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Abstract—As the 5th generation (5G) network develops and
rolls out rapidly, user requests can be offloaded to nearby edge
servers for processing. This alleviates the pressure on the network
backhaul and the remote cloud. Nevertheless, the edge user
allocation (EUA) problem, as one of the main research chal-
lenges in the 5G era, has become a major obstacle to ensuring
users’ Quality of Experience (QoE) in the edge computing envi-
ronment. Conventional EUA approaches, ranging from static
global allocation model to online decision-making model, have
ignored the long-term impact of the changes in users’ expecta-
tions on user-perceived Quality of Service (QoS). Additionally,
most existing approaches have not taken into account the dis-
tance between an edge user and an edge server, which impacts
the user’s data rate profoundly. In this paper, we tackle these
challenges by formulating EUA problem as a spatial-temporal
one (ST-EUA), which models distance-aware QoS based on the
wireless transmission attenuation and models users’ QoE based
on the Expectation Confirmation Theory (ECT). To find an
appropriate solution for ST-EUA problem, we develop two fuzzy
control-based approaches, namely FC and BFC, for on demand
scenarios and batch processing scenarios, respectively. They can
balance effectively the user consolidation and server load. We
conduct extensive experiments based on two widely-used real-
world datasets. The results demonstrate the superiority of our
FC and BFC in effectiveness and efficiency over the baselines
and state-of-the-art.

Index Terms—Edge user allocation, expectation confirmation
theory, fuzzy control, quality of experience, quality of service.
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I. INTRODUCTION

EDGE computing paradigm has aroused many interests in
recent years [1]–[4]. In edge computing, multiple edge

servers are allowed to be deployed at cellular base stations [5],
thereby pushing diverse computing resources such as CPU,
memory and storage to the network edge [6]. This liberates the
struggle of traditional cloud computing paradigm in fulfilling
the ever-increasing user demands [7]. The computation tasks
can be directly offloaded from end-devices to the edge servers
instead of the remote cloud center, enabling edge users to
satisfy the configurable and abundant computing and storage
resources without the unpredictable network congestion [8].

Offering unique advantages and opportunities, edge comput-
ing also raises many new and crucial challenges. Edge User
Allocation (EUA), as one of these challenges, has attracted
a lot of attention very recently [9]–[18]. In an area pow-
ered by 5G, edge servers are often densely and unevenly
distributed to collectively cover the entire area. Adjacent edge
servers’ coverage areas often intersect. Under the proximity
and capacity constraints, EUA aims to allocate users to their
nearby edge servers appropriately to cost-effectively utilize the
resources hired on edge servers. In different EUA scenarios,
various optimization goals may be pursued, e.g., maximizing
user allocation rate [9], [11], [12], [14], [17], [18], minimiz-
ing resource cost [9], [14], [17], minimizing communication
interference [16], minimizing reallocation rate [11], and max-
imizing user satisfaction [10], [13], [15], [19]. Unfortunately,
these approaches either do not consider the long-term impact
of the changes in users’ expectations on QoS, or do not
consider the different user-perceived QoS caused by wireless
transmission loss. This will bring unstable resource allocation
to the users, leading to serious user dissatisfaction.

More specifically, the limitations of existing EUA
approaches are twofold. First, they do not consider the tem-
poral feature of the EUA problem properly, which involves
the users’ QoS expectation and the overall server load pro-
file. For example, a user may maintain a service session for
a period of time, and develop an increasing QoS expectation
over a series of service invocations during the service ses-
sion. An inappropriate allocation that produces unstable QoS
will fail to fulfil the user’s QoS expectation. From the service
vendor’s perspective, a straightforward objective is to moni-
tor and fulfil the user’s QoS expectation over time. Second, it
was observed from our previous work [13] that the distance
between an edge user and edge server plays an extraordinarily
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important role in the EUA problem due to its impact on the
user’s data rate. In general, the data rate of a user connected
to an edge server declines gradually as it moves away from
the edge server. Existing EUA approaches have not considered
this spatial feature properly and suffers from poor performance
in real-world EUA scenarios.

This new problem is referred to as the Spatial-Temporal
Edge User Allocation (ST-EUA), the solution to which must
consider the effect of time (temporal perspective) and distance
(spatial perspective). To the best of our knowledge, this paper
is the first attempt to investigate the ST-EUA problem. To
solve this problem, we propose two approaches based on fuzzy
control, namely FC and BFC, for finding an EUA strategy by
incorporating user consolidation and server load balance in the
long run. In the scenarios where user requests are sparse, we
design FC to allocate a singleton user on demand by only using
the information of nearby edge servers (decentralized). In the
scenarios where edge servers face with intensive user requests,
we present BFC, which utilizes the overall server load profile
(centralized) and thus produces a global optimal allocation for
a batch of users. It is noteworthy that both FC and BFC bal-
ance the allocation preference in user side and service provider
side, i.e., consolidating users when edge servers are full of
computing resources, and adjusting server capacities when it
comes to excessive user demands. The main contributions of
this paper are summarized as follows.

• We formulate the ST-EUA problem by modeling distance-
aware QoS based on the wireless transmission attenuation
process, and modeling users’ QoE based on the expec-
tation confirmation theory. The ST-EUA problem can
then be transformed into an optimization problem with
multiple global constraints.

• We develop two fuzzy control-based approaches, FC and
BFC, by coupling the long-term user consolidation and
server load balance. FC is designed for find a sub-optimal
allocation on demand for a singleton user in the scenar-
ios where user requests are sparse, while BFC produces
global optimal allocation for a batch of users in the
scenarios where user requests are intensive.

• Extensive experiments conducted on two widely-used
real-world datasets from Melbourne and Shanghai are
carried out to demonstrate the effectiveness and efficiency
of FC and BFC. The results show that the two proposed
approaches significantly outperform state-of-the-art and
those baseline approaches.

The remainder of the paper is organized as follows.
Section II motivates this research with an example. Section III
formulates the ST-EUA problem formally. Section IV trans-
forms the ST-EUA problem into an optimization problem, and
presents FC and BFC in detail. Section V designs and ana-
lyzes the experiments. Section VI discusses the limitations
of this work. Section VII reviews the related work. Finally,
Section VIII concludes the paper and points out the future
work.

