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a b s t r a c t

Deep semi-supervised learning is becoming an active research topic because it jointly utilizes labeled
and unlabeled samples in training deep neural networks. Recent advances are mainly focused on
inductive semi-supervised learning which generally extends supervised algorithms to include un-
labeled data. In this paper, we propose CL_PLP, a new transductive deep semi-supervised learning
algorithm based on contrastive self-supervised learning and partial label propagation. The proposed
method consists of two modules, contrastive self-supervised learning module extracting features from
labeled and unlabeled data and partial label propagation module generating confident pseudo-labels
through label propagation. For contrastive learning, we propose an improved twins network model
by adding multiple projector layers and the contrastive loss term. Meanwhile, we adopt strong and
weak data augmentation to increase the diversity of the dataset and the robustness of the model.
For the partial label propagation module, we interrupt the label propagation process according to
the quality of pseudo-labels and improve the impact of high-quality pseudo-labels. The performance
of our algorithm on three standard baseline datasets CIFAR-10, CIFAR-100 and miniImageNet is better
than previous state-of-the-art transductive deep semi-supervised learning methods. By transferring our
model to the medical COVID19-Xray dataset, it also achieves good performance. Finally, we propose
a strategy to integrate our partial label propagation module with inductive semi-supervised learning
method, and the results prove that it can further improve their performance and obtain additional
high-quality pseudo-labels for the unlabeled data.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, deep learning has shown remarkable successes
n various fields, which partially benefits from large numbers of
abeled data used to train deep neural networks [1]. However, as
he process of annotating labels such as artificial annotation for
he data is usually time-consuming and expensive [2], building
arge labeled datasets for different deep learning tasks is prac-
ically unfeasible. Therefore, it is an important research topic
o develop semi-supervised deep learning approaches that can
ointly learn from labeled and unlabeled samples [3].

Semi-supervised learning methods can be divided into two
ain categories, including inductive and transductive learning [4].

nductive semi-supervised learning trains a model on the input
ataset in various ways, and then applies the pre-trained model
o generate predictions for unseen samples. Differently, transduc-
ive semi-supervised learning does not construct a classifier for
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the entire input dataset. Their predictive power is only limited
to the data encountered during the training phase. Previous
deep semi-supervised learning algorithms are mainly built on
the inductive semi-supervised learning framework [5,6], whereas
classical transductive idea and manifold assumption is rarely ex-
ploited. Recently, the Label Propagation for Deep Semi-supervised
Learning (DLP) has been proposed [7], which adopts transduc-
tive label propagation strategy to infer additional pseudo-labels
for unlabeled data, and further utilizes the generated pseudo-
labels to train the classifier. Specifically, pseudo-labeling methods
utilize the labeled data model to predict labels for unlabeled
data. As those predicted labels may or may not be real labels,
they are regarded as pseudo-labels. However, during the feature
representation procedure, DLP just utilizes the information of
labeled data, rather than making full use of the unlabeled data,
which might lead to the poor quality of pseudo-labels and affect
its performance.

To avoid time-consuming and expensive data annotations,
self-supervised learning methods are also proposed to learn fea-
tures from large-scale unlabeled data [1]. Self-supervised learning
is a kind of unsupervised learning approach, which essentially
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oes not need any label information, and can extract useful
nformation from the data itself. To learn an effective feature
epresentation from the unlabeled data, a widely-used solution
s to design various pretext tasks for pre-training the network
tructure [8,9]. By optimizing objective functions of the pretext
asks, the networks can be trained and the feature representation
an be learned. Subsequently, a few labels are utilized to further
efine the pre-trained network and the pre-trained network is
pplied to specific downstream tasks [10,11].
In this paper, we propose a new deep semi-supervised learn-

ng algorithm based on contrastive self-supervised learning and
artial label propagation strategy, called CL_PLP. The proposed
ethod consists of two modules, including a self-supervised fea-

ure extraction module and a partial label propagation module,
hich can respectively improve two stages of the traditional label
ropagation methods. When the labels are insufficient, it is diffi-
ult to learn accurate feature representation by a trained network,
hich further decreases the accuracy of pseudo-labels generated

rom the label propagation stage. To tackle this problem, we
ropose a new network structure, adding projection layers and an
dditional contrastive loss term for contrastive learning. Mean-
hile, we expand the dataset by combining strong and weak
ugmentation [6] to increase the diversity of the dataset and the
obustness of the model. For the second stage, we improve the
mpact of high-confidence pseudo-labels by interrupting the label
ropagation procedure according to the quality of pseudo-labels.
inally, we propose a strategy to integrate our partial label prop-
gation module with state-of-the-art inductive semi-supervised
earning algorithms.

On the standard datasets CIFAR-10, CIFAR-100 and miniIma-
eNet, the experimental results demonstrate that the
erformance of our algorithm is superior to previous state-of-
he-art deep semi-supervised algorithms, especially when the
abeled data are fewer, the improvement effect is more obvious.
oreover, we apply our algorithm to a medical image dataset
OVID19-Xray, which also achieves good performance.
The main contributions of this paper are summarized as fol-

ows:

• We propose a new transductive deep semi-supervised learn-
ing algorithm based on contrastive self-supervised learning
and partial label propagation strategy. Compared to previous
transductive methods, the advantage lies in that it adopts
contrastive learning to extract features from labeled and un-
labeled data, and utilizes partial label propagation strategy
to interrupt label propagation and obtain highly confident
pseudo-labels.
• Based on the proposed method, we further introduce an im-

provement strategy for inductive semi-supervised learning
methods. By integrating our partial label propagation mod-
ule, inductive semi-supervised learning methods can obtain
high-quality pseudo-labels of unlabeled data and conse-
quently improve their performance.
• Extensive experimental results demonstrate the effective-

ness and applicability of our algorithm. On the standard
datasets and medical COVID19-Xray dataset, our algorithm
outperforms the compared methods. Meanwhile, the ex-
perimental results demonstrate that the integration of our
proposed method with inductive semi-supervised learning
methods achieves better performance.

The remainder of the paper is organized as follows. Related
ork is introduced in the following section, and each step of our
lgorithm is described in detail in Section 3. Section 4 includes
ur experimental results and ablation study. Finally, we conclude
n Section 5 with a summary and an outlook on future work.
2

2. Related work

The fundamental purpose of semi-supervised and self-
supervised learning is to exploit large numbers of unlabeled data
to obtain useful information for specific downstream tasks [1,2].
This section introduces the most relevant methods of utilizing
unlabeled data in these fields, which our algorithm is built on.

