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Accurate inference of gene regulatory rules is critical to understanding cellular processes.
Existing computational methods usually decompose the inference of gene regulatory
networks (GRNs) into multiple subproblems, rather than detecting potential causal
relationships simultaneously, which limits the application to data with a small number of
genes. Here, we propose BiRGRN, a novel computational algorithm for inferring GRNs
from time-series single-cell RNA-seq (scRNA-seq) data. BiRGRN utilizes a bidirectional
recurrent neural network to infer GRNs. The recurrent neural network is a complex deep
neural network that can capture complex, non-linear, and dynamic relationships among
variables. It maps neurons to genes, and maps the connections between neural network
layers to the regulatory relationship between genes, providing an intuitive solution to
model GRNs with biological closeness and mathematical flexibility. Based on the deep
network, we transform the inference of GRNs into a regression problem, using the gene
expression data at previous time points to predict the gene expression data at the later
time point. Furthermore, we adopt two strategies to improve the accuracy and stability of
the algorithm. Specifically, we utilize a bidirectional structure to integrate the forward and
reverse inference results and exploit an incomplete set of prior knowledge to filter out
some candidate inferences of low confidence. BiRGRN is applied to four simulated
datasets and three real scRNA-seq datasets to verify the proposed method. We perform
comprehensive comparisons between our proposed method with other state-of-the-art
techniques. These experimental results indicate that BiRGRN is capable of inferring GRN
simultaneously from time-series scRNA-seq data. Our method BiRGRN is implemented in
Python using the TensorFlow machine-learning library, and it is freely available at https://
gitee.com/DHUDBLab/bi-rgrn.

Keywords: gene regulatory network, recurrent neural network, gene expression, single-cell transcriptomic data,
bidirectional structure
1 INTRODUCTION

Gene regulatory mechanisms are crucial to understanding diverse dynamic processes such as
development, stress response and disease (1). Cell states and the dynamics of cell behavior are
governed by complex gene interactions (2), which in turn define cellular morphology and functions.
Such regulatory interactions can be modeled as a gene regulatory network (GRN), where nodes are
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regulators and their target genes, and edges represent the
regulatory relationships between genes (3). Unraveling GRNs is
one of the major challenges in the field of computational biology,
which allows us to pinpoint key factors that determine
phenotype in health systems as well as in diseases (4, 5).

A plethora of computational or statistical approaches have
been developed for inferring networks from observational gene
expression data (6–8). The widely used algorithm GENIE3
decomposes the inference of gene regulatory networks into
different regression subproblems. Using tree-based ensemble
methods, the expression pattern of each target gene is
predicted by the expression of all the other genes (9). ENNET
also considers the inference problem as a regression task, which
is solved by a decision tree optimizing the least-squares loss
function (10). It builds the model additively using a boosting
procedure. PPCOR reconstructs gene regulatory network by
calculating partial correlation coefficient and semi-partial
correlation coefficient between genes (11). PIDC exploits
information theory to infer the regulatory relationship between
genes (12). Biologically, it is assumed that changes in regulators
should precede changes in their targets in time. However, such
time information is not available in steady-state gene expression
data, and thus GRNs constructed from these data have limited
ability to capture dynamic regulatory relationships between
genes. Several methods have been proposed to infer GRNs
based on time-series gene expression data to address this issue.
The algorithm LEAP reconstructs gene regulatory networks by
calculating the Pearson correlation coefficient. With pseudo-time
data information, the algorithm defines a fixed-size time window
and assumes that the earlier expressed gene in this window can
affect other genes (13). SCODE infers regulatory networks based
on ordinary differential equations and linear regression (14). The
method SINCERITIES adopts the Kolmogorov–Smirnov
distance to quantify the distance between two cumulative
distribution functions of gene expressions from subsequent
time points, and recovers directed regulatory relationships
among genes by employing regularized linear regression (15).
BiXGBoost infers the regulatory network through both forward
and reverse directions, separately considering the regulatory
genes and target genes of specific genes, and uses the gradient
boosting decision tree to integrate the final regulatory
relationship (16). The algorithm GRGNN proposes an end-to-
end gene regulation graph neural network approach to
reconstruct GRNs from scratch utilizing gene expression data
in both a supervised and a semi-supervised framework (17).
DeepSEM is a neural network version of the structural equation
model (SEM) to explicitly model the regulatory relationships
among genes (18). These efforts mainly focus on intracellular
interactions, inferring gene regulatory relationships within a
specific cell. Recently developed methods for spatial
transcriptomics are now providing high-throughput
information about both the expression patterns of genes within
a single cell and the spatial relationships between cells (19–21).
The algorithm CNNC is a supervised framework for gene
relationship inference, using convolutional neural networks to
analyze summarized co-occurrence histograms from pairs of
Frontiers in Oncology | www.frontiersin.org 2
genes in scRNA-seq data (22). GCNG transforms the problem
of gene regulation network reconstruction into a classification
problem. It uses a graph convolutional neural network to fit cell
location information and gene expression data and infer the final
result (23).

