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Abstract. How to effectively predict missing QoS has become a fun-
damental research issue for service-oriented downstream tasks. However,
most QoS prediction approaches omit high-order implicit invocation cor-
relations and collaborative relationships among users and services. Thus,
they are incapable of effectively learning the temporally evolutionary
characteristics of user-service invocations from historical QoS records,
which significantly affects the performance of QoS prediction. To address
the issue, we propose a novel framework for temporal-aware QoS pre-
diction by dynamic graph neural collaborative learning. Dynamic user-
service invocation graph and graph convolutional network are combined
to model user-service historical temporal interactions and extract latent
features of users and services at each time slice, while a multi-layer GRU
is applied for mining temporal feature evolution pattern across multiple
time slices, leading to temporal-aware QoS prediction. The experimen-
tal results indicate that our proposed approach for temporal-aware QoS
prediction significantly outperforms state-of-the-art competing methods.

Keywords: Web service · Temporal-aware QoS prediction · Dynamic
user-service invocation graph · Graph convolutional network · Latent
feature extraction

1 Introduction

With the rapid advancements of Internet technology, service-oriented architec-
ture (SOA) has been widely used in real-world applications. As one of the
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key implementation techniques of SOA, web services have extremely promoted
interoperatable machine-to-machine interactions. However, many services sup-
ply users with analogous functionalities. Quality of Service (QoS) [11] is applied
to represent the non-functional characteristics of web services and differentiate
those functionally equivalent ones. Because of the enormous number of users
and services, it is impractical and time-consuming for users to invoke all web
services and record the corresponding QoS values in the constantly changing net-
work environment. Thus, it is of vital importance to precisely perform temporal-
aware QoS prediction, which has become a challenging issue due to the sparsity
of historical user-service invocations across multiple time slices in real scenarios.

Some recent investigations concentrate on collaborative filtering (CF) and
neural network-based approaches for temporal-aware QoS prediction. They gen-
erally compose a sequence of QoS invocation matrices from different consecutive
time slices, and extract the features of users and services at each time slice, then
apply deep learning techniques, such as gate recurrent unit (GRU) [3] and long
short-term memory (LSTM) [7], to learn the evolution pattern of QoS across
multiple time slices. However, they mainly characterize a user in terms of those
directly invoked services or a service in terms of those users who have directly
invoked the service, without the consideration of high-order implicit invocation
correlations between users and services through indirect interactions as well as
the high-order collaborative relationships between similar users or services. Due
to the lack of the extraction of high-order latent features that are hidden in the
user-service interactions, it is still difficult in effectively encoding latent features
of users and services, yielding to low accuracy of temporal-aware QoS prediction.

To address the issues, inspired by the developments of graph and Graph
Convolutional Networks (GCNs) [2], we propose a novel framework for temporal-
aware QoS prediction by dynamic graph neural collaborative learning. First, we
formulate user-service historical QoS interactions as a temporal-aware service
ecosystem, which is transformed into a dynamic user-service invocation graph
across multiple time slices. Then, a GCN-based [2] graph neural collaborative
feature extractor is learned to extract high-order latent features of users and ser-
vices at each time slice, taking into account both indirect user-service invocation
correlations and collaborative relationships by similar users or services. Finally,
a multi-layer GRU [3] is applied for mining temporal feature evolution pattern
across multiple time slices, leading to temporal-aware QoS prediction. To eval-
uate the effectiveness of our proposed approach for temporal-aware QoS predic-
tion, extensive experiments are conducted on a large-scale real-world dataset. By
comparing with several state-of-the-art baselines, experimental results demon-
strate that our proposed approach receives the best prediction performance in
multiple evaluation metrics. The main contributions of this paper are summa-
rized as follows:

– We propose a novel dynamic graph neural collaborative learning framework
for temporal-aware QoS prediction. It can more effectively reveal user-service
invocation features at each time slice and mine temporal feature evolution
pattern across multiple time slices for better QoS prediction.
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Fig. 1. The overall framework of our proposed approach.

– We propose a novel approach for extracting high-order latent features of a user
and service by dynamic user-service invocation graph modeling and graph
convolutional network learning. Compared to the existing approaches, the
advantage is that we can more deeply reveal the latent features of users and
services, with the consideration of both high-order user-service invocation
correlations and collaborative relationships by similar neighborhoods.

– Extensive experiments are conducted on a large-scale real-world QoS dataset,
and the results indicate that our approach receives superior performance for
temporal-aware QoS prediction compared with baseline approaches.

The remainder of this paper is structured as follows. Section 2 elaborates the
proposed approach. Section 3 shows and analyzes experimental results. Finally,
Sect. 4 concludes the paper and discusses future work.