2.1. Consistency loss and entropy minimization

Consistency loss. For semi-supervised learning algorithms,
the common strategy of utilizing unlabeled data is to construct
unsupervised consistency loss, which can convert the existing su-
pervised learning algorithm into semi-supervised learning. In the
Ladder network [12], Π-model [13] and other semi-supervised
learning algorithms, the data or the networks are randomly per-
turbed, and the unsupervised consistency loss is calculated ac-
cording to the output before and after perturbation [14–16].
Accordingly, the consistency loss is defined as:

L(X) = ∥f (X1; θ1)− f (X2; θ2)∥2 (1)

where X1 and X2 are two augmented versions of the whole dataset
X , θ1 and θ2 are the parameters of two noised version model,
∥ · ∥ represents L2 norm, f (·) corresponds to the output of the
network.

Entropy minimization. Entropy minimization is a widely used
regularization technology [7,17]. In order to obtain better out-
puts of network, we can constrain the entropy of the prediction
outputs to be minimized. There are many types of information
entropy, including KL divergence and cross entropy [18]. Specifi-
cally, KL divergence is used to measure the difference between
two probability distributions, and cross entropy is utilized to
evaluate the closeness between the actual output and the ex-
pected output. When the data label is converted into a one-hot
vector, the above two types of entropy can be easily used as
the loss function. In semi-supervised learning, entropy minimiza-
tion regularization is often adopted to optimize the network
prediction of unlabeled data and to minimize its uncertainty
[5,19]. The two classical entropy minimization can be respectively
formalized as:

min CE
(
f (XL; θ ), YL

)
= −

l∑
i=1

yi log f (Xi; θ ) (2)

min E
(
f (XU ; θ )

)
= −

n∑
i=l+1

f (Xi; θ ) log f (Xi; θ ) (3)

where XL and XU denotes labeled data and unlabeled data, θ de-
notes the parameters of network, CE and E denotes CrossEntropy
and Entropy respectively.

2.2. Data augmentation

Data augmentation has been widely used in both supervised
and unsupervised representation learning. It is an intuitive way
to expand the number of data. When labeled data are insufficient,
the most direct approach is to expand the labeled dataset. The
traditional methods for expanding are oversampling and random
perturbation. However, in deep learning, only oversampling data
often makes the network fall into the trap of overfitting. There-
fore, the data expansion for deep learning should be expanded
in both quantity and diversity [20]. SMOTE [21] is a well-known
oversampling algorithm, which generates synthetic samples, but
it does not consider the diversity of generated data. The variations
of SMOTE, such as Safe-Level SMOTE [22] and SMOTE_RSB [12],
improve the diversity of the expanded data. Generative adver-
sarial networks can also be used for data augmentation. But



Y. Gan, H. Zhu, W. Guo et al. Knowledge-Based Systems 245 (2022) 108602

i
e
i
r
a
t
c
w
t

2

u
p
G
p
a
T

s
s
o
p
t
n
t
v
a
t
n
T
p
a
b
B
e
b
l

2

l
t
T
m
a
t
d
s
t
p
w
m

t
u
I
w

n the field of computer vision, the classical approach for data
xpansion is to transform the image, that is, image augmentation,
ncluding random rotation, random translation, random clipping,
andom color distortion, and so on [1,11]. In FixMatch [6], image
ugmentation is firstly divided into strong and weak augmenta-
ion. Strong augmentation refers to the image augmentation that
hanges the pixel value of the image randomly. On the contrary,
eak augmentation does not change the pixel value of the image,
hat is, random clip or flip the whole image.

.3. Self-supervised contrastive learning

Self-Supervised learning is another important way to utilize
nlabeled data. The key for self-supervised learning is designing
roper pretext tasks and utilizing data itself to train models [1].
idaris et al. designed a pretext task based on image rotation
rediction [23], trained the network to predict the rotation degree
nd then fine-tuned on labeled data for image classification.
he S4L [11] algorithm designs a class of pretext tasks that are

independent of specific downstream tasks, and then converts
unsupervised learning into supervised learning. The pretext tasks
might be to predict the rotation degree or the transformation
mode of the image. Subsequently, the network trained in the
previous stage is fine-tuned with a few labeled data to get the
final network.

Contrastive learning is a powerful approach in the field of self-
upervised learning, whose main idea is to learn representations
o that similar samples stay close to each other, while dissimilar
nes are far apart. SimCLR [8] regards contrastive learning as the
retext task. It inputs two versions of randomly noised data into
wo similar networks respectively, compares the output of two
etworks, and utilizes a self-supervised contrastive loss to train
he network [9]. In this work, they view the different augmented
ersion for the given sample in a big batch as the positive pair,
nd view the different noised version of different samples as
he negative pairs. MoCo [10] and MoCoV2 [24] also think the
egative pairs of samples are important for contrastive learning.
hey explicitly maintain a queue of negative examples from the
ast mini-batches. The above algorithms either need to maintain
dditional queues to store negative pairs, or need to use a larger
atch_size to get as many negative pairs as possible. Differently,
YOL [25] and SimSiam [26] are proposed to obtain better param-
ters of network using only positive pair sample. In their works,
y stopping gradient one network of two similar networks, the
oss of negative pair can be avoided.

.4. Label propagation for deep semi-supervised learning

Label propagation has been gradually used in transductive
earning. The method TPLPA [27] calculates the topological poten-
ial of each node and consider it as the importance of the node.
hen it sorts nodes according to the importance and selects the
ost important node in the propagation. kNN-LDP [28] employs
Bayesian schema to propagate the label probability distribu-

ion to neighbors, rather than propagating an immediate label
ecision. MTL-SSLP [29] combines multi-task learning with semi-
upervised label propagation strategy. It uses a probabilistic map
o guide a semi-supervised label propagation process. NLPPC [30]
roposes a new version of label propagation, which exploits pair-
ise relations of labels as constraints to construct an optimization
odel for propagating labels.
The method DLP [7] utilizes transductive label propagation

o infer pseudo-labels [31] for unlabeled data, which are further
sed to train the classifier. The algorithm consists of two stages.
n the first stage, only labeled data are used to pretrain a network
hich will be used to extract the feature representation of all
3

data. In the second stage, the adjacent graph is constructed based
on the feature representation extracted, and the label propagation
is carried out to obtain the pseudo-labels of unlabeled data. Sub-
sequently, the pseudo-labeled and labeled data are returned to
the first stage, and the two steps start to iterate. It is worth noting
that the unlabeled data initially are not used in the first stage,
which might lead to the following situation. When the labeled
data is insufficient, training data might lack representativeness,
which makes the network fall into overfitting problem. Then
the first stage is hard to train a network with a set of superior
parameters that can extract effective features. Although the au-
thors realized this problem and integrated the label propagation
process with the MT algorithm, due to its weak data augmen-
tation methods, data representativeness is still insufficient, and
the overfitting problem is unsolved during training the model.
Meanwhile, the quality of pseudo labels obtained in the second
stage is critical to the subsequent process of training. If the quality
is poor, the performance might become worse with the process
iterates, leading to an ‘‘avalanche phenomenon’’. In this paper, we
propose several strategies to overcome these limitations, which
will be elaborated in the following method section.

