
922 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

DeepLTSC: Long-Tail Service Classification via
Integrating Category Attentive Deep Neural

Network and Feature Augmentation
Guobing Zou , Song Yang, Shengyu Duan, Bofeng Zhang , Member, IEEE, Yanglan Gan , and Yixin Chen

Abstract—With the explosive growth in the number and diver-
sity of Web services, correlative research has been investigated on
Web service classification, as it fundamentally promotes advanced
service-oriented applications, such as service discovery, selec-
tion, composition and recommendation. However, conventional
approaches are restricted to indiscriminatingly classify Web
services, which can trigger many challenges. First, they have not
made full advantage of the implicit relationships among multi-
dimensional information of Web services, such as the increasing
number of service categories. Thus, it leads to low effective-
ness of learning and representing service features, failing to
ensure the overall accuracy of service classification. Second,
the imbalance of service distributions has been ignored, while
it is observed that service categories reveal distinct long-tail
characteristics. That results in low accuracy on service classi-
fication for those categories that contain fewer Web services.
To handle the challenges of more effectively learning implicit
service features across the service repository, and with a par-
ticular concentration on those tail categories that contain fewer
Web services, we propose a novel framework called DeepLTSC
to more accurately perform the task of Web service classifica-
tion under long-tail distributions. In DeepLTSC, we first present
an improved label attentive convolutional deep neural network
(LACNN) with service categories, which can generate deep ser-
vice features to improve the overall classification performance.
Then, a proposed service feature augmentation model (SFA)
together with focal loss function is integrated into DeepLTSC
to further optimize service features, aiming to boost the clas-
sification accuracy on tail service categories. Extensive exper-
iments are conducted on three large-scale real-world services
datasets with different long-tail distributions. The results demon-
strate that DeepLTSC significantly outperforms state-of-the-art
approaches for Web service classification on both overall and tail
categories.

Manuscript received February 24, 2021; revised November 25, 2021;
accepted January 24, 2022. Date of publication February 16, 2022; date of
current version June 10, 2022. This work was supported by National Natural
Science Foundation of China (No. 61772128, 62172088), and Shanghai
Natural Science Foundation (No. 21ZR1400400). The associate editor coor-
dinating the review of this article and approving it for publication was
P. Bellavista. (Corresponding author: Guobing Zou.)

Guobing Zou, Song Yang, Shengyu Duan, and Bofeng Zhang are with the
School of Computer Engineering and Science, Shanghai University, Shanghai
200444, China (e-mail: gbzou@shu.edu.cn; samyangvictory@gmail.com;
bfzhang@shu.edu.cn).

Yanglan Gan is with the School of Computer Science and Technology,
Donghua University, Shanghai 201620, China (e-mail: ylgan@dhu.edu.cn).

Yixin Chen is with the Department of Computer Science and Engineering,
Washington University in St. Louis, St. Louis, MO 63130 USA (e-mail:
chen@cse.wustl.edu).

Digital Object Identifier 10.1109/TNSM.2022.3151764

Index Terms—Web services, long-tail classification, deep neural
network, service category attention, service feature augmentation.

I. INTRODUCTION

W ITH the advances of service-oriented architecture
(SOA) in software integration and applications, Web

services are becoming popular and important building blocks
for fast establishing next generation real-world applications.
Driven by the benefits of Web service technologies, the cat-
egory and number of Web services available on the Internet
have been significantly increased in the past few years [1].
As of December 9, 2020, ProgrammableWeb,1 as the largest
online RESTful service repository, has registered over 23,800
APIs with nearly 500 diverse categories. The rapid prolifera-
tion of Web services further boosts service-oriented software
design and development.

However, as the explosive growth in the category and num-
ber of Web services, it is placing a heavy burden on service
providers. When a service vendor wants to release a new
service in ProgrammableWeb, he has to choose its affiliated
tag from a candidate pool of nearly 500 service categories,
which is a very labor-intensive task for the registry of Web
services. Service classification, as a fundamental way to facili-
tate a series of service-oriented tasks, has been widely applied
for service discovery [2], service selection [3], [4], service
composition [5], service recommendation [6], [7], [8] and ser-
vice management [9]. Therefore, how to design an effective
approach that can accurately classify Web services has become
a critical research issue to be addressed.

In recent years, service classification has received many
attentions and there are a lot of correlative studies [1], [10],
[11], [12], [13], [14], [15], [16], [17], [18], [19] which are
dedicated to improving the accuracy of Web service classi-
fication. Existing approaches on service classification can be
divided by their applied techniques. Earlier ontology and Web
Services Description Language (WSDL) based service classifi-
cation investigations [13] require strict formatting and manual
domain annotation, which can no longer fit the trends as
RESTful API services become the mainstream way in service
registry and consumption. Inspired by the wide application
of machine learning techniques in the field of text classifica-
tion, researchers apply traditional machine learning algorithms

1https://www.programmableweb.com

1932-4537 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0001-5931-9006

ZOU et al.: DeepLTSC: LONG-TAIL SERVICE CLASSIFICATION 923

such as LDA [1], SVM [16] and Native Bayes [17] in service
classification. They regard service description as natural lan-
guage text to extract service features and achieve a relatively
high classification accuracy with very few service categories.
Recently, deep learning technique is introduced for service
classification [12], which can further boost classification accu-
racy with more service categories.

Although these existing approaches can assist and facilitate
Web service classification, they still cannot reach the satis-
faction of service providers as well as service consumers.
The primary reason is that it has become a difficult and
challenging research issue on how to accurately mine ser-
vice features, as the category and number of services rapidly
increase in real-world scenarios. The key challenges of cur-
rent research on service classification are twofold. On one
hand, along with the growth of service categories, the exist-
ing approaches cannot make full advantage of the implicit
relationships among multi-dimensional information of Web
services such as service category and name, which may cause
low effectiveness of learning service features. Thus, it fails to
ensure the overall accuracy of Web service classification. On
the other hand, conventional approaches have not taken into
account the imbalance of service distributions. It is observed
from large-scale online service management platform that ser-
vice categories reveal distinct long-tail characteristics. That is,
they have paid less attention to Web services affiliated to tail
categories, resulting in low classification accuracy on those
categories that contain few Web services. Nevertheless, tail
services have been widely used in real application scenar-
ios, e.g., it is often necessary to apply multiple tail services
when creating a mashup service [8]. In such case, conven-
tional approaches still fall into indiscriminatingly classifying
Web services, which not only reduces the classification accu-
racy of Web services on those tail categories, but also declines
the performance of overall service classification, as the num-
ber of service categories rapidly increases. To further improve
the service classification performance with the consideration
of imbalanced service distributions, we mainly concentrate on
handling the challenges of more effectively learning implicit
service features on both across the service repository and
particularly on those tail categories.

To address the above challenges, we propose a novel
deep learning framework for long-tail service classification
called DeepLTSC, which integrates label attentive convolu-
tional deep neural network (LACNN) with service categories
and service feature augmentation (SFA) model. Extending
from the traditional convolutional neural network based
models [11], [20], [21], LACNN first considers the implicit
relationship among multi-dimensional information of Web
services, which can provide auxiliary heuristics to intensify
the significance of those words within service functionality
descriptions and service name most related to service cat-
egories. Thus, implicit service feature learning from entire
service categories can be effectively improved without any
external information. Then, the learned service features are
fed into SFA model through meta-learning, which leverages
the high-quality features of large-scale Web services in head
categories to further reinforce the feature learning for those

small number of Web services in tail categories. In this way,
DeepLTSC can simultaneously enhance the performance on
the overall service classification and specially for those Web
services affiliated to tail categories.

To evaluate the effectiveness of our proposed approach
DeepLTSC, we conduct extensive experiments on three real-
world datasets under long-tail distributions, which consist
of a total number of 14,807 Web services and 180 ser-
vice categories from ProgrammableWeb. The results show
that DeepLTSC outperforms state-of-the-art benchmarking
approaches in terms of multiple evaluation metrics. The main
contributions of this paper are summarized as follows:

• We propose a novel framework DeepLTSC for Web
service classification under long-tail distribution. It com-
bines an improved convolutional deep neural network
with service category attentive mechanism and service
feature augmentation model as a whole, which can not
only entirely improve the classification accuracy on all
of service categories, but also more accurately classify
those tail categories that contain few Web services.

