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a b s t r a c t

Quality of service (QoS) has been mostly applied to represent non-functional properties of web
services and differentiate those with the same functionality. How to accurately predict unknown
service QoS has become a hot research issue. Although existing researches have been investigated
on temporal-aware service QoS prediction, conventional approaches are restricted to a couple of
limitations. (1) most of them cannot well mine the time-series relationships and the interaction
invocation information among users and services. (2) even although some sophisticated approaches
make use of recurrent neural networks for temporal service QoS prediction, they mainly focus on
the learning of user-service temporal relationship and have paid less attention to more effectively
represent implicit features, resulting in low accuracy on service QoS prediction. To deal with the
challenges, we propose a novel deep learning based approach called DeepTSQP to perform the task
of temporal-aware service QoS prediction by feature integration. In DeepTSQP, we first present an
improved temporal feature representation of users and services by integrating binarization feature and
similarity feature. Then, we propose a deep neural network with gated recurrent units (GRU), learning
and mining temporal features among users and services. Finally, DeepTSQP model can be trained
by parameter optimization and applied to predict unknown service QoS. Extensive experiments are
conducted on a large-scale real-world temporal QoS dataset WS-Dream with 27,392,643 historical QoS
invocation records. The results demonstrate that DeepTSQP significantly outperforms state-of-the-art
approaches for temporal-aware service QoS prediction in terms of multiple evaluation metrics.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

With the wide adoption of service-oriented architecture (SOA),
he number of web services is growing exponentially in recent
ears. Web service significantly accelerates the interoperable
achine-to-machine interaction and greatly promotes the ad-
ancements on service discovery, optimal selection [1], auto-
ated composition and recommendation. By combining them
ith applications of different functions through interfaces, it real-

zes the service reuse and extension of functionality. However, as
he overwhelming explosion on the number of web services reg-
stered on the Internet, the homogenization of service functions
as been becoming more and more prevalent. That tends to be
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a labor-intensive challenging task for service consumers to select
their desired services from a large-scale service repository. Thus,
recommending superior web services from those functionally
equivalent or similar ones has become a critical issue to be
addressed.

QoS is usually employed as a key factor for describing non-
functional features of web services, differentiating those web
services with the same functionality. Due to the discrepant net-
work environments and geographical locations, when different
service consumers invoke the same service, they may receive
totally different QoS experiences. On the contrary, when a ser-
vice consumer invokes different web services, which provides
diverse QoS experiences, since QoS measurement depends on the
contextual information of both service providers and consumers.
More importantly, QoS monitoring has highly relevance on tem-
poral feature, when service consumers invoke web services at
different time slices. In service-oriented application scenarios, it
is a time-consuming and unrealistic task for service providers

to monitor QoS of web services invoked at different moments,

https://doi.org/10.1016/j.knosys.2021.108062
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.108062&domain=pdf
mailto:gbzou@shu.edu.cn
mailto:mrblite@shu.edu.cn
mailto:jimmyme520@gmail.com
mailto:shengxianghu@shu.edu.cn
mailto:caoch@shu.edu.cn
mailto:bfzhang@shu.edu.cn
mailto:ylgan@dhu.edu.cn
mailto:chen@cse.wustl.edu
https://doi.org/10.1016/j.knosys.2021.108062


G. Zou, T. Li, M. Jiang et al. Knowledge-Based Systems 241 (2022) 108062

l
o
b
h

d
t
t
b
Q
w
r
i
r
y
f
a
a
a
m
m
d
d
M
p
s
p
a
T
f
s

s
s
r
p
a
u
M
v
c
i
a
w
o
s
i
r
a
s
s

d
a
Q
a
t
d
d
e
d
d
a
a
b

v

⟨

i
s
Q
a

o
d
c
i
d

D
e
a
s
u

t
t
p

D
T
a

eading to the issue of temporally predicting unknown QoS values
f web services. To deal with this challenge, many efforts have
een investigated to perform service QoS prediction by leveraging
istorical service QoS invocations.
It can be divided into traditional and temporal-aware QoS pre-

iction based on whether QoS records in service invocation ma-
rix change or not over time. For traditional service QoS predic-
ion, memory-based [2–5], model-based [6–19] and deep learning
ased [20,21] approaches are investigated for predicting a vacant
oS value of a specified user invoking a corresponding service
ithin a singleton QoS matrix. With the consideration of tempo-
al feature where a user may have different QoS experiences by
nvoking a service across multiple time slices, there exist some
esearches on temporal-aware service QoS prediction in recent
ears, such as the approaches based on improved collaborative
iltering [22,23], matrix factorization [24–27] and latent factor
nalysis [28,29]. Additionally, autoregressive integrated moving
verage(ARIMA) model-based approaches [30–33] have also been
pplied for temporal-aware service QoS prediction. However, in
any real-world application scenarios, univariate ARIMA models
ight be inappropriate for predicting temporal-aware QoS values
ue to nonlinear QoS time series [34], which implies long-range
ependency and contains correlation among users and services.
oreover, an observed tendency on temporal-aware service QoS
rediction is the increasing leverage of deep learning techniques,
uch as approaches for recommender systems or missing QoS
rediction based on recurrent neural network (RNN) [35–37]
nd its variant long short-term memory (LSTM) model [38–40].
hese approaches can better mine the nonlinear time-series in-
ormation and learn the interactive correlation among users and
ervices.
Although these existing approaches can assist and facilitate

ervice QoS prediction, they still cannot reach the satisfaction of
ervice providers as well as service consumers. The underlying
eason is that it is a difficult and challenging task of how to
recisely represent user and service features at each time slice,
nd further effectively mine the implicit nonlinear relationship of
ser-service interactions across sequentially multiple time slices.
ore specifically, the deficiencies of current temporal-aware ser-
ice QoS prediction are twofold. Most of conventional approaches
annot well mine the time-series information and the interaction
nvocation information of users and services. More importantly,
lthough some existing approaches leverage recurrent neural net-
orks for temporal service QoS prediction, they mainly focus
n the learning of user-service temporal relationship, by using
traightforward feature representation of user and service. That
s, they have paid less attention on how to more effectively
epresent implicit features which are detailedly explained such
s user-service invocation information and collaborative relation-
hip on similar users or services, yielding to low accuracy on
ervice QoS prediction.
To address the above issues, this paper proposes a novel