Although much progress has been made, inferring a network
of regulatory interactions between genes is still challenging. On
one hand, for time-series scRNA-seq data, methods for
reconstructing GRNs on bulk data are not directly applicable.
As the biological meaning of a sample changes from the average
for several cells in bulk data to the value for a single cell, the form
of the gene expression data is also changed. Meanwhile, as the
approaches devised for single-cell transcriptomics typically
require a large number of time points to infer GRNs, they are
usually suitable for a small number of genes. Adding a few genes
to a network inference analysis may require the inference
algorithm to consider many additional regulatory interactions
between them. As the number of genes grows, the number of
edges and the demand for input data might explode.

Here, we present BiRGRN, a novel method of inferring GRNs
from time-series scRNA-seq data. BiRGRN adopts a
bidirectional recurrent neural network to infer GRNs. The
recurrent neural network is a deep neural network that can
capture complex, non-linear, and dynamic relationships among
variables. It maps a neuron to a gene, and maps the connections
between neural network layers to the regulatory relationship
between genes, giving a good solution to model GRN with
biological closeness and mathematical flexibility. Then we
transform the reconstruction of GRNs into a regression
problem, using the gene expression data of the previous time
points to predict the gene expression data of the later time point.
Meanwhile, we adopt a bidirectional structure and incorporate
an incomplete set of prior knowledge to improve the accuracy
and stability of the algorithm. To evaluate the performance of
BiRGRN, we apply it to four simulated datasets and three real
single-cell transcriptomic datasets. We performed a comparison
of our results with other state-of-the-art techniques, which shows
the better performance of our proposed model.
2 MATERIALS

2.1 The BiRGRN Method
In this work, we propose a new computational method BiRGRN
to reconstruct gene regulatory networks based on bidirectional
recurrent neural network and multiple prior networks. The
overview of the BiRGRN is shown in Figure 1. The proposed
algorithm consists of the following three main steps. Firstly, we
train a deep neural network to infer preliminary gene regulatory
networks, where neurons are mapped to genes, and the links
between adjacent layers of the neural network are related to gene
regulation relationships. Secondly, we incorporate incomplete
prior knowledge to filter the candidate regulatory edges obtained
in the first step. Finally, we adopt a voting strategy to integrate
multiple candidate regulatory networks and utilize a
bidirectional strategy to optimize the inferred GRN.
May 2022 | Volume 12 | Article 899825
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2.1.1 Step 1: Training RNN to Infer the Initial Gene
Regulatory Networks
Inferring gene regulatory network from single-cel l
transcriptomic data is actually to construct a directed graph,
where the nodes represent the genes, and the edges represent the
regulatory relationships among genes. If we assume that the
expression pattern of gene i at time point p+1 is the total
regulatory effect of the expression values of all genes at the
previous p time points, the regulation process can be described as
the following function (16):

eip+1 = f i Ep
� �

+ ∈i (1)

where eip+1 represents the expression value of gene i at the
time point p+1, Ep represents the expression value of all genes
at the previous p time points, and ∈i represents the influence
of external noise. Specifically, p is the time lag, which
represents the maximum time delay of the interaction
between genes.