• We propose a novel implicit service feature extraction
model LACNN and a service feature augmentation model
SFA, respectively. LACNN leverages the implicit rela-
tionship among service categories, service name and
service functionality descriptions to ensure the utmost
feature learning of Web services, while SFA based on
meta-learning is designed to further improve feature
quality of Web services specially on those tail categories.

• Extensive experiments are conducted on three real-world
service datasets under different long-tail distributions.
The results demonstrate that DeepLTSC receives superior
performance on long-tail service classification.

II. RELATED WORK

With the wide application of machine learning techniques,
many researchers have investigated new approaches to classify
Web services described in natural language. Wang et al. [16]
proposed a hierarchical classification system to classify Web
services based on support vector machine (SVM). It maps
high-dimensional service features to low-dimensional ones
through a feature selection model, which is further fed to
classifying Web services by SVM. Liu et al. [17] proposed
a semantic Web service classification approach based on
naive bayes. It elaborates the concrete process of how to use
the three stages of bayesian classification to classify Web
services. However, these traditional machine learning-based
service classification approaches can only effectively classify
a small number of service categories, resulting in remarkable
decrease on classification accuracy as the number of service
categories increases. Moreover, there has been correlative stud-
ies on service classification using probabilistic topic model
such as LDA. Liu et al. [1] proposed a service classification
model that incorporates LDA and SVM for classification on
few number of service categories.

With the advances of deep learning techniques, some
researches have taken advantage of deep learning techniques
for service classification and text mining. Yang et al. [12]

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

924 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

proposed a deep learning framework that can partially solve
the issue on service classification accuracy. It applied 2-
directional CNN to obtain local relations and 2-directional
LSTM to retain global long-term dependencies of service
descriptions. Tan et al. [18] proposed a dynamic embedding
projection-gated convolutional neural network for multi-class
text classification, which can control how much context
information is incorporated into each specific position of
a word-embedding matrix. Shi et al. [19] integrated bound
optimization theory with variational Bayesian inference to
fix overfitting problem in nonlinear soft sensor development.
Although advanced deep neural networks have been applied
to improve service classification performance, they have not
taken into account the characteristics of Web services under
long-tail distributions. In such case, it is difficult to ensure the
classification accuracy of those Web services on tail categories.

In addition, non-functional characteristics of Web service,
are also important for Web service selection and recom-
mendation. Luo et al. [6] presents a biased non-negative
latent factorization of tensors model for temporal pattern-
aware QoS prediction with the consideration of temporal
dynamics. Wu et al. [22] proposed a data-characteristic-
aware latent factor model to predict highly accurate vacant
QoS values. Moreover, Wu et al. [23] proposed a posterior-
neighborhood-regularized LF model for QoS prediction con-
sidering information security, identity privacy, and commercial
interests in real-world application scenarios. Meanwhile, some
recent studies [24], [25] have focused on improving the
efficiency of model training, which is beneficial to high-
light the performance of QoS prediction. Luo et al. [24]
investigated eight extended stochastic gradient descent algo-
rithms and proposed eight novel latent factor based models,
while they [25] proposed a generalized momentum method
based non-negative latent factor model with fast learning
performance.

Motivated by the above investigations, we aim at focus-
ing on the issue of Web service classification under long-tail
distributions. To solve this problem, we propose a novel
deep learning based framework DeepLTSC that can not only
raise the overall classification performance by leveraging the
advanced label attention mechanism and deep neural network,
but also significantly boost the accuracy of classifying Web
services on tail categories by service feature augmentation.

III. PROBLEM FORMULATION

Definition 1 (Web Service): A Web service is defined as
a three-tuple s =< Ls,Ns,Ds >, where Ls is the service
category of s . Ns = {wn1 ,wn2 , . . .} is the name of s , which
consists of several words provided from service publisher.
Ds = {wd1 ,wd2 , . . .} contains a set of words that constitute
the functionality description of s .

Definition 2 (Web Service Repository): From the registration
of service providers, a Web service repository is composed of
a set of Web services, denoted as S = {s1, s2, . . . , sn}.

Given a Web service repository S, a service category
set L = {Ls1 ,Ls2 , . . . ,Lsn }, a service name set N =
{Ns1 ,Ns2 , . . . ,Nsn } and a service functionality description

set D = {Ds1 ,Ds2 . . . ,Dsn } can be derived from S, respec-
tively. Here, L = {Ls1 ,Ls2 , . . . ,Lsn } can be further denoted
as L = {L1,L2, . . . ,Lm}, where m is the number of the
service categories among all of the Web services in S. More
specifically, we apply a mapping function f to recognize the
category of a Web service, i.e., Ls = f (s). In this way, for
each service category Lx ∈ L, its corresponding Web services
can be expressed as, SLx = {sk |f (sk) = Lx }.

Definition 3 (Head and Tail Service Category): Given a
Web service repository, where S = {s1, s2, . . . , sn} and
L = {L1,L2, . . . ,Lm}. By applying a threshold θ, L can
be partitioned into two subsets, including a set of head service
categories HL = {Lh1,Lh2, . . .} and tail service categories
TL = {Lt1,Lt2, . . .}.

With regard to a head service category Lhi ∈ HL, the
number of Web services in SLhi is equal to or larger than
θ, satisfying |SLhi | ≥ θ; similarly, a tail service category
Ltj ∈ TL has the number of Web services that is less than θ,
i.e., |SLtj | < θ. Generally, most Web services get involved in
HL, while only a small portion of Web services in S belong
to TL. That is, it shows obvious characteristics of long-tail
distribution in a Web service repository.

Definition 4 (Long-tail Service Classification Problem,
LTSC): Give a Web service repository S, an LTSC problem
can be defined as a five-tuple LTSC = < SHL, STL,L, ŝ ,L

ŝ >,
where

(1) SHL is a set of Web services from the head categories
HL = {Lh1,Lh2, . . .}, each of which consists of large-
scale number of services in long-tail distribution.

(2) STL is a set of Web services from the tail categories
TL = {Lt1,Lt2, . . .}, each of which consists of very
few number of services in long-tail distribution.

(3) L = {L1,L2, . . .} = HL∪TL is the set of all the head
and tail service categories from S.

(4) ŝ is the Web service to be classified into HL or TL.
(5) Lŝ is the service category predicted by classification

model.

IV. THE FRAMEWORK OF DEEPLTSC

The overall framework of DeepLTSC is illustrated in Fig. 1.
It consists of three independent but correlative components,
including service semantic representation, long-tail service
feature extraction and service classification.

• In the component of service semantic representation,
service descriptions and names provided by service
providers are fed into a pre-trained word embedding
model. After that, they are semantically represented
as matrices, respectively. Moreover, service categories
obtained from Web service repository are similarly repre-
sented as a set of matrices by the same embedding model.
These three kinds of service semantic representations are
simultaneously taken as inputs for extracting deep and
long-tail service features.

• In the component of long-tail service feature extraction,
an improved label attentive convolutional neural network
with service category attention is trained to generate deep
service features for classification task across all the ser-
vice categories. Then, the generated deep service features

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: DeepLTSC: LONG-TAIL SERVICE CLASSIFICATION 925

Fig. 1. Overall framework of DeepLTSC for Web service classification under long-tail distribution.

are further fed into a trained service feature augmentation
model that can extract long-tail service features benefi-
cial to classification task for those Web services on tail
categories.

• In the component of service classification, we apply soft-
max to normalize the extracted long-tail service feature,
and then a service category can be identified through
max-pooling. The recommended category can be used
for service providers to effectively and efficiently perform
online service registration.