eep learning based approach by enforcing feature representation
nd integration, called DeepTSQP, for temporal-aware service
oS prediction. First, binarization feature and similarity feature
re taken into account and integrated as a whole to respec-
ively represent a user’s or service’s feature, which reflects both
ynamic invocation changes and similarity relationship across
ifferent temporal slices on user-service interactions. Then, it
mbeds a user’s and service’s features, which are reduced as low-
imensional ones and fused by concatenation to be fed into a
eep neural network with gated recurrent units. Finally, temporal
ggregated feature between a user and service is mined and
pplied to effectively predict unknown QoS value for a service to
e invoked by a user at a temporal slice.
To evaluate the effectiveness of DeepTSQP in temporal ser-

ice QoS prediction, we conduct extensive experiments on a
2

real-world large scale dataset, which consists of a total num-
ber of 27,392,643 from WSDream [41]. The results demonstrate
that DeepTSQP outperforms state-of-the-art benchmarking ap-
proaches. The main contributions of this paper are summarized
as follows:

• We propose a comprehensive temporal-aware service QoS
prediction framework via deep neural network and feature
integration.

• We propose a novel approach for learning a user or ser-
vice temporal feature representation. It simultaneously inte-
grates both binarization feature for the user-service invoca-
tion changes across different temporal slices and similarity
feature for collaborative relationships of users or services.

• Extensive experiments are conducted on a real-world large
scale service QoS dataset under multiple temporal slices.
The experimental results demonstrate that DeepTSQP re-
ceives superior performance, comparing with competing ap-
proaches in MAE and RMSE.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates the research problem. Section 3 illustrates the
overall framework of DeepTSQP and elaborates the approach of
temporal-aware service QoS prediction. Section 4 shows the ex-
perimental results and analyses. Section 5 provides the threats to
validity. Section 6 reviews the related work. Finally, we conclude
the paper and discuss the future work in Section 7.

2. Problem formulation

In this section, we first focus on the understanding of temporal-
aware service QoS prediction problem by a set of formal defini-
tions, which are detailedly explained by user-service QoS invoca-
tion matrix.

Definition 1 (Temporal Service Ecosystem). A temporal web service
ecosystem with temporal feature is defined as a four-tuple M =

U, I, T , R⟩, where U = {u1, u2, ..} is a set of users, I = {i1, i2, . . .}
s a set of web services, and T = {t1, t2, . . .} is a set of temporal
lices of service invocations. R = {r tu,i} is a three-dimensional
oS matrix, where each entry r tu,i represents a QoS value when
service i is invoked by a user u at temporal slice t .

Fig. 1 illustrates a temporal service ecosystem, which consists
f a set of two-dimensional service invocation QoS matrices,
enoted as R = R1 ∪ R2... ∪ Rn. Given a temporal slice tj, its
orresponding two-dimensional matrix Rtj represents the QoS
nvocation records with a set of values when users invoke services
uring that time interval.

efinition 2 (QoS Invocation Record). Given a temporal service
cosystem M = ⟨U, I, T , R⟩, a QoS invocation record is defined
s a four-tuple ⟨u, i, t, r tu,i⟩, where u ∈ U is a user, i ∈ I is a web
ervice, t ∈ T is a temporal slice, and r tu,i is the QoS value when
invoked i at t .

Here, when an entry of a QoS invocation record is equal
o 0, indicating that a user has not ever invoked a service at
hat temporal slice. Therefore, its QoS value needs to be further
redicted for use, which is defined as below.

efinition 3 (Temporal-aware Service QoS Prediction Problem,
SQP). Given a temporal service ecosystem, the TSQP is defined
s a five-tuple ⟨M, u, i, t, r̂ tu,i⟩, where

(1) M = ⟨U, I, T , R⟩ is a temporal service ecosystem.
(2) u is a target user who desires to invoke a target web

service i.
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Fig. 1. Temporal-aware user-service QoS invocation matrix.

(3) i is a target web service that can be invoked by a target
user u.

(4) t is a temporal slice where u invokes i for satisfying a
certain functionality.

(5) r̂ tu,i is the QoS value to be predicted when a user u invokes
a web service i at t .

In a temporal service ecosystem M, TSQP problem is dedicated
o predicting unknown QoS value r̂ tu,i when u invokes i at t . As
hown in Fig. 1, TSQP aims to predict those vacant QoS entries
n temporal-aware service QoS invocation matrix. It is observed
hat there exist differentiated QoS values for the same service
nvoked by the same user across multiple temporal slices. In such
ase, how to design a novel approach to dynamically represent
emporal features of a user and service over time and effectively
earn their implicit nonlinear relationship on interactive invoca-
ion across multiple time has become a challenging issue to be
olved. We present a deep learning based approach to perform
emporal-aware service QoS prediction by feature integration in
he subsequent section.

. Approach

In this section, we first illustrate the overall framework of
eepTSQP. Then, we describe temporal feature representation
nd integration, temporal aggregated feature mining and QoS
rediction, respectively. Subsequently, we elaborate the model
raining and parameter optimization. Finally, computational com-
lexity is analyzed on DeepTSQP.

.1. The framework of DeepTSQP

The overall framework of DeepTSQP is illustrated in Fig. 2. The
bjective of DeepTSQP is to automatically predict a QoS value,
hen a target user aims at invoking a target web service at a
emporal slice. DeepTSQP consists of two independent but cor-
elative components, including temporal feature representation
nd integration, temporal aggregated feature mining and QoS
rediction.
In temporal feature representation and integration, it first

haracterizes a user’s feature from the web services invoked by
he specified user at a temporal slice by binarization represen-
ation; symmetrically, a service’s feature is characterized by the
sers who has invoked the specified service at a temporal slice
y binarization representation. To further take into account the
ontextual information of a user and service, it then integrates
target user’s (or a target service’s) binarization feature with a

arget service’s (or a target user’s) similarity feature that is mined

rom the user-service invocation QoS records.