Here, to model the regulation process of different genes in a
parallel manner, we adopt RNN to formalize gene regulatory
networks (24). A recurrent neural network is a type of artificial
neural network that can capture complex, non-linear, and
dynamic relationships among variables. It is mainly used for
processing sequential data like time series and solving ordinal or
temporal problems. As shown in the example RNN (Figure 2),
each node represents a particular gene and the edges between the
nodes represent the regulatory interactions among the genes.
Frontiers in Oncology | www.frontiersin.org 3
Each layer of the neural network defines the gene expression level
of the genes at a specific time point. The expression level of all
genes at the time point p+1 depends upon the expression level of
all the genes at the preceding p time points and the weights of the
FIGURE 2 | The schematic structure of a RNN unfolded in time. Each
node corresponds to a gene and a connection between two nodes defines
their interaction.
A

B

C

FIGURE 1 | BiRGRN reconstructs GRNs from time-series single cell transcriptome data using bidirection RNN. (A) Inferring initial gene regulatory network with RNN.
(B) Incorporating incomplete prior knowledge to adjust candidate regulatory edges. (C) Adopting a voting strategy to integrate multiple candidate regulatory
networks, and further utilizing bidirectional model to optimize the inferred GRN.
May 2022 | Volume 12 | Article 899825
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corresponding connecting edges with that particular gene (25,
26). Then the regulation process can be formulated as:

Ep+1 = F Ep
� �

+ ∈ (2)

where Ep+1 represents the expression value of all genes at the time
point p+1.

To improve the stability of the algorithm, BiRGRN integrates
multiple fully connected layers with the RNN to train gene
expression data. Therefore, the proposed network structure
consists of an RNN, multiple fully connected layers with
ResNet residual connections (27), and an output layer. In
detail, the proposed RNN contains p layers corresponding to p
time points, with multiple inputs and one output. Subsequently,
the output of the RNN is used as the input of these fully
connected layers. To avoid the over-fitting problem usually
caused by the deep neural network, BiRGRN adds a ResNet
residual connection for every five fully connected layers. In the
experiment, we set the number of the connected layers ranging
from 10 to 100. We find that too few fully connected layers will
lead to a significant decrease in the stability of the algorithm,
whereas too many fully connected layers can not improve the
accuracy but increase the running time of the algorithm.
Therefore, we use 50 fully connected layers and add a ResNet
structure. To train the deep neural network, we take the gene
expression data of the genes at the previous p time points as
input, and the gene expression data at the p+1 time point as
output. Then, the problem is transformed into a supervised
regression problem, which overcomes the difficulty of
obtaining training labels.

Here, we utilize mean square loss (MSE) as the regression
loss function for deep neural network training. The RNN is a
fully connected structure, whereas the regulatory network is
usually sparsely connected. Thus, we add L1 regularization in
the objective function, aiming to control the sparsity of
the resulted weight matrix w. The loss function is defined
as follows:

loss =
1
To

T

t=1
Et,p+1 − E*t,p+1

� �2
+a ∥w ∥1 (3)

where E*t,p+1 and Et,p+1 respectively represent the predicted and
the real expression value of all genes at the time point t+p+1. a∥
w ∥1 is the regularized term.

For the training process, when the objective function
converges to the minimum, the algorithm extracts the
multiple weight matrixes between the RNN layer and each
fully connected layer. Then we normalize each basic weight
matrix separately. According to the proposed network structure,
the weight matrix corresponds to the regulatory relationships
among genes, which can be used to reconstruct a candidate gene
regulatory network. For each matrix, we take the topm (Usually
1.2 times the number of inferred regulation edge) connections as
the candidate regulatory edges. As multiple weight matrixes are
obtained after the training process, we can infer multiple
candidate gene regulatory networks, which are used as the
basic voters to determine the final regulatory edges in the
following steps.
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2.1.2 Step 2: Incorporating Prior Knowledge to
Adjust Candidate Regulatory Edges
During the above training process, the final loss function of the
model usually cannot be completely reduced to zero due to the
influence of external noise. Meanwhile, in convex optimization
problems, there are a large number of approximate solutions
near the global optimal. In order to improve the accuracy of the
GRN inference, some prior knowledge can be utilized to filter the
candidate regulatory edges. The previous method, such as
NetREX and MiPGRN, assumes that the prior network and the
target GRN have some similarity, and then bias the optimization
procedure toward networks that overlap with the prior (28, 29).
Here, if the initial candidate GRN defined by the basic weight
matrix has more overlap with the prior network, it is considered
to be closer to the final inferred GRN. Correspondingly, this
candidate GRN is assigned a higher voting weight in the
following ensemble process. Specifically, the weight of the
candidate GRN is calculated according to the following strategy:

wk =
ContainPrek
preNumber

(4)

where wk represents the weight of the kth initial GRN,
ContainPrek denotes the number of candidate edges in the kth
inferred GRN overlapping with the prior network, and
preNumber represents the number of the prior edges.

As the usable prior knowledge usually does not exist for given
datasets, here we adopt a general strategy to obtain an incomplete
prior edge set. We utilize different computational algorithms to
predict the putative GRNs, apply the method NETRex to
optimize the predictions, and then integrate the top 10% of the
resulted edges to obtain an incomplete prior edge set (29).
Through evaluating different methods, here we select three
methods, including GRNBOOST2, PPCOR, and PIDC. These
three methods respectively adopt a different strategy to predict
GRNs. NetRex is an algorithm based on Network Component
Analysis (NCA) to optimize the predicted GRN (28).

2.1.3 Step 3: Utilizing a Bidirectional Model to
Optimize the Inferred GRN
Based on the deep neural network, we obtain K candidate GRNs,
and each candidate GRN possesses an adjusted weight matrix.
Next, we integrate these K different initial gene regulatory
networks. The voting strategy is the addition of weights, and
finally a global regulatory edge ranking is obtained according to
the weights. For the regulatory edge of gene i to gene j, the weight
eij is calculated as:

eij = o
K

k=1

wk ∗ e
k
ij (5)

where wk represents the weight of the kth candidate GRN, and ekij
represents the regulatory edge of gene i to gene j in the kth
candidate GRN.

Inspired by the bidirectional model of the algorithm
BiXGBoost (16), we further utilize the bidirectional model to
fully mine the regulatory genes and target genes. Different from
BiXGBoost which proposes local_in and local_out models to deal
May 2022 | Volume 12 | Article 899825
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with forward and reverse inference, we use forward time-series
expression data and reverse time-series expression data to
respectively infer two regulatory networks. For the reverse time
series data, the weight matrix obtained by the model represents
the regulatory strength between gene. Next, considering the
directionality of the regulatory relationship, we assume that
genes expressed at earlier time points regulate genes expressed
at later time points. Therefore, for the reverse inference, the input
of the algorithm is the gene expression data at p time points of
p+1, p, p-1,…, 2, and the output is the gene expression data of the
first time point. After getting the trained model, the algorithm
extracts the weight matrix wr, and the subsequent operations are
consistent with the forward model. Then the algorithm will
eventually get two regulatory networks, and also use voting
strategies to integrate forward and reverse results to get the
final inferred regulatory network:

e*ij = efij + erij (6)

where efij represents the weight eij obtained from forward
inferring, and erij represents the weight eij obtain the reverse
inferred GRN. Based on the calculated new weights of these
edges, we rank the regulatory edges and select the top m
regulatory edges to form the inferred GRN.

2.2 Datasets
Real scRNA-seq data sets. In order to evaluate the performance
of the proposed algorithm on real scRNA-seq datasets, we
select three widely used scRNA-seq data sets as the previous
method SCODE did (14). The first dataset is derived from
primitive endoderm (PrE) cells differentiated from mouse ES
cells (measured at 0, 12, 24, 48, and 72 hours, respectively) and
contains 456 cells (30). The second dataset is derived from
examining direct reprogramming from mouse embryonic
fibroblast (MEF) cells to myocytes (measured on 0, 2, 5, and
22 days), and this data set contains 405 cells (31). The third
dataset is the scRNA-seq data of definitive endoderm cells
derived from human ES cell differentiation (measured at 0, 12,
24, 36, 72, and 96 hours, respectively), and this dataset
contains 758 cells (32). In order to verify the inferred GRN
on these scRNA-seq datasets, SCODE used the transcription
fac to r r egu l a t ion ne twork da tabase (h t tp : / /www.
regulatorynetworks.org), which was constructed from
DNaseI footprints and TF-binding motifs (33, 34). They
integrated the TF regulatory networks of human and mouse,
and extracted 100*100 TF regulatory networks for each
dataset. We use this regulatory network as the correct
network for each data set, and calculate the AUC value of
the inferred network.