V. APPROACH

A. Category Attentive Deep Service Feature Extraction

1) Service Category Attention: To initialize the represen-
tation of a Web service as inputs, each word w in service
description or name is projected into a dense vector r(w) ∈
R
d through a trained word embedding model, where d is

the dimension of the word representation. Similarly, each
service category l is also projected into a dense vector in
the same embedding space r(l) ∈ R

d . Here, Bidirectional
Encoder Representations from Transformers (BERT) [26] is
applied as the word embedding model for service semantic
representation. It is a deep language model based on bi-
directional transformers, which is pre-trained in several large-
scale natural language corpora and can adapt to different
downstream tasks by parameter fine-tuning. Since BERT
is state-of-the-art language model and receives the best
performance on multiple natural language processing tasks,
it is chosen for service embedding representation with initial
feature matrix on service category, service name and service

description, when extracting deep service feature by category
attentive convolutional deep neural network. In addition, we
align the length of every service description with a definite
value Ldesc . If the length of a service description is over Ldesc ,
the extra words are pruned from the description. Conversely,
zero-padding is applied for the scenario where the length of
service description is less than Ldesc . In the same way, the
length of a service name is unified as Lsname . Thus, a Web
service can be semantically represented as follows:

Definition 5 (Service Embedding Representation): Given
a service s =< Ls,Ns,Ds >, it is correspondingly repre-
sented by a set of semantically embedding matrices, denoted
as <Wl ,Wn ,Wd >. Wl is an embedding matrix of
service category, where Wl ∈ R

nl×d and nl is the total
number of service categories; Wn is an embedding matrix
of service name, where Wn ∈ R

nk×d ,nk = Lsname ;
Wd is an embedding matrix of service description, where
Wd ∈ R

nd×d ,nd = Ldesc .
To highlight the importance on those key words most related

to the service category in service description or service name,
label attention mechanism based on service categories is taken
to reinforce their effects on service embedding representation.
Let S = Wd be the service embedding matrix of service
description, the correlation matrix of service description and
service category CM ∈ R

nd×nl is represented as in (1).

CM =
SLT
√
dk

= ω1 ⊕ ω2 ⊕ · · · ⊕ ωnd =

⎡
⎢⎢⎢⎣

ω1
ω2
...

ωnd

⎤
⎥⎥⎥⎦ (1)

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

926 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

where ⊕ is concatenation operator that makes nd row vectors
formulate a matrix, LT is the transpose of vector matrix on
service categories L, and dk is the scaling factor, having
the same as the dimension of word embedding. CM con-
sists of nd word-category correlation embeddings ω on nl
dimension. In such case, max-pooling technique is applied for
CM to attain the most related service category of each word
as in (2).

CV = (m1,m2, . . . ,mnd)T

mi = Max
(
ωi =

{
m1

i ,m
2
i , . . . ,m

nl
i

})
, ωi ∈ CM (2)

where CV is nd dimensional vector. We further normalize
CV by softmax function to generate service category attention
score on service description SA as in (3).

SA = (SA1,SA2, . . . ,SAnd)

SAi =
exp(mi)∑
j exp(mj)

,mi ∈ CV (3)

By applying the distribution score in SA as importance
weighting to service description embedding matrix S, cate-
gory attentive embedding matrix of service description Sd

a is
calculated as in (4).

Sd
a = SA · S (4)

In the same way, service category attention score on each
word in service name can be generated by repeating above
steps. Thus, by applying the score distribution of as impor-
tance weighting to service name embedding matrix, we attain
category attentive embedding matrix of service name Sn

a .
2) Deep Service Feature Extraction: Based on the cate-

gory attentive service embedding matrix, we further extract the
implicit neighborhood features from the words that are near
the most relevant words to service category, as they are more
valuable to classification task than words in other locations
in service description. Here, TextCNN model [20] is applied
to extract the neighborhood features in Sd

a . Let xi ∈ R
d be

the i-th category attentive word vector, and thus Sd
a can be

represented as in (5).

Sd
a = [x1 ⊕ x2 ⊕ · · · ⊕ xnd] (5)

where nd denotes the number of words in service description.
We first perform convolution operation with a filter ∈ R

h×d ,
which uses a window of h words to acquire a new feature. The
size of filter h and d is a hyperparameter of experiment and the
dimension of word embedding, respectively. Given a window
matrix of words [xi ⊕ xi+1 ⊕ · · · ⊕ xi+h−1], a new feature
ci produced by the filter can be represented as in (6).

ci = ReLU (w · [xi ⊕ xi+1 ⊕ · · · ⊕ xi+h−1] + b) (6)

Then, after several rounds of convolutions by moving the filter
window on category attentive service embedding matrix Sd

a ,
which shifts from x1 : h to xnd−h+1 : nd

, a set of features
can be obtained as in (7).

c = (c1, c2, . . . , cn−h+1) (7)

After that, max-overtime-pooling operation is used to get the
maximum value ĉ = Max(c) as the neighborhood feature

extracted by the filter. After leveraging a predefined number of
filters with different size of sliding windows, category atten-
tive service embedding matrix is transformed into a feature
vector of service description fd . It is concatenated by a set
of maximum neighborhood features as in (7), where k is the
number of filters.

fd = (ĉ1, ĉ2, . . . , ĉk) (8)

As for the category attentive embedding matrix of service
name, since it generally originates from very few words, it
is difficult to extract implicit neighborhood features from ser-
vice name. In such case, max-pooling is performed to extract
the maximum value in each dimension from category attentive
embedding matrix of service name, which is formulated as fn
and calculated as in (9).

fn = max-pooling(Sn
a) (9)

Finally, we combine service description feature vector fd with
service name feature vector fn to generate a comprehensive
vector of deep service feature V, which is attained by using
hyperparameter rn to adjust the proportion of fn and fd . It is
represented as in (10).

V = fd + rn · fn . (10)

B. Long-Tail Service Feature Augmentation

In order to apply the characteristics of service classifier
learned from Web services on head categories to the tail ser-
vice classification task, we present a meta-learning service
feature augmentation model based on [27]. Meta-learning is
expected to transform the capability of the trained model in
certain domains into the tasks in other similar application
domains, which indicates the trained model has the ability
to learn how to learn. For the task of long-tail service clas-
sification, it can be divided into classifying Web services on
the head categories and tail ones, respectively. According to
the meta-learning theory, it can acquire effective classification
knowledge from learning the implicit patterns on head service
categories, which can be used to strengthen the learning abil-
ity and improve the classification performance on tail service
categories. By utilizing a deep service feature generated from
previous layer, SFA can further optimize service characteristics
by differentiating the head and tail categories, and output an
augmented long-tail service feature for more accurate clas-
sification. It consists of three components, including central
feature representation of service categories, relevance distri-
bution of service categories, and head-tail discrimination of
service categories.

First, central feature representation of service categories can
be initialized by deep service features. Let vi be the central
feature of i-th service category, which is originally calcu-
lated by the mean of all the deep service features affiliated to
that category. Thus, central feature representation of service
categories can be represented as in (11).

Cs = [v1 ⊕ v2 ⊕ · · · ⊕ vnl], vi =
∑n

k=1 Vk

n
(11)

where nl is the number of service categories, n is the number
of Web services involved in the i-th service category, and Vk

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: DeepLTSC: LONG-TAIL SERVICE CLASSIFICATION 927

Fig. 2. Multi-layer training process of long-tail service feature extraction in DeepLTSC.

denotes a deep service feature affiliated to the i-th service
category.

To effectively discriminate the representation of head and
tail service categories, central feature of each service category
is updated by model training as below. When a mini-batch Web
services across multiple categories are used for model train-
ing, they are partitioned as a set of groups by their affiliated
service categories and a central feature of each group is cal-
culated by deep service features. The corresponding category
representations in Cs are replaced by the newly calculated
central features in mini-batch. Moreover, when calculating the
central feature of a service group, we alternatively update deep
service features, in order to minimize the distance between
every deep servie feature and its corresponding central feature
and also maximize the distance to central features of other
service categories.

Then, given a deep service feature V, we use the relevance
distribution of service categories, which is a fully connected
lightweight neural network to generate the correlation distri-
bution of V on different service categories. We apply softmax
function to output a normalized relevance vector of service
categories β ∈ R

nl , which is represented as in (12).