3

In temporal aggregated feature mining and QoS prediction, it
irst makes a reduction of high-dimensionally sparse temporal
eature of user and service by a fully-connected network, generat-
ng low-dimensionally dense feature. Then, they are fused by the
oncatenation as the inputs of GRU. Finally, the fused temporal
eatures are split across multiple temporal slices and fed into GRU
or mining the user-service nonlinear relationship of temporal
eature and predicting the vacant service QoS.

.2. Temporal feature representation and integration of user and
ervice

To initialize the representation of a user or a service, one-
ot encoding is widely applied for characterizing the position of
user or a service. Taking a user’s feature representation as an
xample, only the value of the position indicated by the user ID
s assigned as 1, whereas the values of remaining positions are
et by 0. That is, the dimension of a user feature representation
quals to the number of all users with one-hot encoding. Never-
heless, the disadvantage is that the feature representation cannot
dapt to the fluctuation along with the variations at different
emporal slices.

To reflect the temporal feature, we leverage the binarization
epresentation to initialize temporal feature from user-service
nvocation QoS records. Conversely, the dimension of binarization
eature vector of a user is the number of web services with the
onsideration of temporal representation, where the values of the
ositions indicated by all the services that the user has invoked
re assigned as 1, while the remaining positions are set by 0.
able 1 illustrates and compares a user’s feature representation
y one-hot encoding and binarization representation. Since bina-
ization representation contains information about the interactive
nvocation between a user and a service, it can dynamically
eflect the implicit nonlinear relationship over time when a user
nvokes a service across multiple time slices. Compared with one-
ot encoding, it is more beneficial to mine temporal aggregated
eature for better service QoS prediction.

To further extend the temporal feature of binarization repre-
entation for a user, the preference feature of a target service is
ntegrated to enrich the representation of temporal user feature,
y evaluating the relevance between a target service and all
eb services with similarity calculation. More specifically, since
user’s preference feature is affected by the distribution of web
ervices and their invocation relevances, the similarity among
eb services as the heuristic context information is calculated by
earson Correlation Coefficient (PCC). Given two web services i
nd j, the similarity is evaluated by

im(i, j) =

∑
u∈Uc

(ru,i − r̄i)(ru,j − r̄j)√∑
u∈Uc

(ru,i − r̄i)2
√∑

u∈Uc
(ru,j − r̄j)2

(1)

here Uc = Ui ∩ Uj is the intersection of users who have
reviously invoked both i and j, ru,i indicates QoS value of service
invoked by user u, r i and r j represent average QoS value of i and
invoked by a set of common users in Uc , respectively. Assume
hat there are a set of services I = {i1, i2, . . .}, by calculating
he similarity between any two services, we can get a similarity
atrix, and each row or column of the matrix corresponds to a
ervice’s similarity feature vector.
Finally, given a target user, the binarization feature vector

u of a user is determined by the invocation information at a
emporal slice. Simultaneously, similarity feature vector qu of a
arget service is represented by invocation QoS records. More
pecifically, the binarization feature of a user indicates which
ervices have been invoked by the target user, while the simi-
arity feature of a user further reflects the similarity relationship
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inarization feature representation across multiple temporal slices.
User Service

ID
Temporal
slice

One-hot
encoding

Binarization feature
representation

u1 1,2,3,7 t1 0100000000 0111000100
u1 4,5,8,9 t2 0100000000 0000110011
u2 3,4,7,9 t1 0010000000 0001100101
u2 1,5,6,8 t2 0010000000 0100011010

between these services and the target service. That is, similarity
feature representation to some extent is used as a weighting
vector to quantitatively assist in improving the temporal feature
representation of a user through qualitative user-service invoca-
tion information. After multiplying the two feature vectors by
bit, the integrated temporal feature of a user is represented as
xu, which is not only related to a user’s invocation preference at
a certain temporal slice, but also affected by the context of the
relevance of a target service to be invoked. It is expressed as

xu = pu ⊙ qu (2)

where ⊙ means that each corresponding entry in the two feature
vectors is multiplied by bit, and the obtained xu is the integrated
temporal feature vector of a user. In the task of temporal-aware
service QoS prediction, we perform above integrated representa-
tion to obtain a series of feature vectors for all the users across
sequentially multiple temporal slices.

In the same way, for the integrated feature representation of
a service, we first obtain the binarization vector pi according to
he service’s invocation information at a certain temporal slice.
 r

4

The length of service binarization vector is the number of all
users, where the value of a position is 1, indicating that the
corresponding user has invoked the service; otherwise, the rest
of the positions are 0. Then, we calculate the similarity matrix
among users with PCC, which is expressed by

Sim(u, v) =

∑
i∈Ic (ru,i − r̄u)(rv,i − r̄v)√∑

i∈Ic (ru,i − r̄u)2
√∑

i∈Ic (rv,i − r̄v)2
(3)

Thus, we can extract the similarity feature vector of a user qi who
may desire to invoke the service. Specifically, the binarization
feature of a service indicates which users have invoked the target
user, while the similarity feature of a service further reflects the
similarity relationship between these users and the target user.
That is, similarity feature representation is used as a weighting
vector to quantitatively assist in improving the temporal feature
representation of a service through qualitative user-service invo-
cation information. Finally, the two feature vectors are multiplied
by bit to generate an integrated temporal feature representation
of a service, which is formalized as

xi = pi ⊙ qi (4)

Here, xu and xi as the integrated temporal feature representa-
ion of a user and service are used as inputs and fed into GRU for
urther temporal aggregated feature mining and QoS prediction.

