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Abstract: Domain adaptation aims to learn a classifier for a target domain task by using related
labeled data from the source domain. Because source domain data and target domain task may
be mismatched, there is an uncertainty of source domain data with respect to the target domain
task. Ignoring the uncertainty may lead to models with unreliable and suboptimal classification
results for the target domain task. However, most previous works focus on reducing the gap in
data distribution between the source and target domains. They do not consider the uncertainty
of source domain data about the target domain task and cannot apply the uncertainty to learn an
adaptive classifier. Aimed at this problem, we revisit the domain adaptation from source domain data
uncertainty based on evidence theory and thereby devise an adaptive classifier with the uncertainty
measure. Based on evidence theory, we first design an evidence net to estimate the uncertainty
of source domain data about the target domain task. Second, we design a general loss function
with the uncertainty measure for the adaptive classifier and extend the loss function to support
vector machine. Finally, numerical experiments on simulation datasets and real-world applications
are given to comprehensively demonstrate the effectiveness of the adaptive classifier with the
uncertainty measure.

Keywords: domain adaptation; transfer learning; evidence theory; uncertainty measure

1. Introduction

In the field of machine learning research, supervised learning methods have already
witnessed the outstanding performance in many applications. The key point of supervised
learning is to collect sufficient labeled datasets for model training, which also limits the
usage of supervised learning in scenarios with a lack of training data. Furthermore, data
annotating is usually a time-consuming, labor-expensive, or even unrealistic task. To
settle this situation, domain adaption (DA) is a promising methodology that aims to learn
an adaptive classifier for the target domain tasks by making use of labeled data from
source domains [1–4]. It has been applied in various fields successfully, such as object
recognition [5,6], text classification [7,8], medical field [9,10], machine translation [11] and
so on.

However, due to the mismatch between the source domain data and the target domain
task, there is an uncertainty in DA when source domain data transfers to tasks of the target
domain. As shown in Figure 1, in the target domain classification task, each source domain
datum may no longer fully belong to a class in the label space of the target domain. The
possibility of it being in class 1* is 0.2, and the uncertainty is 0.8, or the possibility of it
being in class 1* is 0.9, and the uncertainty is 0.1. Unfortunately, the uncertainty of source
domain data with respect to the target domain task is given less attention in DA. Ignoring
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uncertainty may result in an issue that the classifier does not fully match the target domain
task, which weakens the model’s transfer performance.

Figure 1. (a) Data distribution of source domain, (b) category distribution of source domain data in
label space Ω of the target domain.

Most DA research works adopted metric learning to minimize the data differences
between the source and target domain for getting an adaptive classifier. Some works map
the source and target data instances into a common feature space by minimizing the gap
between the data distributions of the source and target domain, such as transfer component
analysis (TCA) [12], correlation alignment (CORAL) [13], and scatter component analysis
(SCA) [14]. Some works construct a loss function with the data differences as the constraint
to train an adaptive classifier, such as joint adaptation network (JAN) [15], manifold em-
bedded distribution alignment (MEDA) [16], and multi-representation adaptation network
(MRAN) [17]. However, existing methods (1) cannot measure the uncertainty of source
domain data about the target domain task, and (2) cannot accomplish effective training of
adaptive classifiers with a data uncertainty measure.

The uncertainty is important for evaluating the adaptation degree of the source domain
data about target tasks. The study of uncertainty has been successfully applied in tradi-
tional machine learning, such as bayesian-based uncertainty [18], evidence theory-based
uncertainty [19], information entropy-based uncertainty [20], and granular computing-
based uncertainty [21]. In particular, the evidence theory has been widely combined with
machine learning methods to improve their ability to handle the uncertainty data [22–26].

To solve these problems, in this paper, we revisit the domain adaptation from source
domain data uncertainty based on evidence theory and thereby devise a reliable adaptive
classifier with the uncertainty measure. Specifically, we first construct an evidence net
based on evidence theory for measuring the uncertainty of source domain data about the
target domain classification task. It can calculate the proportion of uncertainty for each
source domain instance in the target domain classification task. Second, we design a general
loss function with the uncertainty measure for the adaptive classifier and extend the loss
function to support vector machine (SVM). The contributions of this paper are summarized
as follows.

• Designing an evidence net based on evidence theory to measure the uncertainty of
source domain data about a target domain classification task.

• Designing a general loss function with uncertainty measure for learning of the adaptive
classifier.

• Extending the SVM by the general loss function with uncertainty measure for enhanc-
ing its transferred performance.

The remainder of the paper is organized as follows. We start by reviewing related
works in Section 2. Section 3 describes the evidence net that is built based on evidence
theory for estimating the uncertainty. Section 4 extends the general loss function to SVM.
Section 5 presents the experimental results to validate the efficiency of the proposed method.
The conclusion about our exploratory work is also given in the last section.
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2. Related Work

In this section, we discuss previous works on domain adaptation that minimizes
the data difference between the source and target domain. In addition, we introduce the
evidence theory that is most related to our work.