2 Approach

The overall framework of our proposed approach is illustrated in Fig. 1. It mainly
consists of four stages, including dynamic user-service invocation graph model-
ing, high-order latent feature extraction, user-service temporal feature evolution
mining, and temporal-aware QoS prediction.

2.1 Dynamic User-Service Invocation Graph Modeling

A temporal-aware service ecosystem can be formulated as ξ =< U,S, T,R >,
where there are n users U = {ui}ni=1, m web services S = {si}mi=1, t time
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slices T = {1, 2, . . . , t}, and a sequence of corresponding historical QoS matrix
R = {Ri ∈ �n×m}ti=1, rtij ∈ Rt indicates the corresponding QoS value when a
user ui ∈ U invokes a service sj ∈ S at time t. To model the high-order implicit
invocation correlations and collaborative relationships among users and services,
we transform ξ into a dynamic user-service invocation graph G = {Gi}ti=1. Each
snapshot Gt =< Vu, Vs, E

t,W t > is transformed from ξt =< U,S, t, Rt > at
time slice t. Here, Vu = {ui}ni=1 is a set of n user vertices; Vs = {si}mi=1 is a set
of m service vertices; Et is a set of edges that represents user-service invocation
relationships. If rtij ∈ Rt, there exists an edge etij = etji ∈ Et between ui ∈ Vu

and sj ∈ Vs; W t is a set of edge weights. If etij ∈ Et, there exists a corresponding
weight wt

ij ∈ W t, which can be converted from rtij ∈ Rt.
The edge weight wt ∈ W t measures the strength of the connection, i.e. the

invocation relationship, between a user vertex and a service vertex at time slice
t. Generally, a lower value implies a higher QoS under a negative QoS criteria,
such as response time. It is observed that most of real QoS values are clustered
around a certain value for a QoS criterion, but there are also a small number of
outliers that may influence model training deviating from expectations. In order
to ensure robustness of our proposed model, we further convert the original QoS
value rtij to a normalized range as the corresponding edge weight wt

ij . By taking
into account both the distribution characteristics of QoS values and practical
observations, a heuristic conversion function is designed to project rtij to wt

ij

under a negative QoS criterion. It is expressed as follows:

wt
ij =

⎧
⎨

⎩

exp(rtij)−exp(−1/rtij)

exp(1/rtij)+exp(−1/rtij)
if rtij > 1

1
exp(rtij)

− 1
e + exp(2)−1

exp(2)+1 otherwise
(1)

where wt
ij denotes the associated weight for edge etij ∈ Et. By using the con-

version function, we project all of the QoS values to their corresponding edge
weights for each time slice t ∈ T . Thus, the dynamic user-service invocation
graph G can be generated, which is used to extract high-order latent features of
users and services at each time slice.

2.2 High-Order Latent Feature Extraction of Users and Services

Based on G, we extract the high-order latent feature of a target user u and service
s at each time slice. We initially represent u and s with a randomized feature
vector xu ∈ �d and xs ∈ �d, respectively, where d specifies the dimension of
the feature vector. It is intuitive that a user’s feature can be partially reflected
by the directly invoked services and indirectly characterized by the non-adjacent
user and service neighbors. It can be performed by a multi-layer recursive way in
a user-service invocation graph Gt at each time slice t. Analogously, we can also
extract a service’s latent feature with the consideration of user-service invocation
correlations and collaborative relationships among services.

Here, we leverage the GCN’s [2] message passing mechanism to capture high-
order latent features of users (services) along the structure of Gt. The procedure
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Fig. 2. High-order user latent feature extraction by graph neural collaborative feature
extractor.

of high-order user latent feature extraction by graph neural collaborative feature
extractor is illustrated in Fig. 2. which applies a recursive way of message prop-
agation and aggregation. More specifically, N t

u ⊆ Vs denotes the set of adjacent
service vertices that are directly connected to u in Gt, i.e., the first-hop service
neighbors of u at time slice t. In such case, for each service s′ ∈ N t

u, the message
mt

u←s′ propagated from s′ to u is calculated as follows:

mt
u←s′ =

exp(wt
us′)

∑
i∈N t

u
exp(wt

ui)
W 1xs′ (2)

where W 1 ∈ �d×d is a trainable weight matrix, and wt
us′ denotes the weight

associated with edge etus′ . With a larger wt
us′ , more messages are retained and s′

contributes more to u’s high-order latent feature. Following that, we aggregate
messages from all of the u’s first-hop neighbors in message aggregation:

xt
u = xu (3)

