
DeepWSC: Clustering Web Services via
Integrating Service Composability into

Deep Semantic Features

Guobing Zou , Zhen Qin , Qiang He , Pengwei Wang , Bofeng Zhang , and Yanglan Gan

Abstract—With an growing number of web services available on the Internet, an increasing burden is imposed on the use and

management of service repository. Service clustering has been employed to facilitate a wide range of service-oriented tasks, such as

service discovery, selection, composition and recommendation. Conventional approaches have been proposed to cluster web services

by using explicit features, including syntactic features contained in service descriptions or semantic features extracted by probabilistic

topic models. However, service implicit features are ignored and have yet to be properly explored and leveraged. To this end, we

propose a novel heuristics-based framework DeepWSC for web service clustering. It integrates deep semantic features extracted from

service descriptions by an improved recurrent convolutional neural network and service composability features obtained from service

invocation relationships by a signed graph convolutional network, to jointly generate integrated implicit features for web service

clustering. Extensive experiments are conducted on 8,459 real-world web services. The experiment results demonstrate that

DeepWSC outperforms state-of-the-art approaches for web service clustering in terms of multiple evaluation metrics.

Index Terms—Web service, service clustering, deep neural network, service composability, mashup service

Ç

1 INTRODUCTION

WITH the advances of service-oriented architecture
(SOA) in software integration and applications [1],

web services are becoming popular and important building
blocks for fast establishing next generation real-world appli-
cations. As the demand on service-oriented applications
increases rapidly, more and more software vendors publish
their applications as web services on the Internet. As of Sep-
tember 26, 2019, theworld’s largest onlineweb service repos-
itory, ProgrammableWeb,1 has registered more than 22,000
web services and counting. Web services significantly accel-
erate machine-to-machine interactions and promote the
development of service-oriented software systems.

However, the explosion of web services has increased the
burden of exploring and managing web services on online
web service repositories like ProgrammableWeb [2]. For
example, suppose a wants to find “Web services for retriev-
ing keyword popularity by location and date”. It is difficult

to quickly and precisely find the desired web services
among a huge number of available web services to respond
to such a natural language query [3]. Therefore, how to
accurately and efficiently find functionally similar or equiv-
alent web services has become a fundamental and challeng-
ing research issue in field of service-oriented computing.

Clustering web services has been proved to be an effec-
tive way to facilitate a series of service-oriented tasks, e.g.,
service discovery [4], [5], service selection [6], service com-
position [1], [7] and service recommendation [8], [9], [10], by
effectively finding desired web services. Taking the task of
service composition as an example, when a mashup devel-
oper is finding the appropriate web services for matching
the decomposed requirements, service clustering can help
the mashup developer match the required functionalities
with a limited number of service clusters instead of from a
huge number of web services [1], [11]. In recent years, there
are a lot of researchers focusing on improving the accuracy
of service clustering [1], [3], [4], [7], [12], [13], [14], [15], [16],
[17], [18], [19], [20], [21].

The key to the performance of web service clustering is its
accuracy and applicability. Traditional clustering approaches
based on WSDL descriptions rely on service syntactic fea-
tures, which did not consider the semantic information of ser-
vice descriptions. Furthermore, ontology-based approaches
apply high-quality ontologies with the combination of Infor-
mation Retrieval [18] or with the assistance of domain-
specific information as heuristics to enrich the semantic
representation of few terms inWSDLweb services. However,
constructing high-quality ontologies is difficult and requires
much human efforts [18], which restricts the applicability of
ontology-basedweb service clustering. Along with the popu-
larity of the API mode as the mainstream representation of

� Guobing Zou, Zhen Qin, and Bofeng Zhang are with the School of Com-
puter Engineering and Science, Shanghai University, Shanghai 200444,
China. E-mail: {gbzou, zhenqin, bfzhang}@shu.edu.cn.

� Qiang He is with the Department of Computer Science and Software Engi-
neering, Swinburne University of Technology, Melbourne 3122, Australia.
E-mail: qhe@swin.edu.au.

� Pengwei Wang and Yanglan Gan are with the School of Computer Science
and Technology, Donghua University, Shanghai 201620, China.
E-mail: {wangpengwei, ylgan}@dhu.edu.cn.