2.1. Domain Adaptation with Metric Learning

We will briefly introduce the domain adaptation with metric learning. These methods
leverage the metric methods to reduce the data difference between two domains.

Maximum mean discrepancy (MMD) [27] takes advantage of the kernel trick, which
can measure the data difference between the source domain and target domain. MMD is
widely used in domain adaptation. Some state-of-the-art methods are proposed based on
MMD. Pan and Yang et al. [12] propose the transfer component analysis (TCA) model based
on MMD. The TCA utilizes the MMD to reduce the gap between the source domain and tar-
get domain. Long et al. [28] put forward the joint distribution adaptation (JDA) algorithm
that uses the MMD to adapt both the marginal distribution and conditional distribution
in domain adaptation. Muhammad Ghifary et al. [29] propose a neural network model
that embeds the MMD regularization to reduce the distribution mismatch. Long et al. [30]
propose a novel framework that is called adaptation regularization-based transfer learning
(ARTL). The ARTL optimizes the structural risk functional, joint distribution adaptation
of both the marginal, and conditional distributions by embedding the MMD regulariza-
tion. Yan et al. [31] propose a weighted domain adaptation network (WDAN) by both
incorporating the weighted MMD into CNN and taking into account the empirical loss on
target samples.

Kullback–Leibler (KL) divergence [32] can measure data distribution differences be-
tween the source domain and target domain. Dai et al. [33,34] use the KL divergence
to measure the difference between the source domain and target domain and uses the
difference in co-clustering to improve the performance of transferring. Zhuang et al. [35]
propose a supervised representation learning method based on a deep auto-encoder for
domain adaptation. In the embedding layer, the authors use the KL divergence to keep the
two distributions of source and target domains similar.

Jensen–Shannon (JS) divergence is similar to KL divergence and measures the differ-
ence between the source domain and target domain. However, the JS divergence solves
the asymmetry problem of KL divergence. Joshua Giles et al. [36] use JS divergence to
compare calibration trails with an electroencephalogram dataset for selecting the target
user in domain adaptation. Subhadeep Dey et al. [37] employ JS divergence in Information
Bottleneck clustering to find clusters in domain adaptation.

The Wasserstein distance derives from the optimal transport problem. It can be used
to measure distances between two probability distributions. Shen et al. [38] reduce the
discrepancy between the source domain and target domain by gradient property of the
Wasserstein distance for improving transfer performance. Lee et al. [39] use the Wasserstein
discrepancy between classifiers to align distributions in domain adaptation.

In summary, the core idea of most methods is to minimize the distribution difference
between the source and target domain. However, they ignore the uncertainty between the
source domain data and the target domain task.

2.2. Learning with Evidence Theory

Evidence theory can be considered a generalized probability [19,40]. It can represent
and measure data uncertainty using mass function [41]. The evidence theory uses Demp-
ster’s rule to finish uncertainty reasoning [42]. We will recall mass function and Dempster’s
rule from evidence theory.

2.2.1. Mass Function

Let Ω = {z1, z2, . . . , zn} be a finite domain (set) that includes all possible answers to
the decision problem, and the elements of the set are mutually exclusive and exhaustive.
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Ω is called the frame of discernment. In the classification problems, the element zk can be
regarded as the kth category, and Ω can be considered as the sample space or label space.
We denote the power-set as 2Ω, and the cardinality of the power-set is 2|Ω|.

The mass function m(·) is the Basic Belief Assignment (BBA) that represents the
support degree of evidence, and m(·) is a mapping from 2Ω to the interval [0, 1]. It satisfies
the condition as follows  ∑A∈2Ω m(A) = 1

m(∅) = 0
(1)

where m(A) measures the support degree for proposition A itself and m(∅) represents
that the empty set has no support degree. If m(A) > 0, A is called a focal element. In
classification problems, if A = zk, m(A) can be interpreted as a support degree (possible)
that instance belongs to class zk. If A = Ω, m(A) can be interpreted as the total ignorance
degree for classification results. In this paper, m(Ω) can be used to reflect the instance
uncertainty.

For example, we assume a classification problem that distinguishes colors. The frame
of discernment is Ω = {red, green, blue}. The power-set is 2Ω = {∅, {red}, {green}, {bule},
{red, green}, {red, blue}, {green, blue}, Ω} and |Ω| = 3, 2|Ω| = 8. m(green|x; E) represents
the possibility that x belong to green based on evidence E. m(Ω|x; E) represents that we
can not determine which class the sample belongs to. It reflects the instance uncertainty.