3. Proposed method

We propose CL_PLP, a new deep transductive semi-supervised
algorithm based on contrastive self-supervised learning and par-
tial label propagation strategy. This method is divided into two
steps. In the first step, we first perform data augmentation by
randomly combining strong and weak augmentation. Based on all
augmented data (including labeled and unlabeled data), we train
twin networks and optimize the network parameters through
symmetric contrastive loss, supervised and unsupervised loss.
Specifically, twin networks are two networks with exactly the
same network structure. One of the sub-networks does not op-
timize the network parameters by gradient descent, whose pa-
rameters are obtained by average exponential moving (EMA) [32]
the network parameters of the other sub-network. In the second
step, the pre-trained network is utilized to extract the feature
representation of the whole dataset. Next, the k-nearest neighbor
graph is constructed based on the feature representation, and the
pseudo-labels of unlabeled data will be inferred by partial label
propagation. During this process, we set a confidence threshold to
interrupt the label propagation which may generate low-quality
pseudo-labels. After partial label propagation, we obtain three
types of data, including originally labeled data, pseudo-labeled
data and unlabeled data, which would return to the network to
further optimize its parameters. Then our learning process iter-
ates between these two steps. The framework of our algorithm is
illustrated in Fig. 1. The details will be elaborated in the following
sections.

3.1. Formalization

Our original inputs include labeled data and unlabeled data,
and X = {x1, x2, . . . , xl, xl+1, . . . , xn} denotes the whole dataset.
XL = {x1, x2, . . . , xl} and XU = {xl+1, xl+2, . . . , xn} respectively
denotes the labeled and unlabeled dataset. Each sample xi in the
labeled dataset XL has a definite label yi ∈ YL = {1, 2, . . . , c}. The
problems can be formally described as: use the whole dataset X
to train a deep network with better parameters, and annotate the
known unlabeled data XU with high quality pseudo-labels ỸU =

{ỹl+1, ỹl+2, . . . , ỹn}. Meanwhile, we can generate the prediction
for unseen data by using the trained network.
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Fig. 1. The framework of our algorithm. Net1 and Net2 respectively represents two sub-networks. The direction of the arrow represents the flow of data. Among
hem, V1→1 represents the feature representation flow from Net1 to Net1 . Similarly, V1→2 represent the feature representation flowing from Net1 to Net2 , and P1→1
nd Y ′1→1 respectively are the projections and predictions of V1→1 . The partial label propagation part on the right is the core part of the second step. In the graph,
ach color represents a class. In the initial state, each class has only a few labeled samples (colored nodes). After the partial label propagation process, the node is
ewly stained with color, and the white node represents the data with lower quality of pseudo-labels filtered by the threshold, which is still regarded as unlabeled
ata, and the pseudo-labels are discarded. Then three types of data can be obtained: originally labeled data, unlabeled data, and pseudo-labeled data.
.2. Contrastive learning

.2.1. Model structure
Our model consists of two networks with the same structure

alled symmetric twin networks. As shown in Fig. 1, Net1 and
et2 respectively represents two sub-networks, which respec-
ively consists of three modules, including a feature extraction
odule, a projector module and a classifier module. Data streams
cross the model can be described as below. X ′1 and X ′2 are two
ugmented versions of X , obviously the labels of X ′L are still YL.
ake the forward process of the sub-network Net1 as an example,
′

1 is firstly input into the feature extraction module, and then
his module outputs the feature representation V1→1 and V1→2
transferred to the other sub-network) of X ′1. Subsequently, the
eature V1→1 continues to forward to the projector module, to ob-
ain the P1→1. Finally, V1→1 inputs into the classifier module, and
he classifier module outputs the prediction Y ′1→1 of X ′1 generated
y Net1.

.2.2. Loss function
Supervised loss is designed for labeled data, which is usually

tilized in supervised learning algorithms to train a deep neural
etwork by minimizing the loss [19,33,34]. In our algorithm, we
lso construct a supervised loss as:

S
(
X ′L, YL; θ

)
=

l∑
i=1

Ls
(
f (x′i; θ ), yi

)
(4)

where X ′L denotes the augmentative version of XL, θ denotes the
arameter set of the networks, f (x′i; θ ) is the output of our net-

work, and LS represents the loss function for supervised learning,
whose classical choice is cross-entropy, see Eq. (2).

Unsupervise loss is designed for both labeled and unlabeled
data, which is critical to semi-supervised learning algorithms.
Previous studies also name this loss term as a consistency loss. It
is utilized to evaluate the consistency of two outputs correspond-
ing to two versions of the input data [35], including before and
after perturbation or augmentation. Here, we simultaneously in-
troduce data and network perturbation. For data perturbation, we
randomly combine strong and weak data augmentation. For net-
work perturbation, we adopt average exponential moving (EMA)
4

of network parameters. The unsupervised loss in our algorithm is
defined as:

LU
(
X ′; θ

)
=

n∑
i=1

Lu
(
f (x′1,i; θ1), f (x

′

2,i; θ2)
)

(5)

where Lu denotes the unsupervised loss function, and θi de-
notes the parameter of the ith sub-network. The widely-used loss
functions are MSE or KL-divergence [19,32], MSE can be calcu-
lated as 1

m

∑m
i=1

(
f (x′1,i; θ1) − f (x′2,i; θ2)

)2, and the KL-divergence
is computed as KL(p ∥ q) =

∑
p(x) log p(x)

q(x) .
Symmetrical Contrastive Loss. The contrastive loss is actually

derived from the concept of self-supervised contrastive learn-
ing, which is used to judge whether two samples are similar.
Contrastive loss considers the loss of positive pairs and negative
pairs of samples. Here, we define the symmetrical contrastive loss
between positive pairs as:

LC
(
X ′; θ

)
= αLC1 + βLC2 (6)

LC1
(
X ′; θ

)
=

n∑
i=1

Lc
(
P1→1,i, P2→2,i

)
(7)

LC2(X ′; θ ) =
n∑

i=1

Lc
(
P1→2,i, P2→1,i

)
(8)

where α and β are the proportion of two contrastive losses,
whose sum commonly equals 1 and the default values are 0.5.
Pn1→n2,i denotes the output of ith sample in projector module,
n1 and n2 refer to the n1-th augmented version and the n2-th
sub-network respectively.