.3. Temporal aggregated feature mining and QoS prediction

Due to huge number of users and web services in service-
riented application systems, it is high-dimensional for a tempo-

al feature vector. Moreover, since it is a time-consuming task to
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nvoke each web service for a user, the temporal feature vector is
lso very sparse, leading to difficulty in directly applying them as
nput features for further temporal aggregated feature mining. To
ransform a high-dimensional and sparse temporal feature vector
f a user and service into a densely low-dimensional one, a fully-
onnected network is used to perform dimensionality reduction,
hich is formalized as

′

u = σ (Wu · xu + bu)
x′

i = σ (Wi · xi + bi)
(5)

where σ is the activation function, and dimensionality reduction
Relu function is applied for non-linear transformation of feature
vector. After performing the dimensionality reduction, embedded
user temporal feature x′

u and embedded service temporal fea-
ture x′

i are further fused as a whole by the concatenation. It is
expressed by

x = x′

u ⊕ x′

i (6)

where ⊕ represents the concatenation operation of two feature
vectors. After the fusion of embedded temporal features of a user
and a service, x is taken as input and fed into a GRU [42] model
to mine temporal-aware implicit information on user-service in-
vocation across multiple temporal slices. Given a temporal slice
t , the extraction process of temporal aggregated feature mining
is expressed by

rt = σ (Wr · xt + Ur · ht−1) (7)

here xt represents the fused temporal feature at t , σ is the
ctivation function, and rt is a set of forget gates, which are
alculated by the current input xt , weight coefficients Wr and
r , and the output of the previous moment ht−1. At the starting
emporal slice t0, ht−1 is a randomly initialized feature vector.
ccording the obtained rt , the approximate temporal feature h̃t
t t can be calculated by

˜ t = tanh(W · xt + U(rt ⊙ ht−1)) (8)

here ⊙ represents multiplication operation by element. In case
f rt close to 0, indicating that the approximate temporal feature
ainly depends on current state information h̃t , while the past
tate information should be forgotten at t . On the contrary, if rt
onverges to 1, it reflects unreliable current state of the fused
emporal feature xt . Thus, it is necessary to ignore the current
tate as much as possible and retain the historical temporal
eatures.

Based on the above state information h̃t , a weighting factor zt
hrough further learning is applied to update the temporal feature
f user-service invocation ht , which can be expressed by

zt = σ (Wz · xt + Uz · ht−1)

ht = (1 − zt ) ⊙ ht−1 + zt ⊙ h̃t
(9)

where zt is the updating weight to be learned in model training,
and ht is the temporal feature vector mined by GRU at temporal
slice t .

For the QoS prediction of a service to be invoked by a user
at a temporal slice k, we can leverage the temporal feature hk
mined from the learned GRU model. Finally, hk is fed into a fully-
connected network to predict the missing QoS value, which is
expressed by

ŷ = Relu(W · hk + b) (10)

where ŷ is the predicted service QoS, and W and b are the
hyperparameters from model training, respectively.
 s

5

3.4. Model training and parameter optimization

During the two stages of temporal feature representation and
integration, and temporal aggregated feature mining and QoS
prediction, a set of hyperparameters need to be learned and
optimization by model training. It can be expressed by

r̂u,i = f (Qu ⊙ u, Qi ⊙ i|Θf ) (11)

here Qu represents the similarity feature matrix among users,
nd u is the binarized feature vector of a certain user; Qi repre-
ents the similarity feature matrix among services, and i is the
binarization feature vector of a certain service; Θf consists of all
the hyperparameters in the model; the operator ⊙ represents the
vector multiplication by bit. By model training, it aims to optimize
the model parameters Θf through the learning from the training
samples.

Since temporal-aware service QoS prediction is to solve a
regression problem, MSE (Mean Squared Error) is taken as the
optimization objective. It has been widely used in regression
analysis and prediction problems. Here, the objective function of
TSQP model training is as follows

J = α ∗
1
N

N∑
i=1

(yi − ŷi)2 + (1 − α) ∗

∑
j

w2
j (12)

where ŷi denotes the predicted service QoS value by the model, yi
represents the original service QoS value, and N is the number of
training samples; wj is a parameter value in the model;

∑
j w

2
j is

the regularization term of the model, which is used to avoid over-
fitting in model training; α is a weighting factor for balancing the
importance of the regularization term, which is generally set to
a value approximately close to 1 after iterative validation in the
experiments.

To efficiently and optimally learn the parameters Θf , Adam
(Adaptive Moment Estimation) [43] is used to train the model. By
simulating the object motion model in classical physics, the learn-
ing rate is dynamically updated, yielding to a better local optimal
point with more efficient convergence speed in the parameter
domain. The learning rate of Adam is updated by

m̂t =
mt

1 − β t
1

v̂t =
vt

1 − β t
2

(13)

here m̂t represents the value of the momentum in the changing
irection of the current one, and v̂t represents the value of the
peed in the changing direction of the current one. After each
ound of model training and parameter optimization, the two
alues of momentum and speed in the direction of the learning
ate dynamically change. That incurs the adjustment of learning
ate as follows

t+1 = θt −
η√

v̂t + ϵ
m̂t (14)

here θt is the learning rate of the tth batch in the stochastic
radient descent training process, and θt+1 is the learning rate
f the t + 1th batch in model training. After the learning of
yperparameters Θf , the QoS prediction model can be formalized
s

= Adam(J|Θf ) (15)

here f is the service QoS prediction model. In real-world appli-
ations, by taking unknown service invocation into the learned
odel as request, the service QoS at an expected certain temporal
lice can be predicted for a target user invoking a target service.
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tatistics of WS-Dream Dataset.
Item name Value

Users 142
Services 4,500
Service Invocations 27,392,643
Temporal Slices 64
Sparsity 66.98%

3.5. Computational complexity analysis

The time consumption of DeepTSQP is mainly from fully con-
ected layer for user and service embedding and GRU layer for
emporal aggregated feature mining. Specifically, let Nu denote
he dimension of user temporal feature, which equals to the
umber of services, Ni denote the dimension of service tem-
oral feature, which equals to the number of users, Eu denote
he dimension of embedded user feature, Ei denote the dimen-
ion of embedded service feature, Nmax = max(Nu,Ni), Emax =

ax(Eu, Ei). By calculating in Eqs. (5) and (6), the time com-
putational complexity of the fully connected layer for temporal
feature embedding is O(NuEu + NiEi) = O(NmaxEmax). Let d denote
the size of GRU hidden unit, ω denote the size of time window. By
alculating in Eqs. (7), (8) and (9), time computational complexity
f GRU layer is O((d2 + Emaxd) ∗ ω).
From the above analyses, it is observed that time computa-

tional complexity of DeepTSQP is O(ωd2 + ωdEmax + NmaxEmax).
Since, the selection of d and Emax is proportional to Nmax, the above
time computational complexity can be simplified to O(ωN2

max).
In real-world application scenarios, it generally satisfies that the
number of time windows ω is much smaller than the number
of users or services, i.e., Nmax. Finally, the time complexity of
DeepTSQP is quadratic to the number of Nmax.