II. MOTIVATING EXAMPLE

To illustrate the temporal feature in the EUA problem, let
us consider a typical game streaming service at the edge,

Fig. 1. An example of distance-aware edge user allocation problem.

where gaming video is rendered on the edge server before it is
streamed to edge users. Gaming videos can be streamed at dif-
ferent quality levels, e.g., 360p, 720p, 1080p, 1440p and UHD,
as long as the edge server has adequate computing resources
to process these gaming videos for all the users allocated to
it. Many possible allocation strategies can be formulated to
maximize the allocation rate [9], [11], [12], [14], [17], [18] or
the overall user satisfaction [10], [13], [15]. However, existing
approaches have ignored the influence of temporal feature and
edge users’ QoS expectations. For example, when an active
user playing the game with 1080p or UHD, a downgrade
to 360p is very likely to may cause a bad user experience.
Similarly, if we always try to maximize every user’s QoE at
the current time slice, they may suffer significant QoE down-
grade in subsequent time slices if edge servers’ computing
resources do not suffice to serve all the users at their expected
QoS levels. Therefore, edge user allocation in a time slice
requires the proper use of edge services’ computing resources.
Thus, users’ historical and future requests must be taken into
account to formulate a sustainable EUA strategy in the long
term.

To motivate this study, let us take Figure 1 as an exam-
ple for distance-aware edge user allocation. There are three
edge users {u1, u2, u3} and two edge servers {s1, s2} in a par-
ticular area. Based on the pay-as-you-go price model, when
the users pay for a service deployed on the edge servers, ser-
vice vendor make full use of the computing resources on edge
servers to serve them. The users that is not covered by any
base stations, e.g., u3, can be served by a remote cloud server.
Since u1 is closer to s1, it can receive a stronger wireless
connection signal, leading to a higher data transmission rate.
Therefore, allocating u1 to s1 is a proper solution. Being cov-
ered by two overlapping base stations, u2 can be allocated
to either s1 or s2. To maximize the overall user satisfaction,
existing approaches tend to allocate u2 to s2, including the
one proposed in our previous work [13]. As a matter of fact,
u3 might also be allocated to s1 to balance the load on edge
servers, or to s2 to consolidate edge users.

III. SYSTEM MODEL

A. Problem Definition

In edge computing, edge servers are equipped with diverse
computing resources (such as CPU, RAM, storage and
bandwidth), and are often deployed around base stations [5].

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on February 02,2023 at 14:52:47 UTC from IEEE Xplore.  Restrictions apply. 



4920 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 4, DECEMBER 2022

TABLE I
NOTATIONS

Edge users can access required services from nearby edge
servers instead of the cloud. This ensures a reliable and low-
latency wireless communication connection. The key notations
in this paper and their descriptions are summarized in Table I.

From the service providers’ view, when they response to
their users’ service requests, the QoS can be measured. The
Quality of Service is defined as follows:

Definition 1 (Quality of Service): Given the allocated com-
puting resources r

(t)
i to an edge user ui and the distance

between the corresponding edge server d
(t)
ij , the QoS can be

calculated to measure the service quality perceived by ui .
According to the Expectation Confirmation Theory

(ECT) [20], a user’s actual QoE is not solely correlated with
QoS. It depends on whether its QoS expectation is fulfilled.
The Quality of Experience is defined as follows:

Definition 2 (Quality of Experience): Given the QoS pro-
vided by the service provider and the QoS expected by a user,
the user’s QoE can be calculated to measure the its satisfaction
with the service.

By integrating the above definitions of QoS and QoE, the
spatial-temporal edge user allocation (ST-EUA) problem can
be defined as follows:

Definition 3 (Spatial-Temporal Edge User Allocation):
Given a set of users U = {u1, u2, . . . , u|U |} and a set of
edge servers S = {s1, s2, . . . , s|S |} in a particular area, the
spatial-temporal edge user allocation (ST-EUA) problem aims
to allocate these users in U to appropriate edge servers in S
to maximize their overall QoE, with the consideration of their
varying QoS expectation across multiple time slices and their
distance from edge servers.

Fig. 2. Correlation function used in ST-EUA modeling.

B. Distance-Aware QoS Model

1) Quantitative Correlation Between QoS and Computing
Resources: The QoS provided to a user by an edge server
depends on the computing resources allocated to the user.
However, QoS is not linearly correlated with the amount of
the computing resources allocated to serve the user [21]–[23].
As illustrated in Figure 2(a), as the amount of computing
resources increases, the corresponding QoS raises slowly at
first, speeds up after that, and finally converges to a sta-
ble status. It is consistent with the real-world scenarios. For
example, in the typical game streaming service, since a 360p
video resolution is obviously blurry for users, an increment
from 360p to 720p graphic can significantly improve the
quality of video provision. Conversely, if we continue to
improve the video resolution, there is no perceptible differ-
ence between 1080p and 1440p for the majority of users. As in
[10], [13], [15], [19], we apply sigmoid function to modeling
the correlation between QoS and computing resources. The
coefficients of sigmoid function can be artificially adjusted
for better ST-EUA problem modeling. Formally, it can be
expressed as follows:

wl =
A

1 + eB(c̄l−C )
(1)

where wl is a discretized QoS level, c̄l is the discretized mean
value of the amount of computing resources, A is the maximum
value of QoS, B is the growth rate of the curve and C is
the value at the middle of the curve. It is worth noting that
we discretize the amount of computing resources into several
levels to simplify the simulation, as in [10], [13], [15], [19].

2) QoS Attenuation of Wireless Transmission: Beside com-
puting resources like CPU and RAM, a user’s QoS relies
heavily on its data transmission rate that is influenced by
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Fig. 3. Illustration of expectation confirmation theory.

its wireless signal strength. In general, it decreases when the
distance between the user and the edge server increases. As
discussed in [13], the Free Space Path Loss (FSPL) model [24]
can be used to model the process of wireless transmission
attenuation. It is part of IEEE 802.11 standard [25], where
wireless transmission is considered as the spherical diffusion
in free space. Thus, the receiver power depends on the occu-
pied surface area on the ball. Specifically, the attenuation of
signal strength in a free space can be calculated as follows:

γ(d) =
Pr

Pt
= GtGr

(
λ

4πd

)2

(2)

where Pr and Pt are the receiver power and transmission
power, respectively, Gt and Gr are the transmission antenna
gain and receiver antenna gain, which are generally set to 1,
respectively, d is the distance between transmitter and receiver
and λ is the radio wavelength.