β = softmax(w1 · V + b1) (12)

where w1 and b1 are parameters to be learned from model
training. After acquiring β, it is used as an importance factor
multiplied with the central feature representation of service
categories Cs , which calculates a service migration feature
m1 as in (13).

m1 = βTCs,∀mj
1 =

nl∑
i=1

βTi C
j
si (13)

Finally, to more favor the tail categories, we further train the
head-tail discrimination of service categories, which is com-
posed of a fully connected lightweight neural network. As a
result, given a deep service feature, the output of head-tail dis-
crimination of service categories is fed into tanh as activation
function to derive an adjusting factor μ as in (14).

μ = tanh(w2 · V + b2) (14)

where w2 and b2 are parameters to be learned from model
training, μ reflects the model preference on tail service cat-
egories. After receiving μ, we multiply service migration
feature m1 with adjusting factor μ to gain a service pref-
erence feature m2. In such way, long-tail service feature F
is obtained by integrating the service preference feature m2
into the deep service feature V as in (15, where ⊗ means

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

928 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

element-wise multiplication.

F = V + μ⊗ m1. (15)

C. Model Training and Parameter Optimization

To boost the overall classification accuracy on both head
and tail service categories, Large-Margin Softmax Loss [28]
is used to maximize the distance of central features across
multiple service categories and minimize the distance among
deep service features within the same service category.
Moreover, Focal Loss [29] is also used to train DeepLTSC,
ensuring that it can receive better classification performance
on tail service categories.

Since Large-Margin Softmax Loss is capable of differ-
entiating learned features, it can effectively guarantee the
compactness of inner class and intensify the separability of
inter-classes by adding a parameter m to enlarge the margin
of similar service categories. Thus, it is desired to make cen-
tral feature representation of service categories and long-tail
service features more sparse in feature space, which is bene-
ficial to differentiating head and tail service categories. It is
represented as in (16) and (17), respectively.

LMi = − log

⎛
⎜⎝ e

∥∥∥Wyi

∥∥∥‖xi ‖ψ(θyi)

e

∥∥∥Wyi

∥∥∥‖xi ‖ψ(θyi) +
∑

j 	=yi
e‖Wj ‖‖xi ‖ cos(θj)

⎞
⎟⎠

(16)

ψ(θ) =
{

cos(mθ), 0 ≤ θ ≤ π
mD(θ), π

m < θ ≤ π
(17)

where LMi is the training loss of the i-th service in training set,
e is the natural logarithm, yi is the original service category,
W is the parameter to be learned, xi is the feature of the i-th
service, θyi behaves the vector angle between the classification
boundary and the i-th service feature, and ‖‖ denotes modulo
operation. ψ(θ) is a function to calculate the cosine value of
θ and D(θ) is a monotonically decreasing function.

Focal loss is an improved version of traditional cross-
entropy loss function, which can boost the model training
quality of our long-tail service classification problem. The pri-
mary reason is that, those tail categories with very few Web
services are partially omitted in model learning, leading to the
decline in tail service classification. To solve this issue, focal
loss is applied to particularly favor those tail service categories
in model training of DeepLTSC, which decreases the weight-
ing of head services and focuses on learning to distinguish tail
services. It is represented as in (18) and (19).

FL(pt) = −α(1− pt)
γ log(pt) (18)

pt =

{
p, if y = 1
1− p, otherwise

(19)

where p is the output of the task layer, and given the origi-
nal category y. Besides, α and γ are parameters of focal loss
and they are used to adjust the attention ratio on tail service
categories with different combinations of α and γ. Since the
formal focal loss function is mainly appropriate for binary
classification, we fix the function in the multi-class long-tail
service classification task by scaling the outputs from the task

layer, where the service category probabilities of each sample
sum to 1, as in (20).

FL
′
=

nl∑
i=1

−α(1− pi)
γyi log(pi) (20)

Based on the above applied functions, the overall loss
function of our model favored on tail service categories is
represented as in (21), which acquires more sparse service
central feature Cs .

L =

N∑
n=1

FL
′
(Fn) + λ · LM (Fn ,Cs) (21)

where Fn is the long-tail service feature extracted from the
n-th service, and λ is hyperparameter used to adjust the ratio
of training loss and central feature loss.

D. Time Computational Complexity Analysis

The time computational complexity of DeepLTSC is mainly
composed by service category attention, deep service feature
extraction and service feature augmentation. First, the time
consumption of service category attention is determined by
the size of the service description matrix Wd , service name
matrix Wk and service category matrix Wl . Taking Wd

as an example, the calculation of service category attention
consumes O(nl · nd · dk + nd · nl + nd + nd · dk), which is
reduced to O(nl · nd · dk). Then, the cost of extracting deep
service feature by convolutional neural network is expressed
by O(

∑sn
sk=s1

Cout ·((nd −sk +1) ·(sk ·dk)+(nd −sk +1))),
where si behaves a kernel size. It can be further reduced
to O(Cout · nd · sk · dk), where Cout is the size of output
kernel and sk is the size of convolution kernel. Finally, the
time complexity of service feature augmentation is primarily
influenced by the two fully connected neural networks, includ-
ing relevance distribution of service categories and head-tail
discrimination of service categories. Thus, it is calculated by
O((2 · dk − 1) · nl + nl · dk + dk), which can be represented
as O(dk · nl).

From the above analysis, it is observed that the time compu-
tational complexity of DeepLTSC is O(nl ·nd ·dk)+O(Cout ·
nd ·sk ·dk)+O(dk ·nl), which depends mainly on the dimen-
sionality of the word embedding, the length of the service
description or service name, and the number of service cate-
gories to be classified. In real-world application scenarios, it
generally satisfies that the dimensionality of word embedding
is much larger than the length of service description and the
number of service categories. Thus, the computational com-
plexity of long-tail service classification can be performed in
polynomial time that is highly correlative to the dimensionality
of word embedding.

VI. EXPERIMENTS

A. Experimental Datasets and Setup

To validate the performance of DeepLTSC, we have
designed a Web crawler and obtained Web services from
ProgrammableWeb until July 1, 2018. The crawled service
repository as the experimental dataset contains 17,923 real-
world Web services distributed in 384 service categories,

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: DeepLTSC: LONG-TAIL SERVICE CLASSIFICATION 929

TABLE I
STATISTICS OF PW-120 DATASET

TABLE II
STATISTICS OF PW-150 DATASET

TABLE III
STATISTICS OF PW-180 DATASET

which is available on our Lab.2 Besides, the number of services
in each category is extremely uneven, e.g., the category Tools
contains 887 Web services while Solar only has two Web
services. In order to maintain characteristics of Web services
under the long-tail distribution, we select those Web services
in the top 200 service categories as the experimental dataset.

More specifically, we have selected 120, 150 and 180 ser-
vice categories from the total number of 200 service categories
to build three experimental datasets with different long-tail
distributions, including PW-120, PW-150 and PW-180. The
detailed statistics of these three experimental datasets are
shown in Tables I, II, and III. In the experiments, we ran-
domly divide each service dataset into training set, validation
set and test set by the ratio of 6:2:2.

In the experiments, we use BERT as the word embedding
model, for service description, name and category. Generally,
there are two kinds of BERT models in application scenar-
ios, including BERT-base (L = 12, H = 768, A = 12, total
parameters = 110M) and BERT-large (L = 24, H = 1024,
A = 16, total parameters = 340M), where the number of lay-
ers is denoted as L, the size of the hidden layer is denoted as
H, and the number of self-attentive heads is A. Considering
the characteristics of short text of the service description and
reducing the time consumption of model training, we choose
BERT-base model (L = 12, H = 768, A = 12) as the word
embedding model for long-tail service classification.

B. Evaluation Metrics

We evaluate the classification performance of DeepLTSC
by two widely-used evaluation metrics: classification accu-
racy and F1-score. The overall classification accuracy of
DeepLTSC is measured as in (22), where L is the set of all
service categories, and n is the number of all service categories

2https://scdm-shu.github.io/papers/datasets/PW-Dataset.zip

in the dataset.