Simulated data sets. For real single-cell gene expression
datasets, it is usually difficult to obtain the real labels for the
edges in the gene regulatory network. In order to verify the
effectiveness of the proposed method and compare it with
existing methods, four simulated datasets are also used to
evaluate the inferred results (6). These four data sets are all
generated by the Boolean model simulating real cell expression
data (35). The advantage of using the Boolean model is that it can
Frontiers in Oncology | www.frontiersin.org 5
be used as a real biological regulatory network to evaluate the
performance of the reconstructed regulatory network. We utilize
the four gene expression data sets of gonadal sex determination
(GSD), hematopoietic stem cell differentiation (HSC), ventral
spinal cord development (VSC), and mammalian cortical
development (mCAD) to evaluate the performance of the
algorithm. These four datasets all contain 10 simulation
subsets composed of 2000 cells. The detailed information of
the data sets is shown in Table 1.

2.3 Evaluation Metrics
To evaluate the performance of different methods in inferring
GRNs, we utilize two widely-used metrics AUROC and AUPRC.
Specifically, AUROC is the area under the ROC based on TPR
and FPR. AUPRC is the area under the PRC based on the
precision rate and the recall rate.

TPR =
TP

TP + FN
(7)

FPR =
FP

FP + TN
(8)

Precision =
TP

TP + FP
(9)

Recall = TPR (10)

where TP and FP indicate the numbers of true and false positives,
and TN and FN are true and false negatives. For the simulated
datasets, we calculated the average of the AUROC and AUPRC
to evaluate the accuracy of the inferred network on different
subsets. Further, we calculated the overall score of AUROCscore

and AUPRCscore. The definition is as follows:

AUROCscore =
1
no

n

i=1
AUROCi (11)

AUPRCscore =
1
no

n

i=1
AUPRCi (12)

where n represents the number of subsets in each dataset (taking
the dataset GSD as an example, n is 10). AUROCi and AUPRCi
May 2022 | Volume 12 | Article 899825
TABLE 1 | Details of time-seris gene expression datasets used in the experiment.

Dataset Genes Time
points

Cells

GSD 19 734 2000
HSC 11 731 2000
VSC 8 492 2000
mCAD 5 492 2000
Real
Dataset1

100 456 456

Real
Dataset2

100 405 405

Real
Dataset3

100 758 758
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respectively denote the average AUROC and AUPRC of the
algorithm on the ith data set.
3 RESULTS

3.1 Performance on Simulated Data Sets
To evaluate the effectiveness of BiRGRN, We apply the proposed
GRN inference method to four simulated datasets, including
datasets related to hematopoietic stem cell differentiation (HSC),
gonadal sex determination (GSD), ventral spinal cord
development (VSC), and mammalian cortical development
(mCAD). In detail, each dataset is generated by the Boolean
model in previous study (6), including 10 data subsets composed
of 2000 cells and multiple time points. Table 1 lists the detailed
information of these datasets. We take each synthetic network as
the ground truth and adopt two metrics to evaluate the inferred
GRNs. We utilize both the area under the receiver operating
characteristic curve and the area under the precision-recall curve
(AUROC/AUPRC) as our evaluation metrics across the 10
different datasets. Further, we compare BiRGRN with four
Frontiers in Oncology | www.frontiersin.org 6
widely used methods, including three prior algorithms
GRNBOOST2 (36), PPCOR, PIDC, and the classic
algorithm GEINE3.