In edge computing, edge servers are attached to base stations
and provide computing resources for user requests. Powered
by 5G or 4G technologies, user-perceived QoS is attenuated
during the wireless transmission process. Therefore, the key
influence factor in a user’s data rate is its distance from the
edge server. As illustrated in Figure 2(b), the signal strength
decreases as this distance increases. The attenuation coefficient
can be expressed as:

γ
(
d
(t)
ij

)
=

⎛
⎝ ξ

d
(t)
ij

⎞
⎠

2

(3)

where γ(d
(t)
ij ) is the attenuation coefficient for the commu-

nication, ξ is an parameter that adjusts the variations in the
FSPL model.

Given a computing resource level and the distance at time t,
an edge user ui ’s perceived QoS can be calculated as follows:

w
(t)
i = wl × γ

(
d
(t)
ij

)
(4)

C. ECT-Based QoE Model

To accurately reflect edge users’ QoE over time, the expec-
tation confirmation theory (ECT) is applied to build a QoE
model. ECT consists of four components, including expecta-
tions, perceived performance, disconfirmation of beliefs and
satisfaction. As shown in Figure 3, expectations refer to the
characteristics or attributes that a person anticipates. It is
posited to directly influence both perceived performance and
disconfirmation of beliefs. Perceived performance refers to the

quality of service provided by service providers, measured by
QoS. By combining the amount of computing resources and
distance between an edge user and an edge server, we can
directly apply Equation (4) to represent the edge user’s per-
ceived performance. Disconfirmation of beliefs refers to the
evaluations or judgements a user makes in regard to a service,
compared with its original expectations. When the perceived
performance is below an edge user’s expectations, the dis-
confirmation is negative with a unsatisfactory mental state.
Conversely, when the actually perceived performance is above
its expectations, the disconfirmation of beliefs becomes pos-
itive with user satisfaction. Satisfaction refers to the extent
that a user satisfy the provided QoS, measured by QoE. It is
worthy noting that we assume that the influence of expecta-
tions on perceived performance is negligible in that most edge
users are more sensitive to provided unstable QoS. In the ST-
EUA problem, since perceived performance is represented by
the QoS provided from service provider to an edge user ui at
time t, satisfaction can be calculated based on QoE as follows:

e
(t)
i = w

(t)
i − ŵi

(t) (5)

where w
(t)
i represents ui ’s perceived QoS at time t and ŵi

(t)

represents its expected QoS at time slice t.
According to the above calculation in (5), QoE is 0 if an

edge user’s expected QoS is confirmed. However, if an edge
user’s disconfirmation is positive or negative, the expected QoS
varies. That is, it increases with the positive disconfirmation of
beliefs, and decreases with negative disconfirmation of beliefs.
Hence, the dynamic expected QoS of an edge user over time
can be modeled as follows:

ŵi
(t+1) = ŵi

(t) +

(
1− 1

1 + e |e
(t)
i |

)
× e

(t)
i (6)

where 1

1+e|e
(t)
i

|
is a standard sigmoid activation function. The

greater the gap between the expected QoS and actually allo-
cated one becomes, the smaller the activation function is,
yielding a bigger change value. However, the expected QoS
does not change indefinitely as the gap increases.

IV. APPROACH

In this section, we first transform the ST-EUA problem into
an optimization problem that aims to maximize users’ mean
QoE across multiple time slices under multiple constrains. To
solve the optimization problem, we then present two fuzzy
control based approaches, one for generating an immediate
allocation strategy with local optimization for a single edge
user in decentralized manner, and the other for finding an
approximate solution with global information for a batch of
edge users in centralized manner.

A. ST-EUA Optimization Modeling

We consider an ST-EUA scenario with a set of edge servers
S = {s1, s2, . . . , s|S |} in a particular area and an incoming set
of edge users U = {u1, u2, . . . , u|U |}, The objective of the
ST-EUA problem is to find an allocation strategy f : U → S
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that maximizes the sum of user’ mean QoE across multiple
time slices. The objective function is modeled as:

max :

|T |∑
t=1

¯e(t) =

|T |∑
t=1

∑|U |
i=1 e

(t)
i

|U | (7)

Here, users’ mean QoE at each t is calculated individually
because the numbers of users may vary across multiple time
slices. The solution to an ST-EUA problem must fulfil multiple
constraints, including capacity constraint, proximity constraint
and allocation constraint:
s .t .:

|U |∑
i=1

|C |∑
l=1

clx
(t)
ijl ≤ r

(t)
j , ∀sj ∈ S , ∀t ∈ T (8)

d
(t)
ij x

(t)
ijl ≤ cov(sj ), ∀ui ∈ U , ∀sj ∈ S , ∀cl ∈ C , ∀t ∈ T

(9)
|S |∑
j=1

|C |∑
l=1

x
(t)
ijl ≤ 1, ∀ui ∈ U , ∀t ∈ T (10)

x
(t)
ijl =

{
1, if ui is allocated to sj with cl at t
0, otherwise.

(11)

where x
(t)
ijl is an binary variable that indicates whether an

edge user ui can be allocated to an edge server sj with
computing resource level cl in time slot t, as demonstrated
in Constraint (11). Constraint (8) makes sure that any edge
server sj cannot provide the computing resources that exceed
their corresponding upper bound capacity at any time t.
Constraint (9) illustrates that any edge user ui can only be
allocated to a candidate edge server sj that covers the ui at
any time t. Constraint (10) ensures that any edge user ui can
be assigned to at most one edge server at the same time.