3.2.3. Joint optimization
The loss function for the proposed model consists of three loss

terms: a supervised loss, an unsupervised loss and a symmetrical
contrastive loss. LS measures the difference between network
predictions and true labels. LU depends on the smoothness as-
sumption, that is, for two inputs x1 and x2 that are the two
augmented versions of x, the corresponding outputs y′1 and y′2
should be the similar, see Eq. (5). LC measures the difference

between two features extracted by projector layers of positive
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airs of samples. In the first stage of training, we iterate T epochs
o jointly optimize these three kinds of loss functions. The total
oss is calculated as:

1 = LS + LU + LC (9)

where the supervised loss LS is only for the initial available
labeled data in the dataset, which is different from the overall
loss in the second stage.

3.3. Partial label propagation

After the first stage, we obtain a trained deep network with
better network parameters called the pre-trained model. We
further utilize the pre-trained model in the second stage.

Construction of kNN graph. We input the entire data X into
the pre-trained model to extract the features V = (v1, . . . , vl,
vl+1, . . . , vn), where vi = fextract (xi; θextract ), where fextract (·) and
θextract denotes the output and parameters of our feature ex-
traction module, and then use those features to construct the
similarity k adjacency graph of the data. In this step, we will first
construct a sparse affinity matrix A ∈ Rn×n, whose elements are
calculated as:

aij =
{[

vT
i · vj

]
, if i ̸= j ∧ vi ∈ NNk(vj)

0 , otherwise
(10)

where NNk(vj) denotes the set of k neatest neighbors of vj in
X . Then we utilize the affinity matrix A to construct the weight
matrix W0 of the neighboring graph as W0 = A + AT , and the
normalized counterpart calculated by W = D−1/2W0D−1/2, where
D is the degree matrix of W0.

Label propagation [4]. We construct a label matrix M ∈ Rn×c

with initialized elements as:

Mij =

{
1, if i ∈

[
1, l
]
∧ yi = j

0, otherwise
(11)

As the previous study [4] did, we propagate label information
from XL to XU in feature space. The label propagation rule is to
propagate label information in an iterative manner, as shown in
Eq. (12).

Z t
= µWZ t−1

+ (1− µ)M (12)

where µ ∈ [0, 1) is the trade-off hyperparameter for WZ t and
M , and Z0

= M . Eq. (12) iterates to convergence, which can be
obtained:

Z∗ = lim
t→∞

Z t
= (1− µ)(I − µW )−1M (13)

Proof Eq. (13). According Eq. (12), we can obtain:

Z t
= µW [µWZ t−2

+ (1− µ)M] + (1− µ)M

= µW {µW [µWZ t−3
+ (1− µ)M] + (1− µ)M}

+ (1− µ)M
= µW {µW [µW ...+ (1− µ)M] + (1− µ)M}
+ (1− µ)M

= (µW )tM + (1− µ)

(
t−1∑
i=0

(µW )i

)
M

(14)

Thus, the limitation of Z can be defined as follows:

Z∗ = lim
t→∞

Z t
= lim

t→∞
(µW )tM + lim

t→∞
(1− µ)

(
t−1∑
i=0

(µW )i

)
M (15)

As for limt→∞(µW )t , the normalized symmetric Laplacian matrix
Lsys of the graph can be given as:

L = I − D−1/2W D−1/2 = I −W (16)
sys 0

5

In fact, the eigenvalues λ of the normalized symmetric Laplacian
satisfy 0 = λ0 ≤ · · · ≤ λn−1 ≤ 2 [36]. Therefore, the eigenvalues
λ′ of the W satisfy −1 = λ′0 ≤ · · · ≤ λ′n−1 ≤ 1, and µ ∈ [0, 1),
we can obtain:

lim
t→∞

(µW )t = 0 (17)

In fact,
∑t−1

i=0 (µW )i is the sum of geometric progression, so that,

lim
t→∞

(
t−1∑
i=0

(µW )i

)
=

I − limt→∞ (µW )t

I − µW
=

I
I − µW

= (I − µW )−1
(18)

Then we can compute a diffused matrix Z ′ by using the con-
jugate gradient (CG) [7,37] method to solve the following linear
equation:(
I − µW

)
Z ′ = M (19)

where µ ∈ [0, 1) is a hyperparameter. I is a identity matrix.
After we obtain the matrix Z ′, we can infer the pseudo-labels of
unlabeled data by the following formula:

y′i = argmax
j

z ′ij (20)

Pseudo-label filtering and class-imbalanc constraints. Here,
by normalizing Z ′, we can achieve soft assignments for classifi-
cation. Each row of Z ′ represents the probability that a sample
belongs to different classes. Since pseudo-labeling may produce
false pseudo-labeled samples, which would reversely mislead the
model with wrong information of labels and learn the incor-
rect feature representation. Therefore, we set a label propaga-
tion threshold η to interrupt the unconfident label propagation
process and discard propagation with low confidence, which is
formalized as:

y′i =

⎧⎨⎩
argmaxjz ′ij, if entropy(z̃ ′ i) < η ∧ i ∈

[
l+ 1, n

]
−1, if entropy(z̃ ′ i) > η ∧ i ∈

[
l+ 1, n

]
yi, if i ∈

[
1, l
] (21)

Meanwhile, we can calculate the information entropy as the
confidence of the pseudo-label for this sample. Smaller informa-
tion entropy indicates higher quality of the pseudo label. Then,
each sample is assigned a weight ω to indicate the quality of
the inferred pseudo-label, which is further used to weight the
supervised loss of the sample in subsequent iterative training
process. Here, we assign the ω according to different types of data
that have been partially propagated, which is defined as:

ωi =

{
1− entropy(z̃′ i)

log(c) , if entropy(z̃ ′ i) < η ∧ i ∈
[
l+ 1, n

]
0, if entropy(z̃ ′ i) > η ∧ i ∈

[
l+ 1, n

] (22)

where i ∈ (l, n], the z̃ ′ i denotes the ith row of normalized Z ′, and
c is the number of classes.

When we obtain pseudo-labels through partial label propaga-
tion step, class-imbalanced situation often appears. To tackle this
problem, we count the number of samples belonging to different
classes, and assign each category a weight with ξj =

(
|Lj|+|Uj|

)−1,
where Lj and Uj represent labeled and pseudo-labeled samples
belong to j class respectively, and | · | represents the number of
samples.