2.2.2. Dempster’s Rule

Dempster’s rule reflects the combined effect of evidence. Let m1 and m2 be two
mass functions induced by independent items of evidence. They can be combined using
Dempster’s rule to form a new mass function defined as

(m1 ⊕m2)(A) =
1

1− κ ∑
B∩C=A

m1(B)m2(C), (2)

for all A ⊆ Ω, A 6= ∅ and (m1 ⊕m2)(∅) = 0 (⊕ is the combination operator of Dempster’s
rule). k is the degree of conflict between m1 and m2; it can be defined as

κ = ∑
B∩C=∅

m1(B)m2(C). (3)

3. Uncertainty Measure in Domain Adaptation Based on Evidence Theory

In domain adaptation, the key problem of the uncertainty measure is how to evaluate
the uncertainty in the target domain classification task for each source domain data. We
consider that the lower uncertainty of instance represents less information loss in domain
adaptation. To achieve this, we construct an evidence net based on evidence theory. It
consists of two key steps (1) obtaining a trusty evidence set, and (2) designing the evidence
net based on evidence theory. We describe them separately below.

3.1. Obtaining the Trusty Evidence Set

Let us consider a simple scenario with a large number of instances labeled source-
domain Ds and a small number of instances labeled target-domain Dt

l .
Given a source-domain instance xs, its evidence set Φt consists of similar instances

from the target domain and can be formulated as a neighborhood surrounding xs.

Φt = {xt
1, xt

2, · · · , xt
n}, (4)

in which xt
1, xt

2, · · · , xt
n are n target domain instances similar to the source domain instances

xs and n > 10. To ensure the validity of the evidence set, the discrepancy between a
source-domain instance and the elements of its evidence set should be small. Motivated
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by this, we design the objective function of obtaining an evidence set for a source domain
instance xs as

Φt = arg min
Φ

h(xs, Φ), (5)

in which the function h(·) measures the discrepancy between the xs of the source do-
main and the evidence set Φt in a reproducing kernel Hilbert Space (RKHS) H, h(·) is
formulated as

h
(
xs, Φt) = ∥∥∥∥∥φ(xs)− 1

|Φt| ∑
xt∈Φt

φ(xt)

∥∥∥∥∥
2

H
, (6)

where φ : X 7→ H is the feature mapping, and |Φt| is the number of elements in the
evidence set. In this paper, we utilize the radial basis function kernel to construct the kernel
Hilbert space,

K
(
xt, xs) = φ(xt)Tφ(xs) = exp

(
−γ
∥∥xt − xs∥∥2

)
, (7)

in which
∥∥xt − xs

∥∥2 is the Euclidean distance between two points and γ is a scaling param-
eter. Substituting K

(
xt, xs) into Equation (6), the function h(·) can be rewritten as

h
(

xs, Φt) = ∣∣∣∣∣ 1
|Φt|2 ∑

xt
1,xt

2∈Φt

K
(
xt

1, xt
2
)
− 2
|Φt| ∑

xt∈Φt

K
(

xs, xt)∣∣∣∣∣. (8)

Based on the above analysis, the objective function of Equation (5) to obtain the
evidence set can be specified as

Φt = arg min
Φ

∣∣∣∣∣ 1
|Φ|2 ∑

xt
1,xt

2∈Φt

K
(
xt

1xt
2
)
− 2
|Φ| ∑

xt∈Φ
K
(
xs, xt)∣∣∣∣∣. (9)

The optimal evidence set Φt in Equation (9) can be solved by a greedy search on the
labeled target domain.

3.2. Constructing Evidence Net Based on Evidence Theory

In the evidence theory, suppose that m(·|x; Φ) is the mass function, Ω is the label
space, and Φ is the evidence set, the mass function m(Ω|x; Φ) can represent the uncertainty
of x about the classification task. In domain adaptation, Ω comes from the label space of
the target domain. In a built-up evidence set Φt, from the target domain Dt, for instance, xs,
from source domain Ds, m(Ω|xs; Φt) can represent the uncertainty of the source domain
instance xs about the target domain classification task.

In this section, motivated by evidential k-Nearest Neighbor [22] and neural network,
we construct an evidence net based on Dempster’s rule to calculate m(Ω|xs; Φt). The details
of the evidence net are described as follows.

According to Section 3.1, the evidence set Φt has been generated from the labeled
target domain Dt

l . Given k classes, we decompose the evidence set Φt into different classes,

Φt =
{

Φt
1, Φt

2, . . . , Φt
k
}

, (10)

where Φt
k = {xt

k1, . . . xt
kl} is the evidence subset in which all the target domain instances

have the class label zk, and xt
kl is the lth element in the evidence subset.

According to the decomposition of the evidence set Φt and Dempster’s rule, the
evidence net can be represented in the connectionist formalism as a network with an input
layer, three evidence layers L1, L2, and L3, and an output layer.

As shown in Figure 2, the input layer is an instance of source domain xs, and the output
layer is m(zk|xs; Φt) and m(Ω|xs; Φt). Each evidence layer Li(i = 1, 2, 3) corresponds to
one step of the procedure described as follows.
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Figure 2. Evidence net architecture.