B. Decentralized Fuzzy Allocation of Singleton Edge User

In many time-sensitive application scenarios, service
requests submitted by edge users are random. Edge users must
be assigned to edge servers immediately so that their requests
can be processed timely. To accommodate the randomness in
edge users and their requests, we propose an approach named
FC based on Fuzzy Control for allocating edge users indi-
vidually. It is an online approach employed by edge servers
to perform real-time user allocation in decentralized manner,
pursuing user consolidation and load balance at the same time.
Specifically, user consolidation aims to consolidate the edge
users when there are sufficient computing resources, avoiding
to waste computing resources in the long run. With regard to
load balance, it reflects to what extent the proposed approach
can lower the average resource allocation for retaining the
stable services in the future.

1) Overview of FC: Algorithm 1 shows the pseudo code of
FC. It starts with an edge user that submits a service request.
First, it obtains a set A of all the candidate edge servers satisfy-
ing the proximity constraint (line 1). If there are no candidates,
the edge user is allocated to the cloud (lines 2-3); otherwise,
the most suitable edge server and the corresponding resource
level is allocated to the user (lines 5-7).

Algorithm 1 Fuzzy Control (FC)
Input: an edge user ui .
Output: a decentralized allocation strategy f : ui → sj .

1: A ← S (ui ) # get the candidate edge servers for ui ,
satisfying capacity and proximity constraints

2: if |A| = ∅ then
3: allocate ui directly to the cloud
4: else
5: j ← SelectServer(ui ,A) # Algorithm 2
6: cl ← GetResourceLevel(β)
7: allocate ui to sj with resource level cl
8: end if
9: return the generated decentralized allocation strategy f

Algorithm 2 SelectServer
Input: an edge user ui ; candidate edge servers A.
Output: selected edge server sj .

1: V ← {vj = r0j −r
(t)
j

r0j
, ∀sj ∈ S} # calculate the resource

utilization rate of all available edge servers

2: ρ ←
∑|V |

j=1 vj
|V | # calculate the mean of the resource

utilization rate

3: δ ←
√

∑|V |
j=1(vj−ρ)2

|V | # calculate the standard of the
resource utilization rate

4: β ← FuzzyInference(ρ, δ) # calculate strategy parame-
ter

5: M ← ∅ # user consolidation scores
6: N ← ∅ # load balance scores
7: for j = 1 to |A| do
8: mj ← r

(t)
j /d

(t)
ij

9: nj ← vj − ρ
10: M ← M ∪mj

11: N ← N ∪ nj
12: end for
13: T ← ∅ # overall scores
14: for j = 1 to |A| do
15: xj = (mj −min(M ))/(max (M )−min(M ))
16: yj = (nj −min(N ))/(max (N )−min(N ))
17: tj = β × xj + (1− β)× yj
18: T ← T ∪ tj
19: end for
20: j ← argmaxj {tj :tj ∈ T}
21: return sj

The SelectServer algorithm employed by Algorithm 1 is a
fuzzy control based algorithm. Its pseudo code is shown in
Algorithm 2. Based on the candidate servers, it calculates the
resource utilization rate of all the candidate edge servers (line
1). Then, the mean and standard of resource utilization rate are
calculated (lines 2-3). The result is fed into the fuzzy control
inference system to obtain a strategy parameter (line 4). This
strategy parameter represents the tendency to consolidate user
preferences or load balance among edge servers, which is also
used in Equation (12) to obtain the resource level to be allo-
cated. The higher the strategy parameter is, the more likely it
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Fig. 4. Illustration of fuzzy inference of strategy parameter.

will increase user satisfaction. Once the strategy parameter is
deduced, we can calculate the scores for individual candidate
edge servers (lines 5-12). It consists of two parts, including
user consolidation score and load balance score. Specifically,
the user consolidation score of an edge server mj indicates the
extent that it can offer excellent QoS, measured by the ratio
between the available computing resources available to sj and
the geographical distance dij at time t. As for the load balance
score of each edge server nj , it is evaluated by using its cur-
rent resource utilization rate and candidate edge servers’ mean
value at time slice t. After the calculation of user consolida-
tion and load balance scores, M and N are standardized and
combined to calculate an overall score T for each edge server
with the strategy parameter as the regulating coefficient (lines
13-19). Finally, the maximum variable function is applied to
find a solution that allocates the user to the edge server with
the highest overall score (line 20).

Since the global information is inaccessible, a straight-
forward method for allocating one edge user with different
resource levels is applied by partitioning the strategy param-
eter into several adjacent discrete intervals. In general, as
the strategy parameter becomes larger, it tends to increase
user satisfaction, leading to a higher resource level. It can be
formulated as follows:

GetResourceLevel(β) = cl ,
l − 1

d
≤ β <

l

d
(12)

where d is the number of discretized QoS levels and cl is
the l -th discretized QoS level. Here, we directly exploit lin-
ear mapping between the computing resource level cl and the
strategy parameter β. That is, when the strategy parameter
is high, we allocate more computing resources to consoli-
date user edge users. The other nonlinear mapping functions
can also be adopted to optimize and improve the allocation
performance of computing resources.

2) Fuzzy Inference of Strategy Parameter: Figure 4 shows
a crucial component of our proposed BFC and FC -
FuzzyInference. It takes candidate edge servers’ mean and
standard resource utilization rate as inputs, and outputs the
strategy parameter that can balance the supply of edge servers
and the demand of users.

At first, we fuzzify the input and output variables by divid-
ing the mean value ρ ∈ [0, 1] into three fuzzy sets: low mean
(LM), medium mean (MM) and high mean (HM); the stan-
dard value δ ∈ [0, 0.5] into tree fuzzy sets: low standard

Fig. 5. Membership functions of ρ, δ and β.

(LS), medium standard (MS) and high standard (HS); the strat-
egy parameter β ∈ [0, 1] into six fuzzy sets: very low (VL),
low (L), slightly low (SL), slightly high (SH), high (H) and
very high (VH). Figure 5 illustrates the membership func-
tions of these fuzzy sets, which apply the commonly-used
bell curve and Z-shaped curve to fit the membership degree
of ρ, δ and β. The process of converting the actual values
of ρ and δ into fuzzy categories as the inputs of the infer-
ence engine is called fuzzification, while transforming the
output of inference engine into the strategy parameter β is
called defuzzification. These membership functions are used
in the fuzzification and defuzzification processes, indicating
that how much of ρ, δ or β belongs to a certain fuzzy cate-
gory. By the fuzzification of the input parameters, their actual
values can be converted into corresponding fuzzified cate-
gories. For example, assume that resource utilization mean
ρ is 0.2, it can be fuzzified as a collection of approximately
0.3 LM, 0.5 MM and 0.0 HM. Then, the inference engine per-
forms defuzzfication and outputs β factored by the fuzzified
inputs.