(xt
u)1 = α(xt

u +
∑

s′∈N t
u

mt
u←s′) (4)

where (xt
u)1 signifies the representation of u that aggregates first-order messages,

which implies the behavioral features embodied by the directly invoked services,
α is the activation function. By stacking lgcn message-passing procedures, we
can aggregate messages from lgcn-hop user and service neighbors, leading to
the high-order connectivity characteristics of u. These heuristic information can
strengthen the feature representation of a user by the latent invocation corre-
lations between u and non-invoked services, as well as the latent collaborative
relationships of the user neighbors who are structurally nearby vertices of u. The
recursive aggregation of user representation can be expressed as:

(mt
u←s′)lgcn−1 =

exp(wt
us′)

∑
i∈N t

u
exp(wt

ui)
W lgcn(xt

s′)lgcn−1 (5)

(xt
u)lgcn = α(xt

u +
∑

s′∈N t
u

(mt
u←s′)lgcn−1) (6)
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where W lgcn is the trainable weight for the lgcn-th layer message propagation.
Through lgcn-layers message passing, we obtain a series of user representa-

tions xt
u, (xt

u)1, . . . , (xt
u)lgcn , which aggregates the user-service invocation corre-

lations and collaborative relationships of users or services among different hops
around the center of u. They are fused by a one-dimensional convolution layer
to generate the high-order latent feature of u as follows:

(xt
u)∗

i =
lgcn∑

j=0

ωj(Xt
u)i,j , i ∈ [0, d) (7)

where (xt
u)∗ ∈ �d is the extracted high-order latent feature of u, ω ∈ �lgcn+1

denotes the convolution kernel, Xt
u ∈ �d×(lgcn+1) is the matrix of combining

(lgcn + 1) user representations xt
u, (xt

u)1, . . . , (xt
u)lgcn . It is important to note

that the procedure for extracting the high-order latent feature (xt
s)

∗ of a target
service s is identical to the one of u.

Based on the high-order latent features of (xt
u)∗ and (xt

s)
∗, they are concate-

nated as a whole that is fed into a lm-layer multi-layer perceptron (MLP) to
obtain the invocation feature ht

lm
of u and s at time slice t. Consequently, ht

lm
is used for mining temporal feature evolution between u and s.

2.3 User-Service Temporal Feature Evolution Mining

To reveal the evolution pattern of the user-service invocation features across
multiple time slices, we mine the hidden temporal nonlinear relationship by a
multi-layer GRU [3]. Given a set of extracted invocation features Hk = {ht−k+1

lm
,

ht−k+2
lm

, . . . , ht
lm

} of a current u and a target service s across k consecutive time
slices, the hidden state of GRU layer can be calculated as follows:

zt = σ(Wz · [h′t−1||ht
lm ]) (8)

rt = σ(Wr · [h′t−1||ht
lm ]) (9)

ŝt = tanh(W · [(rt � h′t−1)||ht
lm ]) (10)

h′t = (1 − zt) � h′t−1 + zt � ŝt (11)

where Wz,Wr,W are the trainable weight matrices, d′ is the dimension of the
GRU layer’s output, and � represents element-wise product. Due to traditional
GRU is a shallow model with limited capacity to extract deep implicit features,
we stack lgru GRU layers. The hidden output of last GRU layer h′t

lgru ∈ �d′
is

used as the evolutionary invocation feature for temporal-aware QoS prediction.

2.4 Temporal-Aware QoS Prediction

Based on the evolutionary invocation feature of a current user u and target
service s, we can predict the missing QoS r̂t+1

us at time slice t + 1, by a fully-
connected neural network. The output layer is calculated as:

r̂t+1
us = ReLU(Woh

′t
lgru + bo) (12)
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where Wo is a trainable weight matrix, bo is a offset item, and r̂t+1
us is the pre-

dicted QoS when a current user u invokes a target service s at time slice t + 1.
To train and optimize the model parameters, we take Mean Square Error as the
loss that is defined as:

Loss =
∑

u∈U

∑
s∈S(r̂t+1

us − rt+1
us )2

n × m
+ λ ‖Θ‖22 (13)

where U, S represent the user and service set, respectively, and |U | = n, |S| = m.
Θ is all the trainable parameters of our proposed model, λ controls the L2
regularization strength to prevent overfitting. We adopt mini-batch AdamW [4]
to update and optimize the parameters.

Table 1. Results of temporal-aware QoS prediction among competing approaches.