3.4. Iterative training

Based on these two steps, we obtain three kinds of data,
including labeled, pseudo-labeled, and unlabeled data. Here, to
increase the diversity of the data, we resample the labeled data
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Fig. 2. The loss of iterative training according to ground-truth on CIFAR-10 with
1000 labeled images.

and high-confident pseudo-labeled data selected by previous par-
tial label propagation process, which can be further processed
with strong augmentations. These data will return to the pre-
trained deep network in the first stage, and the two stages are
iterated multiple rounds to fine-tune the network parameters by
optimizing the loss defined:

Lall = ωξLS′ + LU + LC (23)

S′ (X, YL, Y ′U ; θ ) =
l∑

i=1

Ls′
(
f (xi; θ ), yi

)
+

n∑
i=l+1

Ls′
(
f (xi; θ ), y′i

) (24)

Finally, we can obtain a trained network, which can be applied
o predict the labels for unseen data, and to obtain the pseudo-
abels of unlabeled data for training through label propagation.
he latter is the critical difference from the traditional inductive
emi-supervised algorithm.
Further, as the proposed method conducts iterating training

ased on the two major modules, we investigate its convergence
rom the following two aspects. For the partial label propagation
odule, the convergence is proved in previous subsection (Partial
abel Propagation). For the deep neural network module, as the
eural network is over-parameterized and structurally symmet-
ic, there will be a large number of equivalent solutions, and the
inal result is highly dependent on the initial conditions. In fact,
he goal of deep learning is to obtain the smallest generalization
rror, not necessarily converging to the lowest point. The conver-
ence of the neural network can be reflected by the decreasing
urve of the loss with the training epochs. Therefore, we train 540
pochs on the CIFAR-10 using 100 labeled data from each class,
nd plot the decreasing curve of the loss in Fig. 2. From the curve,
e can observe that the loss will eventually converge to a smaller
alue.

. Experiment and analysis

In this section, we present the results of our main experiments.
e first focus on three standard baseline datasets CIFAR-10,
IFAR-100 and miniImageNet. Further, to evaluate the domain
daptability, we transfer the proposed method to the biomedical
mage dataset COVID19-Xray.
 a

6

Algorithm 1 CL_PLP
Input: X = {XL, XU }; YL
Output: Y ′U ;Network with better parameters θ

1: θ ← initialize randomly
2: for epoch ∈ [1, ..., T ] do
3: resample XL and augment the whole data X
4: L1 = LS + LU + LC
5: θ ←OPTIMIZE

(
L1
)

6: end for
7: for epoch ∈ [1, ..., T ′] do
8: for i∈ [1, ..., n] do
9: vi ← fextract (xi; θ )

10: end for
11: for i,j∈ [1, ..., n2

] do
12: aij ← value of (10)
13: end for
14: W0 ← A+ AT

15: W ← D−1/2W0D1/2

16: M ← value of (11)
17: Z ← solve equation (19) by CG
18: normalize Z
19: generate pseudo-label for unlabeled data by (21)
20: resample Xselected whose y′i ̸= −1 and augment
21: for i ∈ [1, n] do calculate ωi by (22).
22: for j ∈ [1, c] do calculate ξj by

(
|Lj| + |Uj|

)−1.
23: θ ← OPTIMIZE(Lall)
24: end for

Our experiments are carried out on a workstation equipped
with an Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10 GHz, two NVIDIA
Geforce GTX 1080Ti GPUs with 11178MB VRAM and 236 GB RAM.
The modules in the experiments are implemented by Python
3.6.12 with Pytorch 1.1.0.

4.1. DataSet

CIFAR-10 [38]. The dataset CIFAR-10 consists of 60,000 32 x 32
olor images which are divided into 10 categories. Each category
ontains 6000 images. CIFAR-10 is divided into 50,000 training
mages and 10,000 test images. For each category, we respectively
hoose 10, 25, 50, and 100 labeled images, corresponding to 100,
50, 500, and 1k labeled data in the whole dataset, and the
ther images are regarded as unlabeled data. As all the cate-
ories contains the same number of images, we can select the
ame percentage of labeled data for each category based on this
trategy.
CIFAR-100 [38]. The dataset CIFAR-100 also includes 60,000

2 × 32 color images, but those are divided into 100 categories.
ach category contains 600 images. The division of the training
nd test dataset are the same as CIFAR-10. For each category,
e choose 10, 25, 40 labeled images as labeled data, and the
emaining images are regarded as unlabeled data.

miniImageNet [34]. The dataset miniImageNet includes 60,000
4× 84 color images, which is a lightweight version of ImageNet.
hose images are divided into 100 categories. Each category
ontains 600 images. The division of the training and test dataset
re the same as CIFAR-10 and CIFAR-100. For each category, we
hoose 40, 100 labeled images as labeled data, and the remaining
mages are regarded as unlabeled data.

COVID19-Xray. The dataset COVID19-Xray consists of 18,765
56 × 256 Xray images which are divided into 4 categories.
pecifically, it includes 616 COVID-19 positive cases along with
0,192 Normal, 6012 Lung Opacity (Non-COVID lung infection)

nd 1345 Viral Pneumonia images. The specific preprocessing
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ethod of the dataset and the schema of dividing the train, vali-
ation and the test set will be described in detail in Section 4.5.

.2. Experimental configuration

Network structure. Our network structure is shown in Fig. 1.
n CIFAR-10 and CIFAR-100 we use 13-layer CNN structure as our
eature extraction module, and add a dropout [14] layer after each
onvolution layer. At the same time, we add one or more MLPs [8]
s the projection module. For the COVID19-Xray dataset, we
hoose the ResNet-18 structure as the feature extraction module.
or miniImageNet, we use ResNet-50 to extract features. Different
rom MT_LP, our network adds the projection modules and the
ontrastive loss for the feature extraction module, and adopt a
artial label propagation strategy in the second stage.
Optimizer. Based on extensive experiments, we use the RAdam

39] optimizer only in the case of 100 labeled data on the CIFAR-
0, and use the SGD optimizer in other cases. In certain circum-
tances, the RAdam optimizer works better. This will be analyzed
n the ablation study.

Hyper-parameters. For both the first and second stages of our
lgorithm, we set epochs to 240 in most cases. We set the initial
earning rate of the first stage as follows: 0.05 for CIFAR-10, 0.2 for
IFAR-100, 0.15 for COVID19-Xray, 0.05 for miniImageNet. The
earning rate decays as the epoch increases. With the aid of the
imulated annealing algorithm, its epoch is 260. In addition, we
onitor the accuracy on the test set to achieve double restriction
n the learning rate. We set the initial learning rate of the second
tage: 0.05 for CIFAR-10, COVID19-xray and miniImageNet, 0.001
or CIFAR-100, attenuation and monitoring methods are the same
s the first stage. We set the batch-size: 100 for CIFAR-10, 128 for
IFAR-100, COVID19-Xray and miniImageNet. We set the number
f labeled data for each batch: 50 for CIFAR-10 and, 31 for CIFAR-
00, COVID19-Xray and miniImageNet. The second stage is the
abel propagation stage, we set k = 50 for constructing a kNN
raph, and set µ in Eq. (12) to 0.99. The propagation threshold
s related to the number of target categories and the average
ntropy of all data, we set it to 2.0 for CIFAR-10, 4.0 for CIFAR-100,
.3 for COVID19-Xray, and 4.5 for miniImageNet.
Data augmentation. For weak data augmentation, we first

andomly shift n pixels of the image vertically or horizontally
hrough the transpose and crop functions of the Image class of
IL package. Here, n is set to 4. Secondly, we randomly flip the
mage horizontally through the RandomHorizontalFlip function of
he transforms package. For strong data augmentation, we utilize
he ColorJitter function of the transforms package to change the
mage pixels, where the three parameters brightness, contrast,
nd hue are all set to 0.5. The Strong&weak data augmentation
s the combination of these two types of data augmentation.