Figures 3, 4 respectively show the AUROC and AUPRC of
these compared methods on the four datasets. As can be seen,
BiRGRN outperforms the compared methods on all four
simulated datasets. We observe significant improvement over
the three methods (GRNBOOST2, PPCOR, and PIDC) using the
provided prior edge sets. Also, BiRGRN performs better than the
widely used method GENIE3. Compared with the second-ranked
algorithm on GSD, BiRGRN has a 6.2% increase in AUROC and
a 33.3% increase in AUPRC. On the dataset HSC, BiRGRN
achieves an improvement of 11.3% in AUROC and 10.2% in
AUPRC over the other methods. For the dataset VSC, BiRGRN
has a 3.8% higher AUROC and a 13.2% higher AUPRC than the
second-ranked algorithm, whereas the performance of PPCOR is
not as good as other methods. And as shown in the figures, the
compared algorithms perform poorly on mCAD, and the
AUROC values of the four algorithms are only around 0.5. In
contrast, our proposed BiRGRN reaches a mean AUROC of 0.8.
Compared with the second-ranked algorithm, the AUROC of
FIGURE 3 | AUROC scores of the compared GRN inference algorithms on four simulated datasets.
May 2022 | Volume 12 | Article 899825
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BiRGRN increases by 55%, AUPRC increases by 56.1%.
Furthermore, Figure 5 presents the overall score of these
algorithms on the four datasets, the histogram of the overall
score also intuitively shows that the algorithm in this paper has a
better performance.
3.2 Performance on the Real scRNA-Seq
Data Sets
We next measure the performance of BiRGRN for inferring
GRNs on real datasets. Here, BiRGRN is applied to three real
time-series scRNA-seq datasets. As previous studies did (14), the
inferred GRN is validated by the TF regulatory network based on
DNaseI footprints and TF-binding motifs. We calculate the
AUROC values of BiRGRN given 15% of the prior knowledge
and compared them with four widely used methods, including
GENIE3, LEAP, BiXGBoost, and SCODE. Specifically, GENIE3
is a classic random forest-based method for inferring GRNs. The
algorithm BiXGBoost adopts local-in and local-out models to
utilize time information in two directions and integrates
FIGURE 4 | AUPRC scores of of the compared GRN inference algorithms on four simulated datasets.
Frontiers in Oncology | www.frontiersin.org 7
FIGURE 5 | The overall score of the algorithm on the four simulated
datasets.
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XGBoost to evaluate the feature importance. LEAP and SCODE
are two advanced GRN inference methods for scRNA-seq data.

Table 2 presents the performance of these compared methods
on the real scRNA-seq datasets. Compared to other network
inference algorithms, our proposed algorithm BiRGRN can infer
TF regulatory networks with high performance. On Dataset 1
and Dataset 3, the AUROC values of BiRGRN are obviously
higher than those of the four previous algorithms. Compared
with the second-ranked algorithm SCODE, the AUROC of
BiRGRN is increased by 6.5% on dataset1, and the AUROC of
BiRGRN is increased by 7.4% on dateset3. On Dataset 2, the
performance of BiRGRN is close to the best performance. These
results indicate that the RNN structure utilized in BiRGRN has a
high capability of incorporating time point information, which is
effective in network inference.

We also record the runtime of each method on three real data
sets. As shown in Table 3, LEAP and GENIE3 have the highest
efficiency. The runtime of BiRGRN is at the median level among
several methods. On Dataset 1 and Dataset 2, BiRGRN runs for
1min and 58s, which is much faster than SCODE and
BiXGBoost. These results show that BiRGRN can efficiently
use temporal information to rapidly reconstruct gene
regulatory networks.

3.3 Ablation Study
As BiRGRN is mainly composed of the bidirectional RNN
integrating the forward and reverse training, and the voting
model incorporating prior knowledge, we further investigate the
Frontiers in Oncology | www.frontiersin.org 8
impact of the different components on the overall performance.
Accordingly, we obtain three variants of BiRGRN, including
BiRGRN-Prior(the model removing incorporated prior
knowledge), BiRGRN-Forward (the model removing forward
training), and BiRGRN-Reverse (the model removing reverse
training). We respectively carry out the ablation study on the
four simulated datasets. Table 4 summarizes the performance
comparison between BiRGRN and these three variants.