ACCO =

∑
sc∈LACC (sc)

n
(22)

To further evaluate the classification performance of
DeepLTSC on head and tail service categories, we respectively
measure ACCH and ACCT for the classification accuracy on
head and tail service categories as in (23) and (24), where HL

and TL are the set of all head and tail service categories, and
nh and nt correspond to the number of head and tail service
categories in the dataset.

ACCH =

∑
hc∈HL

ACC (hc)

nh
(23)

ACCT =

∑
tc∈TLACC (tc)

nt
(24)

Here, F1-score is used to evaluate the classification balance
of different service classifiers on head and tail categories. It is
calculated as in (27), which is measured by Recall as in (25)
and Precision as in (26), where TP and FN denote the num-
ber of services assigned to head and tail service categories,
respectively.

Recall =
TP

TP + FN
(25)

Precision =
TP

TP + FP
(26)

F1-score =
2× Precision × Recall

Precision + Recall
(27)

In our experiments, all the four evaluation metrics are real
numbers ranged in [0, 1]. Higher values indicate the higher
classification performance.

C. Competing Methods

To demonstrate the effectiveness of DeepLTSC, we compare
it with eight state-of-the-art service classification approaches
and two our self-developed variants. They are detailedly
described as below.

• LSTM [30]: It is an improved approach of Recurrent
Neural Network (RNN). It extracts a service descrip-
tion as a word sequence, where long-term dependency
relationships are captured for improving the service
classification accuracy.

• LEAM [31]: It attempts to apply label in an atten-
tion framework for text classification. During the feature
extraction, it measures the compatibility between text
description and its corresponding label, which is fur-
ther leveraged to produce an attention score for service
description sequences.

• Bi-LSTM [32]: It is a variant of LSTM, considering bidi-
rectional long-term dependency relationships of the text
sequence. Thus, it can extract comprehensive semantic
information for service classification.

• GRU [33]: It simplifies the neural structure of LSTM by
reducing one cell gate, leading to better performance of
service classification with lower time complexity.

• FastText [34]: It is proposed by Facebook to achieve an
extraordinary service classification performance in terms
of time consumption through linear feature combination.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

930 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

TABLE IV
PERFORMANCE COMPARISONS OF WEB SERVICE CLASSIFICATION ON THREE LARGE-SCALE DATASETS WITH LONG-TAIL

DISTRIBUTIONS AMONG COMPETING APPROACHES

• RCNN [35]: By fully utilizing the advantages of CNN
and recurrent neural network, it comprehensively extracts
high-level semantic feature of service description, which
increases the performance of service classification.

• TextCNN [20]: It adopts different size of convolution ker-
nels to extract key points from different neighbor areas of
service description sequences. Then, max-pooling tech-
nique is applied to attain the most representative high
dimension feature for service classification.

• ServeNet [12]: It is state-of-the-art approach in service
classification due to the combination of two deep neural
networks. By integrating 2D convolutional operation and
bi-directional LSTM for service feature extraction, it can
receive better service classification effectiveness.

• DeepLTSC (LACNN): It is one of our self-developed
variant approaches. Here, only category attentive CNN
is applied to extract deep service feature for service
classification.

• DeepLTSC (LACNN, SFA): It is another one of our self-
developed variant approaches. Based on the previous
variant, we first utilize LACNN to extract deep service
feature that is fed into SFA model. During the model
training, cross-entrofy function is used as loss function
to learn and optimize the parameters.

• DeepLTSC (LACNN, SFA, Focal): It is our main proposed
approach for service classification, we apply focal
loss [29] as objective function to train DeepLTSC model
for better classification performance on both overall Web
services and those on tail categories.

D. Experiment Results and Analyses

In this section, extensive experiments on three large-scale
real-world service datasets with long-tail distributions are
conducted to validate the effectiveness of DeepLTSC.

1) Long-Tail Service Classification Comparison: Table IV
shows the performance comparisons of Web service classifica-
tion on three large-scale real-world service datasets with long-
tail distributions among competing approaches. It is observed
from the experiment results, DeepLTSC (LACNN, SFA, Focal)
achieves the best service classification performance across
four evaluation metrics, when comparing with eight state-
of-the-art methods. When our approach obtains significant
improvement over competing ones on those tail categories,
it also receives better classification accuracy on head cate-
gories. The main reason is that DeepLTSC (LACNN, SFA,
Focal) takes full advantage of category attentive mechanism
that keeps track of the most relevant words to the cate-
gory from service description and service name, which can
boost the classification accuracy on overall service categories.
Besides, compared with the conventional approaches, the clas-
sification accuracy on tail categories of DeepLTSC (LACNN,
SFA, Focal) does not sharply fluctuate as the increasing num-
ber of service categories, which demonstrates the effectiveness
of our approach for tail service categories classification in dif-
ferent long-tail distributions. The underlying reason is that
DeepLTSC (LACNN, SFA, Focal) leverages service feature
augmentation model to minimize the impact of low-quality
and confusing service descriptions from tail categories, which
is beneficial to preferably extracting service features on tail
categories.

More specifically, taking the service dataset PW-120 as
an example, ServeNet as the best one among the existing
approaches, DeepLTSC (LACNN, SFA, Focal) outperforms
it by 10.84% and 74.04% in terms of classification accu-
racy on overall and tail categories, respectively. Therefore, it
confirms that our proposed approach can more effectively han-
dle the task of service classification on those tail categories
than traditional ones. Moreover, DeepLTSC (LACNN, SFA,
Focal) receives superior performance on service classification

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: DeepLTSC: LONG-TAIL SERVICE CLASSIFICATION 931

by 43.30% on F1-score compared with ServeNet, which
demonstrates that it can better ensure the balance of ser-
vice classification on head and tail categories than those
conventional approaches.

To evaluate the effectiveness of different components in our
approach, we remove service feature augmentation model from
DeepLTSC (LACNN, SFA, Focal) and obtain a self-developed
variant one named DeepLTSC (LACNN), which applies ser-
vice category attention mechanism and convolutional neural
network to generate deep service features for performing clas-
sification task. As shown in Table IV, DeepLTSC (LACNN,
SFA, Focal) is superior to its variant DeepLTSC (LACNN) on
ACCT with an advantage of 16.98%, 12.38% and 34.68%
in PW-120, PW-150 and PW-180, respectively. That is,
DeepLTSC (LACNN, SFA, Focal) has an average 21.35%
improvement on classification accuracy of tail categories,
compared with its variation DeepLTSC (LACNN). Therefore,
service feature augmentation based on meta-learning is effec-
tive for classifying those Web services on tail categories. From
the experiment results, we also find that SFA negatively affects
service classification performance on head categories. The
reason is that unlike those tail categories that utilize valid
knowledge from Web services on head categories by SFA
to improve service classification accuracy, most of head cate-
gories include large number of Web services that are already
sufficient for model training and fitting. Therefore, the learned
low quality knowledge from few Web services on tail cate-
gories is more like noise and harmful to service classification
on head categories.

To further validate the effectiveness of focal loss, we com-
pare DeepLTSC (LACNN, SFA, Focal) with our another
self-developed variant named DeepLTSC (LACNN, SFA),
where traditional cross-entropy loss is applied instead of focal
loss function. From the experiment results, the overall clas-
sification performance of DeepLTSC (LACNN, SFA, Focal)
is better than that of DeepLTSC (LACNN, SFA), demonstrat-
ing that focal loss function is more applicable for long-tail
service classification than the traditional cross-entropy loss
function.

From the above results and analyses, we conclude that
by leveraging category attentive mechanism and service fea-
ture augmentation with focal loss, DeepLTSC outperforms
the competing methods for long-tail service classification on
multiple evaluation metrics.

2) Analysis of Scatter Diagrams: In order to visually
demonstrate the superiority of DeepLTSC, we transform the
extracted service features from different competing approaches
to 2-dimensional embeddings by t-SNE [36]. In the experi-
ments, the transformation of service features is performed on
15 service categories in PW-120, which contains 12 head and
3 tail service categories.