4. Experiments

4.1. Experimental setup and dataset

Our experiments are carried out on a workstation equipped
with Intel Xeon Gold 6132 CPU, NVIDIA Geforce GTX 1080Ti GPU
and 192 GB RAM. The modules of DeepTSQP in the experiments
are implemented by Python 3.7.4 with Pytorch 1.1.0.

To validate the effectiveness of DeepTSQP, we conduct exten-
sive experiments on a real-world web service QoS dataset called
WS-Dream1 [41], which has been widely used for service QoS
prediction. Here, it consists of two kinds of temporal-aware ser-
vice invocation QoS records, including response time (rtdata) and
throughput (tpdata). We use rtdata as the experimental dataset,
which has been extremely used for comparisons in the most of
conventional approaches for temporal-aware service QoS predic-
tion. Rtdata contains 142 independent users, 4500 web services,
and a total number of 27,392,643 QoS invocation records. The
user-service QoS invocation records are divided into 64 different
temporal slices. The overall sparsity of WS-Dream dataset is ap-
proximately 66.98%. The statistics of the experimental dataset is
illustrated in Table 2.

Based on the above dataset, we conducted a set of exper-
iments to demonstrate the effectiveness and efficiency of our
proposed DeepTSQP for temporal-aware service QoS prediction.
In the experiments, we partition the rtdata into a series of subsets
across sequentially multiple temporal slices, and generate train-
ing datasets under different QoS matrix densities. Specifically, the
training QoS datasets are categorized into two groups:

1 https://github.com/wsdream/wsdream-dataset.
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(1) the first group of divided training datasets span from 5% to
20% with a QoS matrix density interval of 5%. Due to large
number of users and web services, this kind of partitioning
on QoS dataset can simulate the realistic application situ-
ation as much as possible, where QoS invocation matrix of
users and services behaves with overwhelming sparsity;

(2) the second group of divided training datasets span from
10% to 60% with a QoS matrix density interval of 10%.
The main purpose of partitioning QoS dataset into larger
span of matrix densities is to test the performance of the
temporal-aware service QoS prediction approach at differ-
ent densities influenced by the values of different time
windows.

After partitioning the rtdata with different densities, we de-
note the QoS invocation matrix at each temporal slice as
R(1)
train, R

(2)
train, . . . , R

(k)
train. For the sampling of the test QoS dataset,

we only perform it from the last temporal slice of the original
QoS dataset denoted as R(t)

test in the experiments.

4.2. Evaluation metrics

Temporal-aware service QoS prediction is essentially a regres-
sion problem. Mean absolute error (MAE) and root mean square
error (RMSE) are used as the two evaluation metrics to measure
the accuracy of service QoS prediction among the competing
approaches in the experiments. MAE is defined as follows.

MAE =

∑
u,i |ru,i − r̂u,i|

N
(16)

here ru,i denotes the original QoS value of a target user invoking
service, r̂u,i represents the QoS value predicted by a trained
odel, and N is the total number of samples to be predicted.

From the definition of MAE, when the gap between yi and ŷi
becomes smaller and smaller, the value of MAE tends to be much
smaller accordingly, leading to better accuracy of vacant service
QoS prediction.

Since MAE is linear to the deviation of QoS prediction, all the
individual differences are weighted equally in the average, which
cannot well uncover those predicted QoS having sharp deviations
on their corresponding original ones. To this end, RMSE is applied
to measure the deviations between those predicted QoS and their
corresponding observed QoS, which is then squared and averaged
for calculating the square root. It is defined as follows.

RMSE =

√∑
u,i(ru,i − r̂u,i)2

N
(17)

RMSE represents a relatively high weighting to large errors be-
cause they are squared before they are averaged by the number
of samples to be predicted.

In the experiments, MAE reflects the overall accuracy of tem-
poral service QoS prediction, which averages absolute deviations
to the original QoS values. Compared with MAE, RMSE is more
sensitive to individual outliers by representing a relatively higher
weighting to large errors on predicted temporal-aware service
QoS values.

4.3. Competing approaches

To evaluate the effectiveness of DeepTSQP, nine competing ap-
proaches, including one baseline, six state-of-the-art approaches,
including WSPred [24], CARP [27], CLUS [27], RNCF [37], TU-
IPCC [23] and PLMF [40], and two GRU-based variants of our
self-developed approaches. They are described as below.

https://github.com/wsdream/wsdream-dataset
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Fig. 3. The trend of training error with training batches.
• Mean: It is a basic comparison approach, which directly
calculates the average QoS value of a service as its predicted
QoS value.

• WSPred [24]: It leverages the traditional user-service two-
dimensional matrix factorization, which is upgraded with
temporal feature by three-dimensional tensor factorization.
Compared with the traditional matrix factorization, it takes
into account temporal feature and obtains more reliable
service QoS prediction.

• CARP [25]: It sets up different time window sizes and ag-
gregates all user-service invocation matrices in a time win-
dow. By aggregating invocation QoS matrices across multi-
ple temporal slices, the vacant QoS values can be predicted
by matrix factorization.

• CLUS [27]: It applies K-means to generate multiple dimen-
sional clusters from user, service, and temporal slices. Then,
the mean value of the clusters in each dimension is cal-
culated as the axis to construct a feature space. Finally,
the known QoS value is predicted by performing weighted
calculation within the feature space.

• RNCF [37]: It incorporates a multi-layer GRU structure into
neural collaborative filtering framework that shares the ser-
vice QoS invocation records across different temporal slices.