Density MAE RMSE

0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

UPCC 0.946 1.209 1.107 1.006 1.908 1.778 1.720 1.683

IPCC 1.135 1.041 0.994 0.989 2.255 1.867 1.795 1.795

WSRec 0.807 0.578 0.967 0.758 1.917 1.328 2.407 1.733

WSPred 0.781 0.689 0.673 0.663 1.707 1.633 1.608 1.593

PNCF 1.165 1.089 1.043 1.013 1.836 1.722 1.653 1.617

RNCF 1.048 1.010 0.974 0.958 1.616 1.546 1.503 1.470

TUIPCC 0.731 0.576 0.819 0.697 1.776 1.207 2.059 1.635

Ours 0.574 0.526 0.489 0.462 1.284 1.193 1.158 1.123

Gains 22.5% 8.7% 27.4% 30.4% 20.6% 1.2% 23.6% 23.5%

3 Experiments

3.1 Dataset

To validate the effectiveness of the proposed approach, we conduct extensive
experiments on a large-scale real-world web service QoS dataset called WS-
DREAM1, which has been widely used in service computing for QoS prediction.
WS-DREAM employed 142 distributed PlanetLab computers (i.e. users) located
across 22 countries, to monitor a total of 4,500 publicly accessible real-world web
services from 57 countries continuously in 64 different time slices at 15-minute
interval. And a total of 27,392,643 detailed response-time values ranging from
0 s to 20 s are collected as the sub-dataset rtdata [11], on which our experiments
are extensively conducted to demonstrate the superiority performance of the
proposed temporal-aware QoS prediction approach. The overall data sparsity is
approximately 66.98%.
1 http://wsdream.github.io/dataset.

http://wsdream.github.io/dataset
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3.2 Experimental Results and Analyses

We evaluate the temporal-aware QoS prediction results by two widely adopted
evaluation metrics: MAE (Mean Absolute Error) and RMSE (Root Mean
Squared Error). In addition, we compare our proposed approach with 7 state-of-
the-art methods: UPCC [8], IPCC [5], WSRec [10], WSPred [9], PNCF [1], RNCF
[3] and TUIPCC [6]. To thoroughly validate the effectiveness of our proposed
approach for temporal-aware QoS prediction, we conduct extensive experiments
on temporal QoS dataset with four different densities: 5%, 10%, 15%, and 20%,
and report the MAE and RMSE, respectively. For all baseline approaches, we
follow the optimal parameter settings specified in the corresponding papers.

The results are summarized in Table 1, with the best performance among
baseline approaches highlighted in dark and the overall best results bolded. It is
obvious from the results that our proposed approach outperforms all of the com-
peting approaches at different QoS densities, with the relative improvements
ranging from 8.7% to 30.4% on MAE and 1.2% to 23.6% on RMSE, respec-
tively. In terms of MAE, TUIPCC receives superior performance among base-
line approaches at QoS densities of 0.05 and 0.1, whereas WSPred achieves the
best among baseline approaches at QoS densities of 0.15 and 0.2. As for RMSE,
RNCF is better than the other baseline approaches for the densities of 0.05,
0.1, and 0.2, respectively. As can be seen from the above results, the baseline
approaches suffer from instability for QoS prediction at different densities. For
example, while TUIPCC achieves a lower MAE, it cannot perform very well
on RMSE, indicating that it is unable to fit certain outliers when predicting
the missing QoS. Therefore, compared to the baseline approaches, our proposed
prediction model consistently achieves the lowest MAE and RMSE across all
different QoS densities, revealing that it can predict QoS values more precisely
with better robustness.

It concludes that two aspects may potentially contribute to the best per-
formance of our proposed approach. First, an optimized dynamic neural graph
collaborative learning model is designed to encode the high-order latent features
of users and services, that overcomes the constraint of sparse historical QoS
invocations across multiple time slices, leading to more precisely user-service
invocation feature. Second, a multi-layer GRU is applied to boost the accuracy
of QoS prediction by effectively mining the implicit temporal evolution patterns
of user-service invocation features across multiple time slices.

4 Conclusion and Future Work

This paper proposes a novel framework for temporal-aware QoS prediction by
dynamic graph neural collaborative learning. It first models a temporal-aware
service ecosystem as a dynamic user-service invocation graph, which is then
fed into a graph neural collaborative feature extractor for extracting high-order
latent features of users and services at each time slice, considering both indi-
rect user-service invocation correlations and collaborative relationships by sim-
ilar users or services. Finally, a multi-layer GRU is employed to mine temporal
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feature evolution patterns across multiple time slices, leading to vacant QoS pre-
diction. Extensive experiments are conducted based on a large-scale QoS dataset
in service computing to validate the superior prediction accuracy of our proposed
approach, compared to state-of-the-art competing baselines on MAE and RMSE.
In the future work, we are devoted to deeply investigating on how to effectively
leverage the contextual information and graph structural properties of users and
services to further strengthen the capability of temporal-aware QoS prediction.
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