.3. Competing algorithms

As the proposed method CL_PLP is a transductive deep semi-
upervised algorithm based on partial label propagation and self-
upervised strategy, we compare our algorithm with two state-
f-the-art transductive deep semi-supervised methods DLP [7]
nd MT_LP [7], six classical deep semi-supervised algorithms
uch as PL [17], Π-model [13], Temporal [13], VAT [15], MT [32]
nd ICT [40]. In addition, we also compare our algorithm with
wo classical supervised models Inception-V3 and ResNet18 and
fully supervised baseline with different amounts of available

abeled data .
DLP utilizes the labeled data to pretrain a network in the first

tage, and utilizes this pre-trained network to extract features of
he whole data for further fully label propagation. The algorithm
ean Teacher (MT) uses two noised data as input, calculates
7

the exponential moving average of weights at each training it-
eration, and compares the resulted final-layer activation using
different network parameters. MT_LP is an algorithm that inte-
grates MT and DLP. VAT approximates the perturbation to the
corresponding input data that would yield the largest change
in the network output, and then incorporates a loss term into
the loss function to penalize the difference in the network out-
puts for perturbed and unperturbed input data. Π-model trains
two perturbed neural network models by using dropouts in the
perturbation process, and penalizes the differences in the final
layer activation of the two networks. Temporal combines multiple
perturbations of a network model, and compares the activation
of the neural network at each epoch with the activation of the
network at previous epochs. PL constructs a single supervised
classifier that is iteratively trained on both labeled data and
pseudo-labeled data labeled by the algorithm during the previous
iterations. ICT constructs an interpolation of unlabeled data by
mixup and encourages the prediction of unlabeled data to be
consistent with the prediction of interpolation.

For the supervised models Inception-V3 and ResNet18, we
utilize the classical supervised learning loss cross-entropy as the
training loss, which can be seen from Eq. (2). For fully supervised
baseline in Table 1, we implement it based on MT. Specifically, the
implementation details are as follows: only use labeled data as
the inputs of network, and retain the supervised and consistency
loss of labeled data during training. Similarly, the data augmenta-
tion in our proposed method is also adopted in these supervised
algorithms.

4.4. Performance comparison

To validate the effectiveness of our proposed method CL_PLP,
we compare it with the above-mentioned state-of-the-art al-
gorithms on two standard benchmark datasets CIFAR-10 and
CIFAR-100. From Table 1, we observe that the accuracy of our
algorithm is higher than the competing methods in most cases
with different number of labeled data. Here, our implementation
of ICT is different from the original one. The main difference
is that we improve the unsupervised loss by adopting CE in-
stead Consistence function for unlabeled data, so that, when
we use 4000 labeled data on CIFAR-100, ICT slightly outper-
forms our algorithm. In the case of training with the least label,
such as 100 labeled data for CIFAR-10 and 1000 labeled data for
CIFAR-100, our method significantly improves over state-of-the-
art. Compared with the second method MT_LP, the accuracy of
our method is higher by about 25%, 11% respectively. For 250
labeled images (25 images per class) on CIFAR-10, the classifi-
cation accuracy is 12% higher than that of MT_LP [7]. With the
increase of labeled data known, the improvement in accuracy
will be slowed down, as shown in Fig. 3. When using 500 and
1000 labeled images, the accuracy increases by about 5% and 3%
respectively. When 4000 labeled images are used for CIFAR-100,
the accuracy of ICT is slightly higher than that of our method by
about 2%. In summary, when the number of labeled data is very
small, the strength of our algorithm is relatively dominant.

As observed from Table 1, in the case of different numbers of
labeled data, the supervised methods that only use labeled data
are not competitive compared to the semi-supervised methods
that use both labeled and unlabeled data. Compared with the
supervised methods, our semi-supervised method obtains a sig-
nificant improvement in accuracy (about 50% and 30%), especially
when the available labeled data is rare (100 for CIFAR-10 and 100
for CIFAR-100). These results further indicate the importance of
exploiting the information of the unlabeled data to improve the
classification performance.

We also study the performance on miniImageNet. From Ta-
ble 2, we compare the error rate with fully supervised baseline,
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Table 1
Performance comparison between our algorithm and ICT, MT_LP, MT, DLP, PL, VAT, Temporal, Π-model and fully supervised baseline method. The performance is
valuated by the error rate, and calculated as the average of five experiments.
Dataset CIFAR-10 CIFAR-100

Labeled data per category 10 25 50 100 10 25 40

Inception-V3 [41] 78.44 ± 0.12 69.95 ± 0.34 63.28 ± 0.02 52.72 ± 0.13 87.26 ± 0.06 71.28 ± 0.08 63.14 ± 0.16
ResNet18 [42] 76.34 ± 0.06 66.61 ± 0.05 59.38 ± 0.04 53.56 ± 0.04 87.10 ± 0.05 78.45 ± 0.07 73.61 ± 0.07
Full supervised 71.57 ± 0.32 57.08 ± 0.10 35.17 ± 2.46 23.79 ± 1.31 79.90 ± 0.07 67.61 ± 0.18 57.93 ± 0.25