• TUIPCC [23]: It is a temporal-aware collaborative filtering
approach. Firstly, it calculates the average value of filtered
historical QoS as temporal value. Then, it uses temporal-
aware similarity computation mechanism to select neigh-
borhood users (or services), and further predict CF-based
QoS value. Finally, temporal value and CF-based QoS value
are combined together to predict the missing QoS.

• PLMF [40]: It is an LSTM-based temporal-aware service QoS
prediction approach. Firstly, the three dimensional tensor
of user-service-time invocation relationship is represented
with one-hot encoding. Then, the encoded feature vector
is embedded through a fully-connected network to make
dimensionality reduction. Finally, LSTM is applied to extract
the implicit temporal feature and predict the missing service
QoS.

• OneHotGRU: It is our self-developed variant approach. Here,
we use one-hot encoding to generate feature representation
of users and services. It is used to compare and verify
the effectiveness of temporal feature representation and
integration.

• BinGRU: It is our another self-developed variant approach.
Unlike the DeepTSQP, it first represents temporal feature
of users and services using binarization feature without
neighborhood information. Then, we propose a deep neu-
ral network by GRU, mining temporal aggregated feature
among users and services, and predicting the vacant service

QoS.

7

• DeepTSQP: It is an improved version of BinGRU, and is
our main proposed approach for temporal-aware service
QoS prediction. Both binarization feature and similarity fea-
ture are integrated to represent temporal feature of users
and services, which are fed into GRU to learn the nonlin-
ear invocation relationship among users and services for
temporal-aware service QoS prediction.

4.4. Experimental results and analyses

To validate the effectiveness of our proposed approach DeepT-
SQP for temporal-aware service QoS prediction, we compare it
with state-of-the-art approaches. In the experiments, we run all
these competing approaches with the same training and testing
dataset, which are conducted for several times to guarantee the
fairness of the performance comparison between our proposed
approach and the baselines.

In the iterative training process through back propagation
mechanism and Adam stochastic gradient descent algorithm, the
performance error on the training set decreases as the number
of iterative training increases. Fig. 3 illustrates one of the model
training processes of DeepTSQP. From the results, we can find that
RMSE gradually declines from 3.0 to around 0.6 to reach a steady
state. Simultaneously, MAE varies from 1.4 to approximately 0.2
to keep a steady prediction accuracy.

After the model training is completed, the prediction results
on the test set are obtained by feeding the test samples into
the model. In order to compare with the existing approaches,
three versions of the temporal-aware service QoS prediction ap-
proaches, denoted as DeepTSQP, BinGRU and OneHotGRU, are
used in the experiments. Table 3 shows the experimental re-
sults of accuracy on service QoS prediction in terms of MAE and
RMSE compared with state-of-the-art approaches. Here, lower
MAE and RMSE indicate better prediction accuracy on service
QoS prediction. From the experimental results, RNCF performs
relatively well on RMSE, but it becomes significantly worse on
MAE at different QoS matrix densities. At a specific density of
0.1, TUIPCC achieves superior QoS prediction accuracy on both
MAE and RMSE, while it cannot keep well at remaining densi-
ties in service QoS matrix. Overall, PLMF performs the best at
different densities on both MAE and RMSE among all state-of-
the-art competing approaches. However, it is observed that our
proposed approach DeepTSQP outperforms the most effective one
PLMF, which has the highest QoS prediction accuracy among
all the competing approaches. Specifically, compared with PLMF,
the improvement of DeepTSQP on MAE ranges from 3.94% to
29.76% at different densities, where superior performance on

QoS prediction can be obtained at higher densities. As for RMSE,
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Table 3
The experimental results on temporal-aware service QoS prediction among competing approaches.

MAE RMSE

Density 0.05 0.1 0.15 0.2 0.05 0.1 0.15 0.2

Mean 1.2212 1.1055 1.05 0.9782 2.8706 2.6573 2.5392 2.3252
WSPred 0.7317 0.6894 0.6734 0.6635 1.7074 1.6339 1.6068 1.5931
CLUS 0.7842 0.7542 0.735 0.7185 1.8921 1.903 1.9046 1.8948
CARP 0.8759 0.7709 0.7282 0.6992 2.2437 2.0397 1.9424 1.8556
RNCF 1.048 1.010 0.974 0.958 1.616 1.546 1.503 1.470
TUIPCC 0.7814 0.5767 0.8196 0.6970 1.7761 1.2076 2.0595 1.6358
PLMF 0.7267 0.6786 0.6582 0.6444 1.7059 1.6126 1.5749 1.5525
OneHotGRU 1.036 0.9702 0.8887 0.8708 2.2479 2.3846 2.2296 2.2184
BinGRU 0.7101 0.701 0.5563 0.5268 1.7622 1.5503 1.4595 1.4116
DeepTSQP 0.698 0.5794 0.5202 0.4526 1.5937 1.4572 1.3366 1.214
Gains 3.94% 14.62% 20.96% 29.76% 6.58% 9.64% 15.13% 21.80%
Fig. 4. Performance impact of temporal-aware service QoS prediction among DeepTSQP, BinGRU and OneHotGRU on MAE along with the variations of time window
izes at different matrix densities.
eepTSQP receives better performance over PLMF from 6.58% to
1.80%. The main reason can be explained by two aspects. First,
n integrated temporal feature representation is taken by inte-
rating binarization feature and similarity feature, which leads to
etter temporal feature of a user and a service by qualitatively
nd quantitatively reflecting the latest invocation information
t a specified temporal slice. Second, DeepTSQP leverages the
dvanced recurrent neural network GRU for more effectively
earning the implicit nonlinear relationship when a user invokes
service across multiple temporal slices.
In order to analyze the performance impact of proposed ap-

roach DeepTSQP on MAE and RMSE, a set of experiments are
arried out by sampling the rtdata of WS-Dream dataset. The QoS
atrix density spans from 10% to 60%, and the interval is set by
0%. Meanwhile, the size of time window is set from 1 to 10,
here the interval is set by 1. The accuracy impact of service
oS prediction on MAE and RMSE among DeepTSQP, BinGRU
nd OneHotGRU along with the variations of time window sizes
t different matrix densities are shown in Fig. 4 and Fig. 5,
espectively.