Given the fuzzy categories and their corresponding member-
ship functions, the empirical rule base can be introduced into
the inference engine to generate the mapping relationship from
the mean resource utilization rate ρ and the standard resource
utilization δ to the strategy parameter β. Here, Table II
shows inference regulations among ρ, δ and β, which is also
visualized in Figure 6. There are four cases:
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Fig. 6. The visualization of mapping relationship among ρ, δ and β.

TABLE II
RULE BASE OF ρ, δ AND β FOR INFERENCE ENGINE

(1) When ρ and δ are both low, β is very high, the aim is
to increase the user consolidation score and to maximize
the QoE;

(2) When ρ is high and δ is low, β is slightly high, so as
to slightly increase the user consolidation score on the
premise of ensuring load balance;

(3) When ρ is low and δ is high, β is slightly low, the allo-
cation scheme prioritizes load balance and temporarily
ignores user consolidation;

(4) When ρ is high and δ is high, β is very low, indicat-
ing that the edge servers are under high pressure, and
the candidate edge servers’ workloads are unbalanced. In
such cases, it mainly focuses on the optimization of load
balance to ensure the availability of computing resources
for processing service requests in subsequent time slices.

Now we analyze the time complexity of the FC approach.
Since the mapping relationship can be calculated offline, the
time complexity of FuzzyInference is O(1). Thus, the total
time computational complexity is O(|S |) for allocating an
edge user to an edge server, where |S | is the number of
edge servers. More specifically, it consists of finding the set
of candidate edge servers, calculating edge servers’ mean and
standard resource utilization rate, transforming and integrating
the standardized scores as an overall one of each edge server
and finding the edge server with the maximum score. To con-
clude, FC can efficiently obtain allocate users to edge servers
in polynomial time, making it a highly efficient approach.

C. Centralized Fuzzy Allocation of Batch Edge Users

Although FC can allocate individual edge users efficiently,
it is not always a suitable approach because it does not
optimize the use of resources across multiple edge servers,
especially when users do not have to be allocated in real
time. For example, when a user wants to join a multi-player
game online, it is usually acceptable for users to wait for

Algorithm 3 Batch Fuzzy Control (BFC)
Input: a batch of edge users U.
Output: a centralized allocation strategy f : U → S .

1: repeat
2: for i = 1 to |U | do
3: A ← S (ui ) # get the available edge servers for ui ,

satisfying capacity and proximity constraints
4: if |A| = ∅ then
5: pre-allocate ui directly to the cloud
6: else
7: j ← SelectServer(ui ,A)
8: if ui is not pre-allocated then
9: pre-allocate ui to sj with c1

10: else if ui is pre-allocated with cl and sj can
provide ui with cl+1 then

11: pre-allocate ui to sj with cl+1
12: end if
13: update f with pre-allocation of ui
14: end if
15: end for
16: until U converges to their allocated resource levels
17: return the generated centralized allocation strategy f

the game to initialize. In such cases, as the demonstrated
in [9], [10], [12], [13], [15], [17], edge users can be allocated
by batch to optimize the utilization of edge servers’ requests.
To accommodate such EUA scenarios, we propose an approach
named BFC that allocates edge users periodically based on
fuzzy control.

Algorithm 3 presents BFC, a centralized process of allocat-
ing edge users by batch. Unlike the FC approach that allocates
only one edge user at a time, BFC takes a batch of edge users
that arrived in the current time slice as inputs and outputs
an allocation strategy for all these edge users. It iteratively
carries out pre-allocation to gradually increase the resource
level of each edge user to dynamically coordinate the avail-
able computing resources. BFC starts with a until-loop (line
1) and terminates upon convergence, i.e., when no edge users’
resource levels can be improved further (line 16). For each
edge user in U (line 2), the algorithm finds the candidate edge
servers and selects a pre-allocated one sj with the maximum
overall score through fuzzy inference (lines 3 - 7). If ui has not
been allocated in previous iterations, it is pre-allocated to sj
with resource level c1 (lines 8-9); otherwise, if there are com-
puting resources to promote ui ’s current resource level, ui is
pre-allocated to sj with an updated resource level cl+1 (lines
10-11). At the end of each iteration, the algorithm updates the
pre-allocation state of ui under different conditions (line 13).
When the convergence condition is met, f is returned as the
allocation strategy (line 17).

The time complexity of BFC is O(|U ||S ||C |), where |U |,
|S | and |C | are the number of edge users, edge servers and
resource levels, respectively. Without considering the number
of users, its complexity is linear to the number of resource
levels and is only a little higher than FC. This indicates the
high efficiency of BFC.
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Fig. 7. The distribution of edge servers on Melbourne and Shanghai dataset.

Since |C | is much smaller than both |U | and |S |, it can
be omitted in the evaluation of the practical time complexity
of the BFC approach. Moreover, |U | is also much smaller
than |S | in real-world EUA scenarios. Thus, BFC can find a
solution to allocate edge users in polynomial time, which is
linear to the number of edge users to be allocated.

V. EXPERIMENTS

A. Datasets and Experimental Setup

To verify the effectiveness and efficiency of FC and BFC,
a series of experiments are conducted on two widely-used
real-world datasets, including the Melbourne dataset1 and the
Shanghai dataset.2 In the experiments, we select the base sta-
tions from Central Business District (CBD) area of Melbourne
and Shanghai Lujiazui area as the benchmarking datasets
as shown in Figure 7, which are distributed and scattered
unevenly in the areas because of the influence of urban
architecture and topography. Specifically, they contain the geo-
graphical locations of 125 base stations from Melbourne in
Australia and 63 base stations from Shanghai in China respec-
tively. We randomly generate the locations of edge users based
on the regularity of human activities. For an edge user, there
is 1 to 5 frequently visited places, e.g., homes, workplaces,
gyms and restaurants. At each moment, a random portion
of the users request the computing resources at one of their
frequently visited locations.