Π-model [13] 60.29 ± 1.14 46.48 ± 1.29 38.31 ± 1.27 25.52 ± 0.72 77.99 ± 1.33 60.56 ± 0.73 51.09 ± 0.16
Temporal [13] 54.86 ± 2.23 43.25 ± 2.51 29.47 ± 0.65 20.36 ± 0.41 74.20 ± 0.20 59.58 ± 0.41 52.58 ± 0.15
VAT [15] 62.86 ± 3.12 50.52 ± 1.73 38.66 ± 1.26 26.19 ± 0.48 73.80 ± 0.37 59.90 ± 0.65 51.07 ± 0.06
PL [17] 57.63 ± 1.82 48.72 ± 1.54 34.07 ± 2.37 25.03 ± 0.94 75.78 ± 0.33 58.21 ± 1.97 51.63 ± 2.27
DLP [7] 66.41 ± 0.22 48.42 ± 0.91 32.40 ± 1.80 22.00 ± 0.88 79.40 ± 0.31 53.91 ± 0.05 46.20 ± 0.76
MT [32] 56.14 ± 0.70 47.32 ± 2.30 27.45 ± 2.64 19.04 ± 0.51 67.03 ± 0.14 53.91 ± 0.57 45.36 ± 0.49
MT_LP [7] 52.20 ± 0.57 34.30 ± 0.90 24.02 ± 2.44 16.93 ± 0.70 66.79 ± 0.12 51.78 ± 0.16 45.07 ± 0.10
ICT [40] 42.62 ± 1.42 28.67 ± 1.25 21.16 ± 0.93 14.83 ± 0.17 64.63 ± 0.84 51.28 ± 0.96 41.76 ± 0.36
CL_PLP 27.97 ± 0.07 21.84 ± 0.17 19.97 ± 0.12 14.14 ± 0.09 55.89 ± 0.11 49.98 ± 0.09 43.44 ± 0.19
Fig. 3. Error rate versus number of labeled images on CIFAR-10 and CIFAR-100 using different methods.
Table 2
The error rate of Fully supervised, DLP,MT, MT_LP, ICT and our proposed method
on miniImageNet.
Labeled data per category 40 100

Fully supervised 74.78 ± 0.33 60.25 ± 0.29
DLP [7] 70.29 ± 0.81 57.58 ± 1.47
MT [32] 72.51 ± 0.22 57.55 ± 1.11
MT_LP [7] 72.78 ± 0.15 57.35 ± 1.66
ICT [40] 66.64 ± 0.33 44.81 ± 0.76
CL_PLP 50.84 ± 0.22 41.94 ± 0.53

MT, DLP, MT_LP and ICT methods. For previous studies MT, DLP
and MT_LP, we show the error rate that has been printed in these
papers, and for ICT, Fully supervised and our proposed method,
we take the average of the minimum of five experiments. Com-
pared with the best algorithm ICT among competing algorithms,
the accuracy of our proposed method improves about 16% in the
case of 40 labeled data available each class, and also improves
about 3% in the case of 100 labeled data available each class.

4.5. Application to COVID19-Xray dataset

Since COVID19 broke out in late 2019, COVID19-Xray image
ecognition and classification has become an urgent and chal-
enging topic. The difficulty mainly lies in two aspects, including
8

inconsistent sources and serious class-imbalance [43–45]. In our
experiment, we retrieve the new dataset from Kaggle1, which
is a public website for COVID19-Xray datasets. The dataset inte-
grates many datasets from different platforms and removes the
duplicates. To tackle the class-imbalance problem, we select weak
augmentation to over-sample the COVID19 images, and under-
sample normal images. We regard those lung-Opacity and Viral
Pneumonia images as other lung disease images (no COVID19
infection), to achieve data balance.

Subsequently, we firstly divide the dataset into training, val-
idate and test set with the proportion 6:2:2. The training set is
used to train the neural network model. The validation set is
used to verify the validity of the trained model, and the model
with the best effect is selected until we get a satisfactory model.
Finally the test set is utilized to evaluate the effectiveness of
the trained model. We select 10%, 20%, and 30% labeled data as
different proportions of labeled data available for experiments.
It is worth noting that we use stratified sampling to complete
the above preprocessing. The purpose is to maintain the pro-
portion of data with different class in the training set, validate
set, test set and the labeled data available. As shown in Fig. 4,
when some labeled data are selected, such as 30%, 20% and 10%,
our semi-supervised classification algorithm outperforms that of

1 https://www.kaggle.com/tawsifurrahman/covid19-radiography-database

https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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Table 3
The results of ablation experiments on CIFAR-10 with 100 labels. Aug represents the adopted data augmentation method. The second column records the number of
sub-networks. The pro&con column represents whether to add a projector layer and the construction of the contrastive loss, and the diffusion column records the
propagation way including full propagation and partial propagation. The optimizer column denotes the optimizer used in different stages. The p_label_acc column
records the accuracy of the pseudo-label obtained in the second stage, and the last column is the classification accuracy (top1) of the algorithm.
Aug MT Stage Pro&con Diffusion Optimizer p_label_acc acc_top1

weak FALSE 1 no no RAdam no 24.54
Strong&weak FALSE 1 no no RAdam no 33.53
Strong&weak FALSE 1 no no RAdam no 38.20
weak TRUE 1 no no RAdam no 45.77
Strong&weak TRUE 1 no no RAdam no 54.11
Strong&weak TRUE 1 yes no SGD no 58.50
Strong&weak TRUE 1 yes no RAdam no 61.60
weak TRUE 2 no full SGD 0.38 46.92
weak TRUE 2 yes partial SGD 0.58 46.59
Strong&weak TRUE 2 yes full SGD 0.63 65.77
Strong&weak TRUE 2 yes partial RAdam 0.83 68.50
Strong&weak TRUE 2 yes partial SGD 0.88 72.60
Fig. 4. Performance comparison between the fully-supervised, Π-model, Tem-
oral, MT, ICT and our proposed method on the COVID19-Xray dataset. The
orizontal axis represents the proportion of the labeled data used in the total
ata, and the vertical axis represents the accuracy.

ull supervised learning in the same case. Especially when only
0% labeled data are used, the classification accuracy of semi-
upervised algorithm can reach 89.7%, which is about 7% higher
han that of full supervision algorithm, which shows the potential
f our algorithm in other learning fields. Meanwhile, we compare
he classification accuracy of our algorithm with those of the
lassical semi-supervised algorithms MT, ICT, Temporal, and Π-
odel on the COVID19-Xray dataset with different proportions of

abeled data. The experimental results demonstrate our proposed
ethod achieves better performance than other semi-supervised
lgorithms in all cases. Especially when 10% of the labeled data
s available, our method improves the accuracy at least 5%–6%
ompared to other methods. The less labeled data is available, the
ore pronounced the advantage of the proposed approach is.