It is observed from the results that, DeepTSQP receives more
ccurate QoS prediction performance compared with our two
elf-developed variants BinGRU and OneHotGRU at different ma-
rix densities. The possibility on the superiority of DeepTSQP is
hat it performs better representation of temporal feature than
inGRU and OneHotGRU, where DeepTSQP represents a user’s or
service’s temporal feature by considering both similar neigh-
orhood information and interactive invocations among users
8

and services. However, BinGRU only considers the binarization
representation to characterize temporal feature of a user or a ser-
vice, resulting in the loss of collaborative similarity among users
and services. Meanwhile, OneHotGRU utilizes one-hot encoding
to distinguish individual users or services, while it is difficult to
capture dynamic changes of interactive invocations among users
and services over time.

Furthermore, a comprehensive analysis on the variations of
both matrix density and time window size is performed with
three-dimensional visualization as illustrated in Fig. 6, which
shows the accuracy of service QoS prediction among MAE and
RMSE for OneHotGRU, BinGRU and DeepTSQP as the variations of
matrix density and time window size. From the results of three-
dimensional visualization, it can demonstrate that higher matrix
densities receive better overall prediction accuracy than those at
low densities, no matter how many time windows have been
taken into account for service QoS prediction. However, temporal
features play an extraordinary role in predicting missing QoS of
web services, as the matrix density changes at different levels.
We conclude that they interact with each other under three
different circumstances. When the matrix density is extremely
low with sparse service QoS invocation records, the influence of
a larger time window is beneficial to positively provide more
temporal invocation information for mining the implicit non-
linear relationship of users and services, yielding to better QoS
prediction accuracy. As the matrix density becomes higher and
higher, a larger time window gradually drops off on the service
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Fig. 5. Performance impact of temporal-aware service QoS prediction between DeepTSQP, BinGRU and OneHotGRU on RMSE along with the variations of time window
sizes at different matrix densities.
QoS prediction. Moreover, when the matrix density continues to
increase, a larger time window even incur a worse performance
on service QoS prediction.

The above phenomena can be more deeply explained from
he context of service invocation. The QoS values of web services
ublished on the Internet are more closely related to the current
ontextual environment. That is, the longer the interval of QoS
nvocation records, the greater the degree of changes on network
pplication context. Therefore, the historical QoS data closer to
he current temporal slice has more relevance to service QoS
rediction, while those far away from the current temporal slice
ave less influence on the prediction of missing service QoS.
Consequently, although service QoS prediction accuracy can

e improved by mining implicit temporal relationship from ser-
ice QoS invocation records over a period of time, it is harmful
o apply more historical QoS invocation data with longer time
ntervals. The reason is that they may partially dilute the impor-
ance of those service QoS invocation data closer to the current
emporal slice. Therefore, there are two extreme possibilities in
pplication scenarios. One one hand, in case of low QoS matrix
ensity, missing QoS prediction cannot be effectively performed
y the current temporal slice due to the insufficient provision of
ervice QoS invocation records, where mining implicit temporal
rend on service QoS invocation data as heuristics can be an
ffective way to obtain more accurate service QoS prediction. On
he other hand, when the QoS matrix density is high enough,
here are adequate historical QoS data within the current tem-
oral slice for accurately predicting missing QoS values, where
he incorporation of temporal features may conversely degrade
he purity of service QoS data in the current temporal slice and
educe the accuracy of service QoS prediction. As the theoretical
asis from [23,40], they have the similar analytical experiment
esults on the relationship between the size of time window and
he accuracy of service QoS prediction.

From the perspective of real-world application scenarios, since
he number of both users and web services are exponentially
rowing and becoming larger and larger, the corresponding num-
er of user-service QoS invocation records is often very small.
n such case, service ecosystem only has high sparse service QoS
nvocation matrix. Therefore, it is of great practical significance to
ine temporal invocation relationship of users and services un-
er the sparsity of the QoS invocation matrix, which has potential
pplications in effectively improving the accuracy of service QoS
rediction.
9

5. Threats to validity

Threats to similarity validity. In real-world scenarios, a user
usually experiences only a very small subset of all the available
services, resulting in the sparsity of user-service QoS invocation
matrix. We use PCC to calculate the similarity between users
or services when performing similarity feature representation.
However, due to sparse user-service QoS invocation matrix, there
are few records of common QoS invocations between users or
services, which may lead to inaccurate calculation of similarity
and partially affect the accuracy of final missing QoS prediction.
From the experimental results, it can be seen that although our
approach performs better than the competing ones, the overall
prediction results become significantly worse as the density of
QoS invocation matrix becomes lower. In recent years, there have
been related studies on similarity calculation of sparse matrix [18,
19] that considered the indirect similarity relationship of users
or services to find implicit neighborhood information, potentially
boosting the QoS prediction accuracy. In future work, we plan to
further make improvements on similarity calculation for sparse
user-service QoS invocation matrix.

Threats to dataset validity. In the experiments, WS-Dream
dataset is used as training and testing samples, which are col-
lected from real-world web services and contain full elemental
characteristics for service QoS prediction. Nevertheless, as IT
evolves and network environment changes, WS-Dream may not
reflect the latest web service QoS invocation data. Due to the
outdated QoS records, that would possibly affect the effective-
ness of our proposed approach for temporal-aware service QoS
prediction to a certain extent. Therefore, it is necessary to keep
track of the latest advancements on dataset and conduct more
experiments to further validate and optimize the prediction ac-
curacy of DeepTSQP, once the new released dataset of temporal
QoS invocation records can be available collected by researchers
on the Internet.