(1) Layer L1 contains n nodes, and we denote the node of layer L1 as f 1
i
(
· | xs; xt

i
)
. The

input of the node is an instance xs from source domain Ds. At the fine-grained evidence
level, given an element xt

i in an evidence subset, we compute f 1
i
(
· | xs; xt

i
)

as

f 1
i
(
· | xs; xt

i
)
=

{
m
(
zk | xs; xt

i
)

m
(
Ω | xs; xt

i
)
.

(11)

in which
m
(
zk|xs; xt

i
)
= exp

(
−d
(
xs, xt

i
))

,

m
(
Ω|xs; xt

i
)
= 1− exp

(
−d
(

xs, xt
i
))

,
(12)

where d(·) is defined as follows

d
(
xs, xt

i
)
= K(xs, xs)− 2K

(
xs, xt

i
)
+ K

(
xt, xt

i
)
, (13)

in which K(·) is the radial basis function kernel.
(2) Layer L2 contains k nodes, and we denote the node as f 2

k
(
· | xs; Φt

k
)
. Using

Dempster’s rule to combine f 1
i
(
· | xs; xt

i
)

under single evidence xt ∈ Φt
k, we can obtain

f 2
k
(
· | xs; Φt

k
)

under the evidence subset Φk.

f 2
k
(
· | xs; Φt

k
)
=

⊕
xt⊆Φt

k

f 1(· | xs; xt) = { m
(
zk | xs; Φt

k
)

m
(
Ω | xs; Φt

k
)
,

(14)

in which
m
(
Ω|xs; Φt

k
)
=

⊕
xt∈Φt

k

m
(
Ω|xs; xt) = ∏

xt∈Φt
k

m
(
Ω|xs; xt),

m
(
zk|xs; Φt

k
)
=

⊕
xt∈Φt

k

m
(
zk|xs; xt) = 1− ∏

xt∈Φt
k

m
(
Ω|xs; xt). (15)

where the orthogonal sum
⊕

represents the combination operator of Dempster’s rule.
(3) In layer L3, we denote the node as f

(
· | xs; Φt). f

(
· | xs; Φt) can be calculated under

the entire evidence set Φt through accumulating f 2
j

(
· | xs; Φt

j

)
under evidence subsets.

f
(
· | xs; Φt) = ⊕

Φk⊆Φt

f 2(· | xs; Φt
k
)
=

{
m
(
zk | xs; Φt)

m
(
Ω | xs; Φt), (16)
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in which

m
(
zk|xs; Φt) = ⊕

Φt
k⊆Φt

m
(
zk|xs; Φt

k
)
=

1
κ

m
(
zk|xs; Φt

k
)
∏
j 6=k

m
(

Ω|xs; Φt
j

)
,

m
(
Ω|xs; Φt

k
)
=

⊕
Φt

k⊆Φ

m
(
Ω|xs; Φt

k
)
=

1
κ

n

∏
k=1

m
(
Ω|xs; Φt

k
)
,

∑
k∈Ω

m
(
zk | xs; Φt)+ m

(
Ω | xs; Φt) = 1,

(17)

where κ is a normalizing factor.

κ =
n

∑
k=1

m
(
zk|xs; Φt

k
)
∏
j 6=k

m
(

Ω|xs; Φt
j

)
+

n

∏
k=1

m
(
Ω|xs; Φt

k
)
. (18)

m(Ω|xs; Φt) represents the proportion of uncertainty in the target domain classifica-
tion task for the source domain instance xs. m(zk|xs; Φt) represents the possibility that
source domain instance xs belongs to class zk of the target domain. In this paper, we use
m(Ω|xs; Φt) to measure the uncertainty of source domain data about the target domain task.
Algorithm 1 summarizes the evidence net-based uncertainty measure of source domain
data in domain adaptation.

Algorithm 1 The uncertainty measure based on evidence net for source domain data

Input: source domain Ds, labeled target domain Dt
l .

Output: source domain Ds with uncertainty m(Ω|xs; Φt).
1: for all xs ∈ Ds do
2: Generate an evidence set Φt for xs according to Equation (9).
3: Estimate uncertainty m(Ω|xs; Φt) of xs based on the evidence net f (·|xs; Φt).
4: end for
5: return Ds with m(Ω|xs; Φt).

4. Learning Algorithm of Adaptive Classifier with Uncertainty Measure

Section 3 has successfully solved the uncertainty measure of source domain data for
target domain tasks. In domain adaptation, another key issue is how to use the uncertainty
to learn an adaptive classifier. To solve this problem, we propose a general loss function
with an uncertainty measure.

The learning algorithm with uncertainty measure can be transformed into a problem
of regularized risk minimization with uncertainty R[m(Ω|xs; Φt), L(xs, z, w)]. Thus, the
general loss function of the learning algorithm with uncertainty can be written as

R[m(Ω|xs; Φt), L(xs, z, w)] =
1
N

N

∑
i=1

(1−m(Ω|xs
i ; Φt))L(xs

i , zi, w) + λ||w||, (19)

where instance xs comes from source domain Ds, L(·) is loss function, and w is the parame-
ter of the model. In order to verify its effectiveness, we extend the loss function with an
uncertainty measure to support vector machine (SVM).