The experiment results of the generated scatter diagrams are
shown in Fig. 3, including four competing approaches LEAM,
RCNN, TextCNN, ServeNet and two our self-developed
approaches DeepLTSC (LACNN, SFA, Focal) and DeepLTSC
(LACNN). By visualizing the results of DeepLTSC and the
above competing approaches, it can illustrate the rationality on
the overall structure and validate the effectiveness of each part

of DeepLTSC. The reason of why we choose these approaches
can be explained as follows. Since the same label attention
mechanism is applied in LEAM model, it is compared with
LACNN to verify the rationality of combining label attention
mechanism and convolutional neural network. Simultaneously,
to exclude the possibility that the effectiveness of LACNN
mainly comes from convolutional neural network, we com-
pare it with two classical implementations of convolutional
neural networks without label attention in the field of text
classification, including TextCNN and RCNN. In such case,
we can further reveal the functionality of service category
attention during long-tail service classification. Furthermore,
ServeNet is current service classification model with the best
performance, which is compared with DeepLTSC to demon-
strate the effectiveness and applicability of our proposed
approach in real-world scenarios. To verify the impact of SFA
on long-tail service classification, we also compare our two
self-developed variants, including DeepLTSC (LACNN) with
only LACNN model and DeepLTSC (LACNN, SFA, Focal)
with both LACNN and SFA models.

As illustrated in the scatter diagrams, our proposed approach
DeepLTSC (LACNN, SFA, Focal) achieves the best 2-D
visualization results among different service categories that
have relatively far distances with each other in Fig. 3(f).
Specifically, DeepLTSC (LACNN, SFA, Focal) enables the
transformed 2-D service features to be more concentrated
within the same service category, which reduces the possibility
of those Web services affiliated to tail categories being mixed
with head services. Thus, DeepLTSC (LACNN, SFA, Focal)
can help service classifier easily recognize the significantly
different features for more accurate long-tail service classifi-
cation. Moreover, the 2-D visualization result of Fig. 3(e) is
better than that of Fig. 3(a), (b), (c), (d) by smaller distances
among intra-classes and larger distances among inter-classes,
which demonstrates the rationality and effectiveness of our
proposed deep service feature extraction model LACNN in
DeepLTSC.

From the experiment results of our self-developed variant
approach DeepLTSC (LACNN) in Fig. 3(e), it is observed
that 2-D service features transformed from the same cate-
gory also keep more concentrated than those generated by the
conventional approaches, although the distances among dif-
ferent categories are much closer than those by DeepLTSC
(LACNN, SFA, Focal) in Fig. 3(f). This phenomenon can be
explained by the applicability of category attentive mecha-
nism that makes the service features from the same category
more similar, leading to closer gathering by shorter distances.
Thus, it can help service classifier more easily distinguish tail
services from head ones. Taking tail category Medicine as
an example, 2-D service features from that category colored
with orange points are mixed with those from head cate-
gories by conventional approaches as shown in Fig. 3(a)–(d).
Conversely, they are closely gathered together as shown in
Fig. 3(e), where all the orange points from Medicine are circled
for better visualization.

To validate the effectiveness of service feature augmenta-
tion model in tail category classification, DeepLTSC (LACNN,
SFA, Focal), by fully combining the advantages of LACNN

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

932 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

Fig. 3. 2-dimensional service classification scatter diagrams where Web service features are extracted by LEAM (a), RCNN (b), TextCNN (c), ServeNet
(d), DeepLTSC (LACNN) (e), and DeepLTSC (LACNN, SFA, Focal) (f), respectively. Each point represents a Web service, and those points sharing the
same color represent that their corresponding Web services are classified into the same service category. Among the selected service categories, the three tail
categories are marked with * in the legend.

Fig. 4. Classification performance of DeepLTSC in three datasets with the changes of Ldesc and SNrate .

and SFA models, can extract service features from different
categories that have greater inter-class distance but smaller
intra-class distance. That can avoid the drawback of our vari-
ant approach DeepLTSC (LACNN) and is more conductive

to service classification on tail categories. Taking tail cat-
egory Bill as an example, service features extracted from
category Bill colored with red points have much clearer bound-
ary against that from category Payment colored with wheat

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

ZOU et al.: DeepLTSC: LONG-TAIL SERVICE CLASSIFICATION 933

Fig. 5. Classification performance of DeepLTSC on multiple evaluation metrics with different combinations of α and γ.

points, which are circled and shown in bottom right cor-
ner of Fig. 3(f). Therefore, our main approach DeepLTSC
(LACNN, SFA, Focal) enables to extract differentiated service
features that can be effectively recognized for Web service
classification among both head and tail categories, while our
variant approach DeepLTSC (LACNN) without integrating
SFA model still easily mix those Web services with the Web
services from head categories due to their highly semantic
similarity.

3) Performance Impact of Hyperparameters: In the experi-
ments, classification performance of our approach DeepLTSC
is mainly influenced by three groups of hyperparameters.
(1) The length of service description Ldesc can heavily impact
the amount of semantic information extracted by the long-tail
module of service feature extraction. (2) During the extrac-
tion of deep service features by category attentive mechanism
and deep neural network, the proportion of service name
SNrate can significantly affect the classification performance.
(3) During the extraction of long-tail service features, focal
loss function is applied for model training, where the hyper-
parameters α and γ can also influence the performance of
service classification.

Fig. 4 illustrates the service classification performance of
DeepLTSC (LACNN, SFA, Focal) on three datasets with the
changes of Ldesc and SNrate . On one hand, unlike ordinary
short text, there exists basically structured mode in a service
description. It first describes the service functionality, and
then interpret how to invoke a Web service. However, the
performance of long-tail service classification mainly depends
on functionality description, rather than the interpretation on
service invocation. To validate the influence of service descrip-
tion length, we adjust the changes with different settings of
Ldesc on three service datasets. As shown in the upper part of
Fig. 4, the experiment results demonstrate that Ldesc indeed
impacts service classification performance, and it has dif-
ferent values to receive the best classification performance
on three service datasets with different long-tail distribu-
tions. Therefore, an appropriate parameter value of Ldesc
could be tuned for a target service dataset in real-world
application scenario, where it can best adapt to the long-tail
service distribution and boost the accuracy of Web service
classification.

On the other hand, we apply service name as heuris-
tic information to fuse more service domain knowledge
for better classification performance. However, the features
extracted from service name that contains more sparse seman-
tic information than that from service description, which may

also harm service classification performance. To attain the best
performance, a certain percentage features of service name can
be tuned and integrated into the features of service description.
As shown in the lower part of Fig. 4, along with the changes of
SNrate , classification accuracy behaves more relatively sharp
fluctuations on tail categories than head ones. The reason is
that Web services from head categories have enough service
descriptions to provide sufficient semantic information, so that
heuristic features extracted from service names play a less
important role in deep service feature extraction on head cat-
egories than that on tail ones. Specially, the results indicate
that the effectiveness of heuristic feature from service name
appears an increasing trend on tail services, as the number of
service categories becomes biger and biger.

Fig. 5 illustrates the classification performance of
DeepLTSC (LACNN, SFA, Focal) on multiple evaluation met-
rics with different parameters of α and γ. In the service dataset
PW-120, we conduct experiments to test the performance
impact on service classification. As shown in Fig. 5, to make
a trade-off between head and tail service categories, the com-
bination of α = 0.7 and γ = 0.5 can be set to attain an overall
optimal performance on Web service classification using focal
loss as objective function.

E. Discussion

1) Experimental Results Summary: In order to verify
the effectiveness of DeepLTSC, we compare it with
eight state-of-the-art competing approaches and two our
self-developed variants. The experimental results show that
DeepLTSC achieves the best classification accuracy on
multiple evaluation metrics under different long-tail distri-
butions. Meanwhile, extensive experiments are conducted to
verify the functionality of each component in DeepLTSC,
including service category attention, deep service feature
extraction, and service feature augmentation, by visualiz-
ing the differences on scatter diagrams among competing
approaches as well as our self-developed ones. Moreover,
performance impact of hyperparameters is performed for the
verification of the classification performance of DeepLTSC.
The experiments show that the length of service description,
the ratio of features of service name, and the parameter set-
tings of focal loss play an important role in long-tail service
classification performance on DeepLTSC.