.6. Ablation study

In order to investigate the impact of different components
f our algorithm on the performance, we conduct two ablation
tudies, respectively under the conditions of 10 labeled images in
ach category of CIFAR-10 and 10, 40 and 100 labeled images in
ach category of CIFAR-100. In particular, the former experiment
alidates the effectiveness of Strong&weak data augmentation,
rojection layer and partial label propagation, while the latter
xperiment validates the sensitivity of CIFAR-100 to Strong&weak
ata augmentation.
Table 3 shows the performance comparison on CIFAR-10 with

00 labels. In the first stage, the accuracy of the model pre-trained
9

by DLP+Strong&weak data augmentation increases by about 15%
compared with DLP [7]. The accuracy of the MT_LP+Strong&weak
data augmentation is about 9% higher than that of the MT_LP [7].
These results imply that the augmentation method which we
use can avoid the overfitting problems caused by inadequate
labels. Then, by adding the projector layer and constructing the
contrastive loss, the accuracy of the algorithm increases by 7%–
8%. It proves that Strong&weak, adding the projection layer and
constructing the symmetrical contrastive loss can play a positive
role in the training of the network (CIFAR-10 dataset). In the sec-
ond stage, we focus on the ablation of partial and full propagation.
When partial propagation is used directly in the MT_LP algorithm,
although the pseudo-labels propagated increase by 20%, the ac-
curacy decreases. This is because the pre-trained model whose
accuracy is too low to obtain few high-quality pseudo-labels.
When we use the improved pre-trained model, the accuracy of
pseudo-labels increases by 20%–25% using partial propagation
compared with full propagation. The classification accuracy rate
(72.6%) is about 11% higher than the pre-trained model (61.6%),
and about 25% higher than the original algorithm (46.92%). It
can be seen that the accuracy of the algorithm is the highest
when the combination of strong and weak augmentation, and the
partial propagation strategy are used simultaneously. In addition,
we also study ablation of optimizer used. It can be seen that
in the first stage, under the same circumstances, using RAdam
(61.60%) is better than SGD (58.5%). In the second stage, using
SGD (72.60%) is better than RAdam (68.5%).

The second ablation is based on CIAFR-100. We mainly fo-
cus on the influence of the image augmentation method and
the number of projector layers. Table 4 shows the classification
performance comparison on CIFAR-100 test set. With different
proportions of the labeled data, the augmentation method with
strong and weak combination is not as effective as that with weak
augmentation algorithm. For example, in the case of using 4000
labeled data and one projector layer, the accuracy of the weak
augmentation method is 4% higher than that with strong and
weak augmentation. As the size of CIFAR-100 images are 32× 32,
and there are a total of 100 categories, the difference in char-
acteristics among different categories is very small. After strong
augmentation, the pixel value will change, which has a negative
impact on the following network training. On the contrary, we
can observe that the projector layer on this dataset can indeed
improve the accuracy of the algorithm. This observation is also
different from CIFAR-10. Thus, for datasets with little difference
in different categories, we recommend using weak augmentation
and adding projector layers.

4.7. Integration study

Although our algorithm is a kind of transductive semi-
supervised learning algorithm, it can be integrated with the
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Table 4
The results of the ablation study on CIFAR-100. Here, three different numbers of labeled data from each category are selected for ablation, Aug represents the
enhancement method, pro_num represents the number of added projection layers, and the performance is evaluated by classification accuracy (top1).
Labeled data per category 10 40 100

Aug weak weak weak Strong&weak weak weak weak Strong&weak weak Strong&weak weak weak
pro_num 0 2 1 1 0 1 2 1 0 0 1 2
acc_top1 33.2 40.3 44.5 39.6 53.7 54.3 55.2 50.1 62.3 58.95 63.9 64.5
Table 5
The performance of our method integrated with MixMatch and FixMatch on
CIFAR-10. The methods with the suffix ‘‘_PLP’’ are the methods after integration.
The performance is evaluated by classification accuracy (top1).
Labeled data per category 10 25 50

MixMatch [5] 82.85 88.43 90.35
MixMatch_PLP 85.57 89.53 90.89
FixMatch [6] 93.49 94.22 95.34
FixMatch_PLP 94.33 95.04 95.37

existing inductive semi-supervised learning algorithm. Based on
the proposed method, we further propose an improvement strat-
egy for inductive semi-supervised learning. Specifically, we use
an inductive semi-supervised algorithm as our pretraining stage
to get a better network, and then conduct the partial label
propagation process of our algorithm. By integrating our partial
label propagation module, inductive semi-supervised learning
methods can obtain high-quality pseudo-labels of unlabeled data
and consequently improve their performance.

Our integration strategy is respectively applied to MixMatch [5]
nd FixMatch [6], which are two state-of-the-art inductive semi-
upervised learning methods. The performance comparisons on
IFAR-10 are listed in Table 5. We conduct the integration exper-
ments on the CIFAR-10 dataset using 100, 250, and 500 labeled
ata. As shown in Table 5, when the number of available labeled
amples is very small, that is, only 10 labeled samples are used
or each class, the performance of MixMatch and FixMatch is both
mproved by applying our integration strategy. The accuracy of
ixMatch integrated with our partial label propagation module,

hat is MixMatch_PLP(85.57%), is around 3% higher than Mix-
atch (82.85%). Similarly, FixMatch integrated with the partial

abel propagation module (FixMatch_PLP : 94.49%) is also about
% higher than the original algorithm (93.49%). When using 250
nd 500 labeled data, the performance of MixMatch and FixMatch
re also improved. Overall, the performance improvement is more
bvious when the number of available labels is smaller, which
roves the potential of our algorithm in integrating the existing
nductive learning methods.

. Discussion and future work

This paper proposes a semi-supervised transductive algorithm
ased on self-supervised contrastive learning and partial label
ropagation strategy. The proposed method consists of two mod-
les, including feature extraction module and partial label prop-
gation module. We propose an improved network structure,
dding a projection layer module and contrastive loss for con-
rastive learning. We expand the dataset by combining strong
nd weak augmentation to increase the diversity of the dataset
nd the robustness of the model. By interrupting the label prop-
gation according to the quality of pseudo-labels, the impact of
igh-quality pseudo-labels are improved, which is helpful for the
ollowing training. Finally, we propose a process integrated with
tate-of-the-art inductive semi-supervised algorithms.
To validate the proposed method, we conduct extensive ex-

eriments on three standard baseline datasets and a medical
ataset COVID19-Xray. The performance of our algorithm on the

lassical datasets CIFAR-10, CIFAR-100 and miniImageNet with
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very few labeled data (e.g. 100 labels for CIFAR-10, 1000 la-
bels for CIFAR-100, 4000 labels for miniImageNet) is significantly
better than state-of-the-art transductive deep semi-supervised
algorithms. We also apply our algorithm to the medical COVID19-
Xray dataset, it still shows good performance. When using 30%
labeled data, the accuracy is about 91%. We also conduct ablation
studies to verify the impact of different parts of our algorithm on
performance.

Finally, in view of the recent rapid development of inductive
deep semi-supervised learning, we propose a strategy to integrate
our method with inductive learning methods, and the results
demonstrate that it can further improve the accuracy and obtain
additional high-quality pseudo-labels of the unlabeled dataset for
training the deep neural networks. In the future, we plan to focus
on exploring more effective and efficient self-supervised ways to
extract features from labeled and unlabeled data, and transferring
our algorithm to real application scenarios.
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