1https://github.com/swinedge/eua-dataset
2http://www.sguangwang.com/TelecomDataset.html

In the experiments, the parameters of all the approaches,
including our approaches and the competing ones, are tuned
to achieve the optimal performance. For the settings of the
distance-aware QoS model, we set A = 2, B = 1.5 and C = 3.5.
The dimension of computing resources is set to be 4, including
CPU, RAM, storage and bandwidth. The possible resource
levels are partitioned into five cases: c1 = <1, 2, 1, 2>, c2 =
<2, 4, 1, 3>, c3 = <3, 2, 4, 5>, c4 = <4, 5, 3, 6> and c5 =
<5, 6, 6, 5>. For the attenuation coefficient calculation, we set
ξ = 100m , and γ(d

(t)
ij ) = 1 if di j (t) < 100m .

Under each setting, the experiment runs for 150 time slices.
Considering that edge users’ QoS expectations in the previous
time slices are not stable yet, we set the initial expected QoS of
all users to be 0 in each run and omit the first 50 time slices to
obtain a reliable experiment result. In addition, we repeat each
experiments 50 times under each parameter setting and take
the average values as the final results. All the experiments are
carried out on a machine equipped with Intel Xeon Platinum
8260 CPU @ 2.40GHz.

B. Competing Approaches and Evaluation Metrics

To demonstrate the performance of FC and BFC, we com-
pare them with six competing approaches, including three
approaches based on integer linear programming (ILP) [9],
[10], [13], one state-of-the-art approach [15], and two greedy-
based approaches. For ILP-based approaches, we adopt a
well-recognized optimizer Gurobi3 to find the global optimal
solution.

• VSVBP [9]: This approach solves the EUA problem
based on integer linear programming (ILP), aiming to find
the optimal solution to maximize the number of allocated
edge users and the number of hired edge servers needed.

• DQoS [10]: This approach considers the quantitative cor-
relation between QoS and computing resources, and aims
to find the optimal solution that maximizes users’ overall
QoS based on ILP.

• DEUA [13]: It is our previous approach that considers
the distance between edge user and edge server into the
EUA problem. It leverages ILP to optimize edge users’
overall QoS.

• QoEUA [15]: It is a greedy-based approach based on
global information, which gradually increases the amount
of computing resources allocated to users, and generates
a solution that approximates the optimal QoS greedily.

• MaxQoSGreedy: It is a greedy-based approach designed
for ST-EUA problem. It assigns each user to the nearest
candidate edge servers with the largest resource level.

• ProperQoSGreedy: It is another greedy-based approach
designed for ST-EUA problem. It greedily finds a edge
server that can accommodates the incoming user with the
QoS closest to the QoS expected by that user.

• FC: It is our proposed decentralized approach based on
fuzzy control inference, which can find a solution in real-
time response to an ST-EUA problem for one edge user,
balancing user request and server load.

3https://www.gurobi.com
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TABLE III
EXPERIMENT RESULTS OF EDGE USER ALLOCATION AMONG COMPETING APPROACHES ON MELBOURNE DATASET

TABLE IV
EXPERIMENT RESULTS OF EDGE USER ALLOCATION AMONG COMPETING APPROACHES ON SHANGHAI DATASET

• BFC: It is our proposed batch-enhanced fuzzy control
approach for an ST-EUA problem, which takes into
account global information and finds a solution for a
batch of edge users within a period of time intervals.

In the experiments, we employ four widely-used evaluation
metrics to compare and analyze the experiment results, three
for effectiveness and one for efficiency.

• Mean QoE: It is measured by the sum of mean value of
QoE across all the time slices.

• Mean QoS: It is measured by the sum of mean value of
QoS across all the time slices.

• Allocation Rate: It is measured by the percentage of edge
users allocated to edge servers.

• Elapsed CPU Time: It is measured by the computational
time taken to find a solution.

C. Experiment Results and Analyses

Table III and Table IV summarize and compare results
achieved by the competing approaches on the Melbourne
dataset and the Shanghai dataset. The cells marked with dark
gray, gray and light gray denote the highest value, the second
highest value and the third highest value in the correspond-
ing column, respectively. The total number of edge users in
Melbourne and Shanghai are set to 800 and 1,500. It can be
observed that BFC always achieves the highest mean QoE and
allocation rate among all the approaches. In terms of QoE, it
outperforms FC by 105.92%, QoEUA by 85.91%, DEUA by
525.06% and DQoS by 232.30% on Melbourne dataset. The
reason is that it considers both spatial and temporal features

when allocating edge users with the consideration of users’
dynamic QoS expectations over time. However, BFC does not
receive superior performance in terms of mean QoS, particu-
larly in scenarios where edge users submit excessive requests
in experiments conducted on the Shanghai dataset. The under-
lying reason may lie in that BFC, similar to QoEUA, takes
a batch of edge users into consideration across multiple time
slices. This also leads to BFC and QoEUA achieving the high-
est allocation rates on both datasets. In terms of elapsed CPU
time, since BFC and QoEUA incurs extra computation with
its consideration of resource levels, their performance is worse
than MaxQoSGreedy, ProperGreedy and FC algorithms, whose
performance is linear to the number of edge servers. However,
they can still obtain competitive computational costs, nearly
3 times lower than the state-of-the-art benchmarks, such as
VSVBP, DQoS and DEUA. The main reason is that VSVBP,
DQoS and DEUA are designed based on ILP, taking a lot of
time to find the optimal solution in each time slice.

Compared with BFC and QoEUA, although FC receives
much higher mean QoE than DQoS, DEUA, MaxQoSGreedy,
VSVBP and ProperQoSGreedy, it is still lower than that of
BFC. The reason is that FC is a decentralized approach, while
BFC is designed based on batch-based optimization across
a set of time slices. Unlike BFC, the main advantage of
FC is that it can respond to an edge user’s request imme-
diately in time-sensitive application scenarios. Moreover, FC
receives extremely high performance in terms of elapsed CPU
time, 32.5 times less than VSVBP, DQoS and DEUA, 3.8
times less than QoEUA, and 11.7 times less than BFC. In
particular, it is worth noting that QoEUA as a centralized
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Fig. 8. Performance impact as the number of edge users changes on Melbourne dataset.