We first evaluate the contribution of prior information for
guiding the voting process in the model. The results show that
the removal of the prior information results in a slight drop in
performance. Without incorporating prior information, the
network is able to reconstruct a relatively coarse segmentation.
Without further guidance of prior information, it might be not
able to refine it properly. To further inspect the effectiveness of
the bidirectional model, we respectively compare the
performance of the BiRGRN without forwarding training and
reverse training. From the table, we observe that the performance
of two single directional training models is similar, and they are
slightly lower than those of the bidirectional training model. This
result of ablation Study indicates the forward training and the
reverse training might be complementary to each other, and thus
the bidirectional RNN structure is capable of capturing more
regulation relationships among genes. On the whole, these
results demonstrate that both the components are contributive
to the performance of BiRGRN.
4 CONCLUSION

Many cellular processes, either in development or disease
progression are governed by complex gene regulatory
mechanisms. GRN reverse engineering methods attempt to
infer GRNs from large-scale transcriptomic data using
computational or statistical models. A plethora of GRN
inference methods has been proposed. However, with the
development of single-cell sequencing technology, traditional
GRN inference methods designed for bulk transcriptomic data
TABLE 2 | The AUROC value of the algorithm on three real scRNA-seq
datasets.

Algorithm Dataset 1 Dataset 2 Dataset 3

BiRGRN 0.571 0.573 0.562
GENIE3 0.503 0.498 0.507
LEAP 0.487 0.5 0.494
SCODE 0.536 0.581 0.523
BiXGBoost 0.509 0.479 0.510
The value in bold represents the highest value in the column.
TABLE 3 | The runtime of each method for three real datasets.

Runtime1 BiRGRN SCODE GENIE3 LEAP BiXGBoost

Dataset 1 1min58s 7min3s 58s 6s min49s
Dataset 2 1min58s 6min39s 52s 4s 3min21s
Dataset 3 2min22s 8min49s 1min6s 11s 3min58s
May 2022 | Volume 12 | Ar
1All algorithms except BiXGBoost are tested on Beeline(a benchmarking software for GRN inference algorithms). The computations were performed on a Lenovo Legion R7000 2020
equipped with a 3.0GHz AMD Ryzen 5 4600H processor a 4GB NVIDIA GeForce GTX 1650Ti and 16GB of 3200MHz DDR4 RAM.
TABLE 4 | The AUROC value of the algorithm and three variants on the simulated datasets.

Dataset BiRGRN Prior network Forward Reverse

GSD 0.597 0.544 0.583 0.587
HSC 0.684 0.586 0.656 0.660
VSC 0.795 0.624 0.761 0.763
mCAD 0.796 0.678 0.796 0.792
ticl
The value in bold represents the highest value in the row.
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might be unsuitable to process large quantities of scRNA-seq
data. In this paper, we proposed a novel computational method
BiRGRN to infer GRNs from time-series scRNA-seq data.
BiRGRN utilizes a bidirectional recurrent neural network to
infer GRNs. The recurrent neural network is a complex neural
network, which can capture complex, non-linear, and dynamic
relationships among variables. It maps a neuron to a gene, and
maps the connections between neural network layers to the
regulatory relationship between genes, giving a good solution
to model GRN with biological closeness and mathematical
flexibility. Then we transform the reconstruction of GRNs
problem into a regression problem that uses the gene
expression data of the previous time points to predict the gene
expression data of the later time node. In order to improve the
accuracy of the algorithm, the method can use an incomplete set
of prior knowledge. The developed model has been tested on four
simulated data and three real datasets. We performed a
comparison of our results with other state-of-the-art
techniques which shows the superiority of our proposed
model. The experiments conducted on simulated datasets and
real scRNA-seq datasets demonstrate that BiRGRN can infer
gene regulatory networks with high performance, which that
the proposed bidirectional RNN structure is effective in
GRN inference.
Frontiers in Oncology | www.frontiersin.org 9
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