6. Related work

6.1. Traditional service QoS prediction

Predicting missing service QoS in a traditional way can be cat-
egorized by three types of approaches, including memory-based,
model-based and deep learning based service QoS prediction.
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Fig. 6. Experiment results of changing trend on QoS prediction with the variations of both matrix density and time window.
Memory-based approaches mainly leverage collaborative fil-
ering (CF) for service QoS prediction, which consists of average
oS value calculation and deviation migration. This kind of ap-
roach is usually classified into user-based, service-based, and
heir linear combination with a weight coefficient [2]. The core
dea of memory-based service QoS approach is to find a set of
imilar users or services as neighborhood by similarity calcula-
ion, which is used to perform deviation migration and integrated
ith average QoS value. In recent years, some researchers have
ainly focused on approaches that can more accurately quantify

he similarity among users and services [3,4]. In addition, some
fforts have been imposed on enhancing the accuracy of QoS
rediction by introducing external heuristic information from
sers or services [5].
10
To alleviate the computing overhead and further boost the
QoS prediction accuracy, model-based approaches have been fully
investigated by matrix factorization (MF) and its variants [7,9], as
well as the improved factorization-based machines [10,11]. The
basic idea of predicting the unknown service QoS is to transform
a sparse higher-order matrix into an equivalent multiplication of
two lower-order matrices. After the two low-order matrices are
determined separately, those missing QoS values in the original
sparse matrix can be obtained by multiplying the two low-order
matrices together. Based on matrix factorization, the latent factor
model and its multiple variants have been widely investigated to
predict missing QoS values due to high scalability and prediction

accuracy [12–17].
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With the wide application of deep learning, researchers have
leveraged diverse deep neural networks to train effective predic-
tion model for solving service QoS prediction problem [20,21].
Wu et al. [20] proposed contextual features that are mapped
into a shared latent space to semantically characterize users and
services in the embedding layer, which effectively boosts the
prediction accuracy of missing service QoS. Furthermore, they
further extend from [20] to propose a topology-aware neural
(TAN) model for highly-accurate QoS prediction [21], where bi-
directional long short-term memory is applied to capture the
forward and backward dependence of a path and merge the fea-
tures of the nodes on the path into a single vector representation
for explicit modeling service invocations.

6.2. Temporal-aware service QoS prediction

Service QoS prediction with the consideration of temporal
feature has received many attentions in recent years. Temporal-
aware service QoS prediction can be summarized by the following
three aspects, including the integration of a temporal dimension
to the traditional approaches, ARIMA model-based approaches,
and deep learning-based approaches.

Hu et al. [22] integrated time information into the similarity
measurement and the service QoS prediction of the traditional
neighborhood-based CF, where they proposed a random walk al-
gorithm to select indirect similar users and services from user and
service graph, respectively. Tong et al. [23] proposed an improved
collaborative filtering based missing QoS prediction approach.
Firstly, it filtered out the historical QoS values with appropriate
timeliness. Then, it integrated the similarity computation results
at different temporal slices and selected similar users or services
as neighborhood information. Finally, it predicted missing QoS
values through hybrid collaborative filtering. Li et al. [26] pro-
posed a three-dimensional tensor to represent the relationship
among users, services and temporal features. Then, the traditional
matrix factorization algorithm is upgraded to adapt to three-
dimensional tensor factorization for more accurate service QoS
prediction and recommendation. Meng et al. [28] proposed a
temporal-aware hybrid collaborative approach of cloud service
recommendation, which analyzed the changes of service QoS and
user interests across various time series. Luo et al. [29] proposed
a biased non-negative latent factorization of tensors (BNLFTs)
model, which extracted temporal latent factors from dynamic QoS
data for predicting missing ones. During the process of model
training, it integrated the principle of single LF-dependent, non-
negative, and multiplicative update (SLF-NMU) and alternating
direction method (ADM) to promote the effectiveness of service
QoS prediction.

Due to the correlation between the tasks of temporal-aware
service QoS prediction and sequence prediction analysis, correl-
ative research exploits the ARIMA model to predict unknown
service QoS. Hu et al. [30,31] formulated an ARIMA model of
service QoS values, and applied Kalman filter algorithm to pre-
dict temporal-aware service QoS. Amin et al. [32] proposed a
hybrid approach that integrates ARIMA and generalized autore-
gressive conditional heteroskedasticity model to effectively solve
the problem of time-series service QoS prediction. Ding et al. [33]
combined ARIMA model with a memory-based collaborative fil-
tering approach, where the nearest neighbor collaborative fil-
tering algorithm is used to predict a target user’s personalized
service QoS value based on the fundamental value of ARIMA
model.

With the advancements of deep learning techniques,
researchers have investigated deep learning based service QoS
prediction with temporal feature. In recent years, RNN and its
variant LSTM model are commonly applied in temporal-aware
11
service QoS prediction. Ko et al. [35], Wu et al. [36] and Liang
et al. [37] applied RNN models to recommender systems, where
time-series information is fed into RNN to fully extract feature
representation for further recommendation task. By applying an
improved recurrent neural network model LSTM, Wang et al. [38]
and Xiong et al. [39] considered temporal feature and received
remarkable effectiveness for service QoS prediction. After that,
Xiong et al. [40] proposed a personalized LSTM based matrix
factorization approach PLMF, which can dynamically capture the
latent representations of users and services for temporal-aware
service QoS prediction.

Motivated by the above investigations, we aim at focusing
on the issue of temporal-aware service QoS prediction by deep
learning and feature integration. To solve this problem, we pro-
pose a novel deep learning based approach DeepTSQP, which can
significantly improve the accuracy of service QoS prediction, by
learning the nonlinear invocation relationship among users and
services with GRU and promoting the feature representation with
the combination of binarization and similarity features.

7. Conclusion and future work

In this paper, we focus on the issue of temporal-aware ser-
vice QoS prediction by novel feature representation of users and
services. Binarization feature and neighborhood similarity feature
are integrated together to reflect the dynamic temporal feature
of a user and a service along with the variations of interactive
invocations over time. Moreover, GRU as an advanced recurrent
neural network is applied to mine temporal aggregated features
across multiple temporal slices, which can more effectively cap-
ture the implicit nonlinear relationship among users and services
leading to better performance of service QoS prediction. Extensive
experiments have been conducted on a real-world temporal QoS
invocation dataset. The results demonstrate that DeepTSQP can
receive superior accuracy of service QoS prediction compared
with state-of-the-art benchmarking approaches.

In the future, we plan to further explore the integration of
external heuristic information such as geographical locations of
users and services into DeepTSQP for boosting the accuracy of
temporal-aware service QoS prediction.
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