Fig. 9. Performance impact as the number of edge users changes on Shanghai dataset.

algorithm, is only slightly better than FC in terms of mean
QoE, but significantly worse than FC in terms of mean QoS
and elapsed CPU time. Thus, taking advantage of decen-
tralized allocation, FC is completely competitive in terms
of multiple performance metrics. MaxQoSGreedy and DEUA
pursue to maximize QoS without considering the long-term
QoE across multiple time slices, which lead to their poor
mean QoE. VSVBP aims at maximizing the allocation rate
while minimizing the number of edge servers needed without
considering the impact of distance, similar to DQoS. Since
MaxQoSGreedy and ProperQoSGreedy pursue optimal QoS
within each time slice, they cannot obtain satisfactory QoE
for edge users, unlike BFC and FC. Consequently, we con-
clude that FC and BFC achieve superior performance against
the competing approaches.

To evaluate the impacts of different parameters, we vary
the number of edge users and compare the results are shown
in Figures 8 and 9. In the experiments, the number of edge
users in Melbourne dataset varies from 200 to 1,400, with an
interval of 200. The number of edge users in Shanghai dataset
varies from 1,000 to 2,000 with an interval of 200.

Figure 8(a) shows the change in the mean QoE among com-
peting approaches as the number of users increases. Most of
them increase at first before dropping down, which is because
edge servers’ initial sufficient capacity cannot accommodate
the increasing workloads. An interesting phenomenon is that
FC outperforms the centralized QoEUA approach when the

number of edge users reaches 400. This validates that BFC and
FC are capable of optimizing computing resource utilization
and maintaining a balance between edge servers’ resources
and users’ requests. Figure 8(b) shows the correlation between
mean QoS and the number of edge users, where BFC and FC
achieve a relatively high performance and ensure the balance
between service requests and edge users’ QoS expectations. As
shown in Figure 8(c), when the number of edge users exceeds
400, the allocation rate for all the competing approaches starts
to decline, especially ProperQoSGreedy, FC, DQoS, DEUA
and MaxQoSGreedy. The rationale for that is BFC, QoEUA
and VSVBP tend to allocate more edge users at all times.
Figure 8(d) shows that BFC consumes an acceptable compu-
tational cost and FC is almost the best in comparison to all
baselines, except MaxQoSGreedy and ProperQoSGreedy. This
is because MaxQoSGreedy and ProperQoSGreedy are straight-
forward allocation approaches that only allocate computing
resources greedily.

Figure 9(a) shows that the mean QoE for most of the
competing approaches decreases as the number of edge users
continues to increase. Specifically, BFC achieves the highest
mean QoE followed by QoEUA, which also allocates edge
users by batch in a centralized manner. Thanks to the ability
of fuzzy control to allocate users with the consideration of user
consolidation and load balance, FC achieves the third highest
QoE over the other competing approaches in a decentralized
manner. Figure 9(b) demonstrates that BFC is more likely
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Fig. 10. Experimental results of tendency on mean QoE along with the variations of time slices.

to provide lower QoS but DEUA and ProperQoSGreedy pro-
vide increasing QoS when the number of edge users becomes
larger. The reason is that BFC always tries to allocate more
edge users while DEUA and ProperQoSGreedy have relatively
low allocation rate, as shown in Figure 9(c). Figure 9(d) illus-
trates a similar tendency in elapsed CPU time in experiments
conducted on the Melbourne dataset.

D. Case Study

To further demonstrate the effectiveness of BFC and FC for
ST-EUA problem, we perform a case study to illustrate the
allocation process of edge users across different time slices on
both Melbourne and Shanghai datasets. In the experiments, we
compare the mean QoE obtained by each competing approach
across all the 150 time slices and plotting the results on the x
axis for better observation, as shown in Figure 10. Here, we
assume that an edge user’s expected QoS is 0 at the beginning.
As time goes, it continues to increase and finally reaches a
stable state.

From the results demonstrated in Figure 10(a), we can
see that BFC, FC, GreedyMaxQoS and QoEUA’s mean QoE
increases in certain time slices, leading to an overall high mean
QoE, because they can make full use of the diverse comput-
ing resources when the number of service requests is small.
The mean QoE achieved by BFC at the beginning is low since

BFC always tends to allocate stable computing resources to
the edge users. It prioritizes the balance between the num-
ber of service requests and edge servers’ loads to maximize
user experience across multiple time slices. An interesting phe-
nomenon is that QoEUA also usually achieves relatively high
QoE compared with the other competing baselines. The reason
is that QoEUA applies an incremental pre-allocation method,
ensuring a certain number of computing resources for edge
user. QoEUA can also be considered as an adaptive solution
for ST-EUA problem. It allocates more computing resources
when they are sufficient and vice versa. However, this kind
of pre-allocation strategy requires the global information for
performing resource allocation, which losses the decentral-
ized characteristics of our proposed FC and achieves worse
performance than our proposed BFC. Therefore, our fuzzy
control-based approaches are more intelligent by taking advan-
tage of the well-designed fuzzy inference, which demonstrates
its better applicability to ST-EUA problem.

On the contrary, since GreedyProperQoS and VSVBP
mainly aim at providing better QoS and allocating as many
edge users as possible without the consideration of QoE, they
do not optimize resource utilization well. Thus, their mean
QoE stabilizes gradually over time. Furthermore, DEUA starts
to achieve a higher mean QoE, since it maximizes the QoS in
each time slice to improve users’ QoE. In the long term, how-
ever, computing resources cannot be leveraged fully, resulting
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in a decline in mean QoE over time. Therefore, we conclude
that since FC and BFC both strike a balance between sup-
ply and demand by considering the long-term impact of edge
users’ expected QoS. In the meantime, they can both achieve
high mean QoE in the long term.