2) Threats to Validity: In the experiments, the long-tail ser-
vice classification performance of DeepLTSC is significantly
affected by the tuning and optimization of hyperparameters,
including Ldesc , SNrate , α and γ. However, it is difficult to

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

934 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 19, NO. 2, JUNE 2022

find an effective scheme to theoretically guide the settings
of these hyperparameters. Currently, finding the optimal com-
bination on hyperparameters mainly depends on the iterative
comparison of multiple rounds of experiments. Thus, when
faced with different long-tail distributions of service datasets,
it is expected to reassign suitable hyperparameter values to
ensure the effectiveness of DeepLTSC. Additionally, service
descriptions provided by different developers may be more
irregular, and service names may be less relevant to their cor-
responding Web services, which would potentially deteriorates
the classification performance of DeepLTSC in real-world
application scenarios.

3) The Advantages and Disadvantages of DeepLTSC:
When performing the task of long-tail service classification,
the advantages of our proposed approach DeepLTSC are
twofold. First, we extract implicit service features by inte-
grating multi-dimensional information of service description,
service name and service category where LACNN is proposed
to generate deep service features. The experimental results
demonstrate that LACNN can significantly improve the over-
all performance on service classification. Second, to further
enhance the service feature representation on tail categories,
SFA model based on meta-learning is proposed to boost the
classification accuracy of Web services on tail categories. The
experimental results validate the effectiveness of SFA on tail
services.

Inevitably, DeepLTSC also has some shortcomings. First,
the depth of the model is greatly increased due to the appli-
cation of BERT model, convolutional neural network, and
SFA, which requires DeepLTSC longer training time to con-
verge. Moreover, uniformly pruning all the service descriptions
potentially cannot adapt to all the Web services, since they
are published by different service vendors with diverse length
of functionality descriptions. Theoretically, the best way to
eliminate the influence of the redundant service descriptions
is to individually identify the useless part of each Web ser-
vice description. To solve the issue, a promising way is to
provide individually self-adaptive pruning strategy for a Web
service, where personalized length for each Web service can be
intelligently detected to further improve the quality of long-tail
service feature extraction.

VII. CONCLUSION AND FUTUREWORK

In this paper, we focus on the issue of long-tail Web ser-
vice classification by deep learning and feature augmentation
techniques called DeepLTSC. Service category attention and
convolutional neural network are integrated together to capture
deep service feature for better overall service classification
across both head and tail service categories. Moreover, ser-
vice feature augmentation model based on meta-learning is
applied for further mining long-tail service feature, which can
specially boost the classification accuracy of Web services
on tail categories. Extensive experiments have been con-
ducted on three real-world large scale service datasets. The
experimental results demonstrate that DeepLTSC can receive
superior performance on Web service classification compared

with state-of-the-art as well as our self-developed variant
approaches in multiple evaluation metrics.

In the future, we plan to explore more advanced classi-
fication algorithms by combining prior knowledge such as
composability invocation relationships among Web services to
further attain more explicitly differentiate service features.

REFERENCES

[1] X. Liu, S. Agarwal, C. Ding, and Q. Yu, “An LDA-SVM active learning
framework for Web service classification,” in Proc. IEEE Int. Conf. Web
Serv. (ICWS), 2016, pp. 49–56.

[2] T. Liang, L. Chen, J. Wu, G. Xu, and Z. Wu, “SMS: A framework
for service discovery by incorporating social media information,” IEEE
Trans. Services Comput., vol. 12, no. 3, pp. 384–397, May/Jun. 2019.

[3] M. Tang, Z. Zheng, G. Kang, J. Liu, Y. Yang, and T. Zhang,
“Collaborative Web service quality prediction via exploiting matrix fac-
torization and network map,” IEEE Trans. Netw. Service Manag., vol. 13,
no. 1, pp. 126–137, Mar. 2016.

[4] G. Zou, J. Chen, Q. He, K.-C. Li, B. Zhang, and Y. Gan, “NDMF:
Neighborhood-integrated deep matrix factorization for service QoS
prediction,” IEEE Trans. Netw. Service Manag., vol. 17, no. 4,
pp. 2717–2730, Dec. 2020.

[5] B. Cheng, S. Zhao, J. Qian, Z. Zhai, and J. Chen, “Lightweight service
mashup middleware with REST style architecture for iot applications,”
IEEE Trans. Netw. Service Manag., vol. 15, no. 3, pp. 1063–1075,
Sep. 2018.

[6] X. Luo, H. Wu, H. Yuan, and M. Zhou, “Temporal pattern-aware QoS
prediction via biased non-negative latent factorization of tensors,” IEEE
Trans. Cybern., vol. 50, no. 5, pp. 1798–1809, May 2020.

[7] S. Li, J. Wen, F. Luo, M. Gao, J. Zeng, and Z. Y. Dong, “A new QoS-
aware Web service recommendation system based on contextual feature
recognition at server-side,” IEEE Trans. Netw. Service Manag., vol. 14,
no. 2, pp. 332–342, Jun. 2017.

[8] B. Bai, Y. Fan, W. Tan, and J. Zhang, “DLTSR: A deep learning frame-
work for recommendations of long-tail Web services,” IEEE Trans.
Services Comput., vol. 13, no. 1, pp. 73–85, Jan./Feb. 2020.

[9] M. Trevisan, I. Drago, M. Mellia, H. H. Song, and M. Baldi, “Awesome:
Big data for automatic Web service management in SDN,” IEEE Trans.
Netw. Service Manag., vol. 15, no. 1, pp. 13–26, Mar. 2018.

[10] P. Rodríguez-Mier, C. Pedrinaci, M. Lama, and M. Mucientes, “An
integrated semantic Web service discovery and composition frame-
work,” IEEE Trans. Services Comput., vol. 9, no. 4, pp. 537–550,
Jul./Aug. 2016.

[11] C. Ieracitano, A. Paviglianiti, M. Campolo, A. Hussain, E. Pasero,
and F. C. Morabito, “A novel automatic classification system based
on hybrid unsupervised and supervised machine learning for electro-
spun nanofibers,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 1, pp. 64–76,
Jan. 2021.

[12] Y. Yang, W. Ke, W. Wang, and Y. Zhao, “Deep learning for Web Services
classification,” in Proc. IEEE Int. Conf. Web Services (ICWS), 2019,
pp. 440–442.

[13] G. M. Kapitsaki, “Annotating Web service sections with combined
classification,” in Proc. IEEE Int. Conf. Web Services (ICWS), 2014,
pp. 622–629.

[14] T. Liang, L. Chen, J. Wu, and A. Bouguettaya, “Exploiting hetero-
geneous information for tag recommendation in API management,” in
Proc. IEEE Int. Conf. Web Services (ICWS), 2016, pp. 436–443.

[15] W. Shi, X. Liu, and Q. Yu, “Correlation-aware multi-label active learning
for Web service tag recommendation,” in Proc. IEEE Int. Conf. Web
Services (ICWS), 2017, pp. 229–236.

[16] H. Wang, Y. Shi, X. Zhou, Q. Zhou, S. Shao, and A. Bouguettaya, “Web
service classification using support vector machine,” in Proc. IEEE Int.
Conf. Tools Artif. Intell. (ICTAI), 2010, pp. 3–6.

[17] J. Liu, Z. Tian, P. Liu, J. Jiang, and Z. Li, “An approach of semantic
Web service classification based on naive bayes,” in Proc. IEEE Int.
Conf. Services Comput. (SCC), 2016, pp. 356–362.

[18] Z. Tan, J. Chen, Q. Kang, M. Zhou, A. Abusorrah, and K. Sedraoui,
“Dynamic embedding projection-gated convolutional neural networks
for text classification,” IEEE Trans. Neural Netw. Learn. Syst., early
access, Jan. 8, 2021, doi: 10.1109/TNNLS.2020.3036192.