4.1. Support Vector Machine with Uncertainty Measure (SVMU)

Based on the general loss function, we propose an improved support vector machine
with an uncertainty measure (SVMU), which integrates the uncertainty of the source
domain instance about the target domain task to SVM. The SVM uses only one penalty
factor to control the balance between margin maximization and misclassification. However,
in domain adaptation, due to domain differences, the classification hyperplane controlled
by only one penalty factor cannot effectively distinguish classes of the target domain. The
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SVMU can change the penalty factor by the uncertainty measure. It makes the instances of
the source domain that are beneficial to the target domain classification task become the
new support vectors and diminishes the importance of some instances that have negative
effects. Thus, SVMU is more flexible and superior in domain adaptation than SVM. The
details of SVMU are described as follows.

SVM maps the input points into a high-dimensional feature space and finds a separat-
ing hyperplane that maximizes the margin between two classes in this space. According
to the general loss function, Equation (19), the optimization problem for SVMU is then
regarded as the solution to

min
w,b,ξ

1
2
‖w‖2 + C

N

∑
i=1

(1−m(Ω|xs
i ; Φt))ξi, (20)

subject to
zi(w · φ(xs

i ) + b) ≥ 1− ξi i = 1, 2, · · · , N,

ξi ≥ 0 i = 1, 2, · · · , N,
(21)

where parameter ξi is the slack variable. C > 0 is the penalty factor, which controls
the trade-off between the slack variable penalty and the margin. φ(·) denotes a fixed
feature-space transformation. b is the bias parameter.

To solve this optimization problem, we construct the Lagrangian function

L(w, b, ξ, σ, λ) =
1
2
‖w‖2 + C

N

∑
i=1

(1−m(Ω|xs
i ; Φt))ξi

−
N

∑
i=1

σi(zi(w · φ(xs
i ) + b)− 1 + ξi)−

N

∑
i=1

λiξi,

(22)

To find the saddle point of L(w, b, ξ, σ, λ), the parameters satisfy the following conditions

∂L(w, b, ξ, σ, λ)

∂ξi
= (1−m(Ω|xs

i ; Φt)) ∗ C− σi − λi = 0,

∂L(w, b, ξ, σ, λ)

∂w
= w−

N

∑
i=1

σiziφ(xs
i ) = 0,

∂L(w, b, ξ, σ, λ)

∂b
= −

N

∑
i=1

σizi = 0.

(23)

By applying these conditions to the Lagrangian function (22), problem (20) can be
transformed into

min
w,b,ξ

L(w, b, ξ, σ, λ) = −1
2

N

∑
i=1

N

∑
j=1

σiσjzizjK
(

xs
i , xs

j

)
+

N

∑
i=1

σi, (24)

subject to
N

∑
i=1

σizi = 0, 0 ≤ σi ≤ (1−m(Ω|xs
i ; Φt)) ∗ C, (25)

where K(·) is a kernel function

K(xs
i , xs

j ) = φ(xs
i )

T · φ(xs
j ), (26)

and the KKT conditions are defined as

σ∗i (zi(w∗ · φ(xs
i ) + b∗)− 1 + ξ∗i ) = 0,(

(1−m(Ω|xs
i ; Φt)) ∗ C− σ∗i

)
ξ∗i = 0,

(27)
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The optimal solution of (24) can be denoted as σ∗ = (σ∗1 , σ∗2 , ·, σ∗N), where xs
i corre-

sponding to σ∗i > 0 is a support vector. The support vector xs
i falls exactly on the margin

boundary if 0 < σ∗i < (1− m(Ω|xs
i ; Φt)) ∗ C. If σ∗i = (1− m(Ω|xs

i ; Φt)) ∗ C, 0 < ξi < 1,
then the classification is correct, and xs

i is between the boundary and the hyperplane.
If α∗i = (1− m(Ω|xs

i ; Φt)) ∗ C and ξi = 1, then xs
i is on the classification hyperplane; if

α∗i = (1−m(Ω|xs
i ; Φt)) ∗ C and ξi > 1, then xs

i is on the misclassified side of the classifica-
tion hyperplane.

In the traditional SVM, the only penalty factor C controls the balance between margin
maximization and misclassification. A larger C allows the SVM to have fewer misclassifica-
tion and a narrower margin. Conversely, a smaller C makes the SVM ignore more training
points and obtains a larger margin. Due to the existing uncertainty of the source domain
data about the target domain task, with only one penalty factor, it is difficult to control the
balance between margin maximization and misclassification in the target domain task. This
may result in negative transfer when using SVM as the classifier.