VI. DISCUSSION

First, ST-EUA problem models the long-term edge users’
QoS expectation, which constantly varies as time goes. Also
different user distribution and server load may lead to different
computing resource allocations by adaptive approaches. As a
result, when the incoming user requests are unpredictable, it is
still difficult and challenging to design a completely optimal
approach to ST-EUA problem. An appropriate approach is
required to not only make full use of computing resources,
but also it sets aside sufficient computing resources for the
future. Therefore, not only approaches can only provide a
locally optimal solution to a specific scenario. The heuristics
such as human regularity can be involved to further improve
the allocation performance of computing resources.

Second, user distribution is simulated based on simple
regularity of human activities, which may differ from the
real-world application situation. This possibly introduces eval-
uation errors for the experiments. To face the challenges in
various scenarios, our fuzzy control-based approaches can be
adapted by redesigning the inference engine. It indicates that
our FC and BFC are highly capable of adapting to various
scenarios.

Third, we simplify the changes of edge users’ QoS expec-
tations, which are modeled by measuring the absolute gap
between user perceived QoS and user expected QoS. However,
it may differ from the actual changes in real-world scenarios.
Thus, it is required to make the system model suitable for
practical applications.

However, it is the first attempt to investigate a spatial-
temporal edge user allocation problem based on expecta-
tion confirmation theory. Moreover, two approaches designed
for different scenarios are proposed to solve the ST-EUA
problem.

VII. RELATED WORK

In recent years, edge computing is widely acknowledged
for its unique advantages in offering low latency, cost sav-
ing, reliability and scalability. It allows the delivery of new
applications and services for the future Internet. Services can
be deployed on edge servers to respond to nearby users’
requests rapidly. However, due to the proximity and capacity
constraints, an edge server has limited computing resources
for serving the users with its certain coverage area, which
often makes it a challenging task to serve all the edge users
with satisfactory QoE. As a novel computing paradigm, it
raises many new research challenges in allocation-like prob-
lems, including edge user allocation [9], [10], [12], edge
data caching [26]–[28], edge data distribution [29] and edge
application deployment [30], [31].

The edge user allocation (EUA) problem, as one of the main
challenges in edge computing, has attracted a lot of attentions
recently. Lai et al. [9] firstly introduce and model this problem,
and propose a variable sized vector bin packing approach to
find a solution. It aims to maximize the number of allocated
edge users and minimize the number of edge servers needed.
Then, they take a step forward by considering the correla-
tion between computing resources and user satisfaction [10],
and further promote their approach with a QoE-aware greedy
search [15]. Inheriting the core idea from [9], the authors [17]
propose an approach named Most Capacity First (MCF)
from service providers’ perspective, which is a cost-greedy
search that minimizes the number of edge servers needed
for serving users. Peng et al. [11] model the EUA problem
as a revolvable process. They propose a greedy algorithm
based on the mobility of edge users to find an allocation
solution.

Furthermore, one of our previous studies [13] attempts to
study the distance-aware EUA problem, where the correlation
between edge users’ signal strength and their distances from
edge servers are explored to precisely model the influence of
user satisfaction by wireless signal attenuation. In our other
study [18], we argue that a user’s service request can be par-
titioned into multiple tasks to be performed by different edge
servers, while conventional EUA approaches assume that a ser-
vice request can either be fully fulfilled by a single edge server
or cannot be satisfied at all. Besides, it is further extended
into a spatio-temporal edge user allocation problem [19] and
thus it can accommodate more sophisticated and general real-
world application scenarios. In addition, some researchers
argue that wireless communication interference occur when
multiple users communicate with the same edge server simul-
taneously [16]. One one hand, some of the above approaches,
such as those proposed in [9], [10], [13], [18], use Integer
Linear Programming (ILP) model to search for an optimal
solution. On the other hand, some studies [12], [16] transform
an EUA problem into an a game problem and employ game-
theoretical approaches to solve the game problem. Moreover,
the authors of [14], [32] point out that online allocation
process should be decentralized to respond to edge users’
requests as soon as possible. To achieve this objective, they
tackle the EUA problem online with a fuzzy control-based
algorithm to balance user requests and server capacities,
which also motivates the core idea of FuzzyInference of
our proposed FC and BFC. To achieve a controllable trade-
off between performance and service costs such as queuing
delay and latency, the authors in [33] model EUA as a
stochastic optimization problem. Panda et al. [34] exploit on-
device deep reinforcement learning to address EUA problem.
Aiming to minimize the total cost of service placement and
user allocation, Chen et al. [35] propose a local-search-based
algorithm when finding an effective solution to an EUA
problem.

However, all of the above approaches have ignored the
long-term impact of the temporal feature on edge users. That
is, an edge user’s QoS expectation often changes continu-
ously over time. Also, the spatial feature affects edge users’
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QoE significantly. Unlike conventional approaches that over-
simplify the EUA problem by converting it as an one-time
problem, we formulate the problem with both temporal and
spatial features and propose two novel approaches named
BFC and FC to tackle the ST-EUA problem in different
scenarios. FC and BFC overcome the limitations of exist-
ing EUA approaches by modeling the changes in users’ QoS
expectations over time based on the ECT theory. They also
resolve the challenge in how to strike a balance between user
requests and edge servers’ capacities in the long term, which
is a realistic and critical concern from the service provider’s
perspective.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we focus on the problem of edge user
allocation with the consideration of spatial and temporal fea-
tures. The distances between edge users and edge servers
are taken into account to reveal the relationship of wire-
less signal strength and data transmission rate, which plays
an important role in edge users’ overall QoE. Moreover,
dynamic variations on edge users’ expected QoS are con-
sidered based on the expectation confirmation theory over
time, which can effectively capture edge users’ demands and
improve users’ QoE. To solve the ST-EUA problem, we pro-
pose two fuzzy logic based approaches FC and BFC, the
former for allocating individual edge users in a decentral-
ized manner and the latter by batch in a centralized manner.
Through extensive experiments conducted on two real-world
datasets, the effectiveness and efficiency of FC and BFC
are evaluated against a series of baselines and the state-
of-the-art approaches. The results demonstrate their superior
performance.

In the future, we plan to explore the migration of
edge services among edge servers to make better use
of computing resources. We are also going to con-
sider fine-grained user behaviors to improve the EUA
formulation.
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