[19] X. Shi, Q. Kang, J. An, and M. Zhou, “Novel L1 regularized extreme
learning machine for soft-sensing of an industrial process,” IEEE Trans.
Ind. Informat., vol. 18, no. 2, pp. 1009–1017, Feb. 2022.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TNNLS.2020.3036192

ZOU et al.: DeepLTSC: LONG-TAIL SERVICE CLASSIFICATION 935

[20] Y. Kim, “Convolutional neural networks for sentence classification,”
in Proc. Conf. Empir. Methods Nat. Lang. Process. (EMNLP), 2014,
pp. 1746–1751.

[21] J. Banzi, I. Bulugu, and Z. Ye, “Learning a deep predictive coding
network for a semi-supervised 3D-hand pose estimation,” IEEE/CAA
J. Autom. Sinica, vol. 7, no. 5, pp. 1371–1379, Sep. 2020.

[22] D. Wu, X. Luo, M. Shang, Y. He, G. Wang, and X. Wu, “A
data-characteristic-aware latent factor model for Web services QoS
prediction,” IEEE Trans. Knowl. Data Eng., early access, Aug. 5, 2020,
doi: 10.1109/TKDE.2020.3014302.

[23] D. Wu, Q. He, X. Luo, M. Shang, Y. He, and G. Wang, “A posterior-
neighborhood-regularized latent factor model for highly accurate Web
service QoS prediction,” IEEE Trans. Services Comput., early access,
Dec. 24, 2019, doi: 10.1109/TSC.2019.2961895.

[24] X. Luo, D. Wang, M. Zhou, and H. Yuan, “Latent factor-based recom-
menders relying on extended stochastic gradient descent algorithms,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 2, pp. 916–926,
Feb. 2021.

[25] X. Luo, Z. Liu, S. Li, M. Shang, and Z. Wang, “A fast non-
negative latent factor model based on generalized momentum method,”
IEEE Trans. Syst., Man, Cybern., Syst., vol. 51, no. 1, pp. 610–620,
Jan. 2021.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Annu. Conf. North Amer. Chapter Assoc. Comput. Linguist. Human
Lang. Technol. (NAACL-HLT), 2019, pp. 4171–4186.

[27] Z. Liu, Z. Miao, X. Zhan, J. Wang, B. Gong, and S. X. Yu, “Large-scale
long-tailed recognition in an open world,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit. (CVPR), 2019, pp. 2537–2546.

[28] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax loss
for convolutional neural networks,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2016, pp. 507–516.

[29] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV), 2017,
pp. 2980–2988.

[30] A. Graves, N. Jaitly, and A.-R. Mohamed, “Hybrid speech recognition
with deep bidirectional LSTM,” in Proc. IEEE Autom. Speech Recognit.
Understand. Workshop (ASRU), 2013, pp. 273–278.

[31] G. Wang et al., “Joint embedding of words and labels for text classifi-
cation,” in Proc. Annu. Meeting Assoc. Comput. Linguist. (ACL), 2018,
pp. 2321–2331.

[32] P. Zhou, Z. Qi, S. Zheng, J. Xu, H. Bao, and B. Xu, “Text classification
improved by integrating bidirectional LSTM with two-dimensional max
pooling,” 2016, arXiv:1611.06639.

[33] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evalua-
tion of gated recurrent neural networks on sequence modeling,” 2014,
arXiv:1412.3555.

[34] A. Joulin, E. Grave, and P. B. T. Mikolov, “Bag of tricks for efficient
text classification,” in Proc. Conf. Eur. Chapter Assoc. Comput. Linguist.
(EACL), 2017, pp. 427–431.

[35] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neu-
ral networks for text classification,” in Proc. AAAI Conf. Artif. Intell.
(AAAI), 2015, pp. 2267–2273.

[36] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res., vol. 9, no. 86, pp. 2579–2605, 2008.

Guobing Zou received the Ph.D. degree in com-
puter science from Tongji University, Shanghai,
China, 2012. He is an Associate Professor and the
Dean of the Department of Computer Science and
Technology, Shanghai University, China. He has
worked as a Visiting Scholar with the Department
of Computer Science and Engineering, Washington
University in St. Louis, USA, from 2009 to 2011.
He has published more than 80 papers on premier
international journals and conferences, including
IEEE TRANSACTIONS ON SERVICES COMPUTING,

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, IEEE
International Conference on Web Services, International Conference on
Service-Oriented Computing, and IEEE International Conference on Services
Computing. His current research interests mainly focus on services comput-
ing, edge computing, data mining and intelligent algorithms, and recommender
systems.

Song Yang received the bachelor’s degree in
computer science and technology from Shanghai
University, China, 2019, where he is currently pursu-
ing the master’s degree with the School of Computer
Engineering and Science. As the key member, he
led a Research and Development Group to success-
fully design and implement a service-oriented big
data analytics and visualization platform that has
widely applied in environmental protection agency.
He has published a paper on International Journal
of Computational Science and Engineering. His

research interests include service classification, deep learning, and natural
language processing.

Shengyu Duan received the first B.Eng. degree in
telecommunication engineering from the Huazhong
University of Science and Technology, China, the
second B.Eng. degree in electronic and electrical
engineering from the University of Birmingham,
U.K. in 2013, and the M.Sc. and Ph.D. degrees from
the University of Southampton, U.K., in 2014 and
2019, respectively. He is currently working as an
Assistant Professor with the School of Computer
Engineering and Science, Shanghai University,
China. His research expertise and interests include

design for machine learning, IC reliability, hardware security, and hardware
acceleration.

Bofeng Zhang (Member, IEEE) received the Ph.D.
degree from Northwestern Polytechnic University in
1997, China. He is a Full Professor with the School
of Computer Engineering and Science, Shanghai
University. He experienced a Postdoctoral Research
with Zhejiang University, China, from 1997 to
1999. He worked as a Visiting Professor with the
University of Aizu, Japan, from 2006 to 2007. He
worked as a Visiting Scholar with Purdue University,
USA, from 2013 to 2014. He has published more
than 150 papers on international journals and con-

ferences. His research interests include service recommendation, intelligent
human–computer interaction, and data mining.

Yanglan Gan received the Ph.D. degree in
computer science from Tongji University, Shanghai,
China, 2012. She is an Associate Professor
with the School of Computer Science and
Technology, Donghua University, Shanghai. She
has published more than 50 papers on premier
international journals and conferences, including
Bioinformatics, BMC Bioinformatics, IEEE/ACM
TRANSACTIONS ON COMPUTATIONAL BIOLOGY

AND BIOINFORMATICS, IEEE TRANSACTIONS ON

SERVICES COMPUTING, IEEE TRANSACTIONS ON

NETWORK AND SERVICE MANAGEMENT, IEEE International Conference
on Web Services, International Conference on Service-Oriented Computing,
Neurocomputing, and Knowledge-Based Systems. Her research interests
include bioinformatics, service computing, and data mining.

Yixin Chen received the Ph.D. degree in com-
puter science from the University of Illinois at
Urbana Champaign in 2005. He is currently a Full
Professor of Computer Science with Washington
University in St. Louis, St. Louis, MO, USA.
He has published more than 100 papers on pre-
mier international journals and conferences, includ-
ing Artificial Intelligence, Journal of Artificial
Intelligence Research, IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS, IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, IEEE TRANSACTIONS ON SERVICES COMPUTING, IEEE
TRANSACTIONS ON COMPUTERS, IEEE TRANSACTIONS ON INDUSTRIAL

INFORMATICS, IJCAI, AAAI, ICML, and KDD. His research interests include
intelligent algorithms, data mining, machine learning, and big data analyt-
ics. He won the Best Paper Award at AAAI and a Best Paper Nomination
at KDD. He is an Associate Editor for the ACM Transactions on Intelligent
Systems and Technology, IEEE TRANSACTIONS ON KNOWLEDGE AND DATA

ENGINEERING, and Journal of Artificial Intelligence Research.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 11,2022 at 06:04:03 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TKDE.2020.3014302
http://dx.doi.org/10.1109/TSC.2019.2961895

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

