental results on four real scRNA-seq
datasets show that scTite achieves superior performance
compared with state-of-the-art methods.

Data availability
The Fibroblast dataset from GSE67310, The HSMM
dataset from GSE52529, The Germline dataset from
Germine, The ESC dataset from GSE65525.
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