Based on the above analysis, applying uncertainty to SVM, it can be found that
the single penalty factor C becomes (1 − m(Ω|xs

i ; Φt)) ∗ C, whose number of penalty
factors increases from one to the number of source domain instances. Each support vector
corresponds to a penalty factor (1−m(Ω|xs

i ; Φt)) ∗ C with an uncertainty measure instead
of corresponding to a single constant value C. Thus, the selection of support vectors does
not rely on a single penalty factor but is determined by the uncertainty m(Ω|xs

i ; Φt) of
each source domain instance with respect to the target domain task. As shown in Figure 3,
changing the penalty factor C by uncertainty m(Ω|xs

i ; Φt) can make the instances of the
source domain that are beneficial to the target domain classification task become the new
support vectors and diminish the importance of some instances that have negative effects.
The classification hyperplane that is generated by these new support vectors is suited
to discriminate the target data. Thus, integrating the uncertainty to SVM can adjust the
classification hyperplane to suit the target domain task.

Figure 3. Schematic diagram: (a) Classification hyperplane is generated by SVM. (b) Classification
hyperplane is generated by SVM with uncertainty.

5. Experiments

In the experiments, we evaluate the adaptive classifier with an uncertainty measure
on various kinds of data, including texts and images. The descriptions of the datasets are
listed below.

Amazon product reviews dataset [43] is the benchmark text corpora widely used
for domain adaptation evaluation. The reviews are about four product domains: books
(denoted as B), dvds (denoted as D), electronics (denoted as E), and kitchen appliances
(denoted as K). Each review is assigned to a sentiment label, −1 (negative review) or +1
(positive review), based on the rating score given by the review author. In each domain,
there are 1000 positive reviews and 1000 negative reviews. In this dataset, we construct
12 cross-domain sentiment classification tasks: B → D, B → E, B → K, D → B, D → E,
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D → K, E→ B, E→ D, E→ K, K → B, K → D, K → E, where the word before an arrow
corresponds to the source domain and the word after an arrow corresponds with the target
domain. In each cross-domain classification task, we extract the features of the texts by
using the word2vec tool.

Office+Caltech dataset [44] is commonly used for the task of visual object recognition in
domain adaptation. It includes four domains: Amazon (denoted as A, images downloaded
from online merchants), Webcam (denoted as W, low-resolution images from a web camera),
DSLR (denoted as D, high-resolution images from a digital SLR camera), and Caltech-256
(denoted as C). The dataset includes 10 classes: backpack, touring bike, calculator, head
Caltech, phones, computer keyboard, laptop-101, computer monitor, computer mouse,
coffee mug, and video projector. There are 8 to 151 samples per category per domain and
2533 images in total. In this dataset, we construct 12 cross-domain multi-classification tasks:
A → C, A → D, A → W, C → A, C → D, C → W, D → A, D → C, D → W, W → A,
W → C, and W → D.

In the experiment, for each domain adaptation classification task, we use the classifi-
cation accuracy of the target domain as the evaluation criterion. Suppose Dt is the target
domain dataset,

Accuracy =
|{x : x ∈ Dt ∧ v(x) = y}|

|{x : x ∈ X}| , (28)

where y is the ground truth label of x, and v(x) is the label predicted by the classifier.

5.1. Comparative Studies

To evaluate the transfer performance of SVM with the uncertainty measure (SVMU),
we compared it with 9 domain adaptation methods on Amazon product reviews dataset
and Office+Caltech datasets, respectively. The methods of comparison include transfer
component analysis (TCA) [12], correlation alignment (CORAL) [13], geodesic flow kernel
(GFK) [44], joint distribution adaptation (JDA) [28], kernel mean matching (KMM) [45],
metric transfer learning (MTLF) [46], scatter component analysis (SCA) [14], practically easy
transfer learning (EasyTL) [47], and Wasserstein distance-guided representation learning
(WDGAL) [38].

(1) Testing on Amazon product reviews dataset

In this testing, we evaluate SVM with an uncertainty measure (SVMU) on the Amazon
product reviews dataset. The classification accuracies of the comparative study are listed in
Table 1.

Table 1. Cross-domain sentiment classification accuracies of Amazon product reviews generated by
SVMU and baseline methods.

Task SVMU TCA CORAL GFK JDA KMM MTLF SCA EasyTL WDGAL

B→ D 84.61 77.76 70.76 75.76 77.26 83.76 68.59 81.56 79.80 83.05
B→ E 81.01 75.54 66.21 72.00 75.93 79.02 69.63 78.08 79.70 80.09
B→ K 81.92 78.74 70.00 73.50 78.09 75.90 72.74 79.09 80.90 85.45
D → B 82.11 76.05 73.05 71.85 77.65 80.50 70.70 82.35 79.90 80.72
D → E 82.84 76.38 68.70 68.96 76.03 68.51 71.90 78.82 80.80 82.26
D → K 82.64 79.34 71.96 75.70 78.29 76.45 74.18 80.39 82.00 85.23
E→ B 79.44 73.35 69.90 72.60 72.65 73.70 69.20 77.00 75.00 77.22
E→ D 82.79 73.66 65.71 71.11 72.16 77.86 70.73 77.26 75.30 78.28
E→ K 86.40 79.74 72.35 76.20 80.14 80.39 71.36 84.63 84.90 88.16
K → B 81.11 73.05 67.45 73.75 75.05 74.25 66.04 78.90 76.50 77.16
K → D 82.12 77.26 68.61 74.21 77.56 75.96 70.31 77.46 76.30 78.89
K → E 86.61 78.74 75.68 76.58 80.32 85.00 68.58 85.65 82.50 86.29

Average 82.80 76.63 70.03 73.52 76.76 77.61 70.33 80.10 79.47 81.90

As shown in Table 1, the average classification accuracy of SVMU on the 12 tasks is
82.80%. The performance improvement is 6.17%, 12.77%, 9.28%, 6.04%, 5.19%, 12.47%,
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2.70%, 3.33%, and 0.9% compared to baseline method. The average classification accuracy
of TCA, CORAL, GFK, JDA, and KMM are 76.63%, 70.03%, 73.52%, 76.76%, and 77.61% on
Amazon product reviews. These methods aim to minimize the different between the source
and target domains, while ignoring the uncertainty of the instances in the source domain
with respect to the task. Although they can find a representation space with the greatest
commonality between the source and target domains, they cannot determine whether the
source domain instance is suitable for the target domain task. This limits the performance
of these methods. The performance improvement of our method is 6.17%, 12.77%, 9.28%,
6.04%, and 5.19% compared to them. In results of text classification, since these results are
obtained from a larger number of datasets, it can convincingly verify that SVMU is reliable
and effective for classifying cross-domain text accurately.

(2) Testing on Office+Caltech datasets

In this testing, we evaluate SVM with an uncertainty measure (SVMU) on Office+Caltech
datasets. In each cross-domain classification task, we extract the features of images by
speeded up robust features (SURF). The classification accuracies of the comparative study
are listed in Table 2.

Table 2. Cross-domain classification accuracies on Office+Caltech image datasets (SURF features)
generated by SVMU and baseline methods.

Task SVMU TCA CORAL GFK JDA KMM MTLF SCA EasyTL

A→ C 51.55 47.76 45.37 40.25 49.36 45.41 45.37 48.29 43.01
A→ D 44.31 41.12 43.75 43.31 42.49 41.40 41.38 44.21 45.85
A→W 47.28 44.63 44.78 43.98 45.97 42.85 42.59 43.90 40.68
C → A 63.29 58.20 53.59 51.20 54.78 50.10 54.17 53.74 50.10
C → D 44.00 41.40 46.22 42.85 43.22 43.58 40.69 39.49 48.41
C →W 46.44 42.64 43.73 40.68 41.69 43.81 46.10 43.56 42.49
D → A 63.29 52.15 58.81 52.05 53.09 58.60 59.92 57.72 61.94
D → C 51.33 49.70 48.01 48.28 45.52 47.81 45.73 50.32 51.17
D →W 46.44 46.10 44.40 45.59 43.49 44.45 43.50 42.81 44.49
W → A 63.29 58.06 56.20 59.75 56.78 52.15 51.07 60.48 60.18
W → C 51.22 45.30 42.08 48.72 49.17 49.81 49.38 50.63 49.65
W → D 47.77 43.26 44.08 40.89 46.17 45.62 44.76 46.36 47.07
Average 51.68 47.52 47.58 46.46 47.64 47.13 47.05 48.45 48.75

It is obvious that SVMU achieves better performance than the methods of comparison
on Office+Caltech datasets. Specifically, the average classification accuracy of SVMU on 12
cross-domain classification tasks is 50.60%, which gains significant performance improvements
of 4.16%, 4.1%, 5.22%, 4.04%, 4.55%, 4.63%, 3.23%, and 2.93% compared to the baseline methods.
The experimental results reveal that the improved SVM with the uncertainty measure is reliable
and effective in cross-domain image classification tasks.

5.2. Effectiveness Verification of Uncertainty Measure

In this experiment, we verify the effectiveness of the uncertainty measure from three
views: (1) Testing on synthetic data, visualizing the classification hyperplane of an adaptive
classifier with and without an uncertainty measure. (2) Testing on real-world datasets,
comparing the performance of SVM with and without an uncertainty measure. (3) Case
study, explaining the role of uncertainty measure.

5.2.1. Testing on Synthetic Data

In order to demonstrate the effectiveness of the adaptive classifier with an uncertainty
measure in domain adaptation, we visualize the classification hyperplane of an adaptive
classifier on a synthetic dataset. The synthetic dataset is generated from a Gaussian
distribution x ∼ N (µ, σ), where µ and σ are the mean and standard deviation, respectively.
We apply different µ and σ to generate the data from the source domain and target domain.
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In the dataset, the source domain and target domain consist of two-dimensional data points
under two classes, and each class has 500 data points. The source domain is marked by a
pentagram, and the target domain is marked by a triangle. Class 1 is marked in orange,
and Class 2 is marked in dark slate-gray.

In Figure 4, (a) and (b) show the classification hyperplanes that are generated based
on the source domain by SVM and SVMU, respectively. Due to the difference in data
distribution between the source and target domains, the classification hyperplane generated
by SVM cannot accurately distinguish the categories of the target domain and cannot satisfy
the domain adaptation task. In contrast, the classification hyperplane generated by SVMU
can accurately classify the target domain categories, and the classification results are shown
in (a) and (b). The experimental results are consistent with the conclusions about SVMU in
Section 4.1. Therefore, the uncertainty measure is effective and can improve the transfer
performance of the adaptive classifier.

(a) (b)

Source domain Target domain Class 1 Class 2 Source domain Target domain Class 1 Class 2

Figure 4. Results on synthetic data: (a) Classification hyperplane is generated by SVM. (b) Classifica-
tion hyperplane is generated by SVM with uncertainty.

5.2.2. Testing on Real-World Datasets

To further explain the effectiveness of the adaptive classifier with uncertainty, we
compare the SVM with and without uncertainty on the Amazon product reviews dataset.

Figure 5 shows the result of SVM with and without uncertainty on the Amazon product
reviews dataset; it is obvious that in all the cross-domain text tasks, SVMU achieves better
performance than SVM. SVMU improves the transfer accuracy over SVM on the 12 subtasks
by 11.71%, 6.62%, 8.28%, 8.06%, 9.46%, 12.1%, 5.24%, 9.89%, 14.82%, 6.56%, 11.27%, and
12.48%. Comparing the average classification accuracy, SVMU improves the average
classification accuracy by 9.71% over SVM. The above results show that it is effective at
enhancing the transfer performance of the adaptive classifier by introducing the uncertainty
between the source domain data and target domain task.
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Figure 5. Cross-domain sentiment classification accuracies on Amazon product reviews generated by
SVM with and without uncertainty.

5.2.3. Case Study

Based on the above sub-experiments, it can be verified that the uncertainty measure
is able to enhance adaptive classifier transfer performance. To explain the role of the
uncertainty measure on the transfer process for an adaptive classifier, we use the Caltech-
256 image data (complex background) as the source domain and the Amazon image data
(no background) as the target domain. When the Caltech-256 dataset transfers to the
Amazon dataset, the uncertainty values of some instances in the backpack and bicycle
categories in the Caltech-256 dataset are shown.

As shown in Figure 6, for images (a1) to (a6) in the Caltech-256 dataset, it can be
found that (a1) and (a2) are cartoon images of a backpack, and (a5) and (a6) are bicycles
with obscure features. These instances are not significantly helpful for the target domain
classification task. On the contrary, in (a3) and (a4), the features of the backpack and bicycle
are obvious and beneficial for the target domain classification task.

Uncertainty = 

Caltech-256

(Source domain)

Amazon

(Target domain)

(a1) (a2) (a3) (a4) (a5) (a6)

0.75 0.82 0.09 0.03 0.97 0.92

backpack bike

Figure 6. The uncertainty of the category ’backpack’ and ’bike’ in source domain C about the target
domain A classification task.

We use the evidence net to calculate the uncertainty between (a1)–(a6) and the target
domain task; as shown in Figure 6, we can find that the uncertainties of (a1), (a2), (a5), and
(a6) calculated by the evidence network are high; 0.75, 0.82, 0.97, and 0.92, respectively. The
uncertainties of (a3) and (a4) are low, at 0.09 and 0.03, respectively. When the Caltech-256
dataset transfers to the Amazon dataset, the images (a1)–(a6) no longer fully belong to
the category of backpack and bicycle. (a1), (a2), and (a3) belong to the backpack category
with the possibilities 0.25, 0.18, and 0.91, and 0.75, 0.82, and 0.09 are the uncertainties. (a4),
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(a5), and (a6) belong to the bicycle category with the possibilities 0.97, 0.03, and 0.08, and
0.03, 0.97, and 0.92 are the uncertainties. Based on the above results, it can be found that
our proposed uncertainty measure is consistent with people’s cognition. Therefore, the
uncertainty can accurately measure the adaptability of instances with respect to the target
domain task.

6. Conclusions

In this article, based on evidence theory, we revisited the domain adaptation from
source domain data uncertainty and thereby devised a reliable adaptive classifier with the
uncertainty measure. Specifically, for solving the uncertainty measure between the source
domain data and target domain tasks, we designed an evidence net based on evidence
theory. To solve the problem of model learning with a data uncertainty measure, we
proposed a general loss function with an uncertainty measure for an adaptive classifier
and extended the loss function to support vector machine. Experiments on the text dataset
and image dataset validate that the proposed uncertainty measure is effective at improving
the transfer performance of an adaptive classifier. In the future, we plan to extend the
classifier with the uncertainty measure to handle the domain adaptation with multiple
source domains and the domain adaptation on open sets.
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