Manuscript received 5 December 2019; revised 23 August 2020; accepted 20
September 2020. Date of publication 23 September 2020; date of current version
8 August 2022.
(Corresponding author: Yanglan Gan.)
Digital Object Identifier no. 10.1109/TSC.2020.3026188

1. https://www.programmableweb.com

1940 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2022

1939-1374 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0002-5667-3488
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0001-5931-9006
mailto:gbzou@shu.edu.cn
mailto:zhenqin@shu.edu.cn
mailto:bfzhang@shu.edu.cn
mailto:qhe@swin.edu.au
mailto:wangpengwei@dhu.edu.cn
mailto:ylgan@dhu.edu.cn
https://www.programmableweb.com

web services, researchers turned their focus frommining ser-
vice syntactic features in WSDL descriptions to implement-
ing probabilistic topic model, such as Latent Dirichlet
Allocation (LDA) [22], to extract service semantic features
from functionality description in natural language [14]. How-
ever, the major issue of topic model based approaches is that
they mainly extract the explicit semantic features of service
descriptions, whereas the implicit features of web services
have been ignored to be explored for potentially enhancing
the accuracy ofweb service clustering.

Recently, researchers are starting to attempt incorporat-
ing external heuristic information into traditional service
clustering algorithms such as service invocation relation-
ships [15] and user tagging [16]. However, this kind of
approaches still cannot deeply extract implicit features for
better clustering web services. This may severely impact the
accuracy of web service clustering. As for the topic model
based approaches integrated with service invocation rela-
tionships, the heuristics are primarily used to guide the
training process of LDA model to mine explicit semantic
features of web services [15], [16], where implicit features of
web services are not thoroughly utilized. Therefore, there is
an urgent need for an approach that can leverage implicit
features to more accurately cluster web services. In our pre-
vious work [3] we proposed DeepWSC, a novel framework
for web service clustering that makes a good use of implicit
features of web services. However, domain knowledge in
service computing as heuristics from the service invocation
relationships is still not taken into account for more pre-
cisely extracting the implicit features of web services in our
previous work. It is observed that service composability
from mashup services can be applied as heuristics to better
extract implicit features, which can be leveraged to facilitate
web service clustering. For example, suppose a web service
is invoked by another web service in a mashup service, they
are tended to be partitioned into different clusters [16].

To this end, we propose an improved DeepWSC, where
service composability features are integrated into deep neural
network forweb service clustering. DeepWSCfirst establishes
the service composability network and generates the heuris-
tics of service invocation relationships, which is then fed into
an improved recurrent convolutional neural network to train
a service feature extractor in an unsupervised manner.
Finally, DeepWSC acquires the integrated implicit features of
web services, which consists of deep semantic features and
composability features of web services. To evaluate the effec-
tiveness of DeepWSC in web service clustering, we conduct
extensive experiments on 8,459 real-world web services from
ProgrammableWeb. Benefiting from deep semantic features
and composability features of web services, DeepWSC out-
performs state-of-the-art web service clustering approaches
onmultiple evaluationmetrics.

This work extends our previous conference paper [3] and
effectively improves the DeepWSC’s performance in web
service clustering. The main differences between this paper
and [3] are twofold. First, DeepWSC now employs the ser-
vice composability features that are fed into the deep neural
network as a whole, which are then combined to web serv-
ices’ deep semantic features by a combination strategy, to
generate integrated implicit features of web services. Sec-
ond, DeepWSC now employs BERT [23], a more advanced

word embedding method, to embed web service descrip-
tions. The main contributions of this paper are summarized
as follows:

� We propose a novel heuristics-based framework
DeepWSC for web service clustering. In DeepWSC, a
deep neural network is trained as a service feature
extractor which generates the integrated implicit fea-
tures of web services for precisely clustering services.

� To extract the integrated implicit features of web
services more effectively, we propose a strategy for
combining web services’ deep semantic features and
service composability features, to generate service
integrated implicit features.

� Extensive experiments are conducted on a large
number of real-world web services crawled from
ProgrammableWeb. The experimental results dem-
onstrate that DeepWSC outperforms state-of-the-art
approaches significantly in web service clustering.

The remainder of thispaper is organized as follows. Section 2
formulates the research problem. Section 3 illustrates the over-
all framework of DeepWSC. Section 4 presents DeepWSC in
detail. Experimental results and analyses are presented and
discussed in Section 5. Section 6 reviews the related work.
Finally, Section 7 concludes the paper and discusses the future
work.

2 PROBLEM FORMULATION

This section presents the formulations of our research to
cluster web services.

Definition 1 (Web Service).Web service refers to API service.
It is denoted as a three-tuple s ¼ W sð Þ; L sð Þ; D sð Þ� �

, where
W sð Þ ¼ fw1; w2; . . .g is a collection of words, constituting the
functionality description of s. D sð Þ is the domain label corre-
sponding to s. L sð Þ ¼ lss0 ; lss00 ; . . .f g is a set of undirected links,
where each link indicates the composability relationship
between web service s and another web service s0 or s00. When s
has no composability relationships with any other web services,
L sð Þ holds an empty set.

Definition 2 (Mashup Service). A mashup service is a service
composed of a set of existing web services, denoted by m ¼
s1; s2 . . .f g, where those singleton services are the components
that make up m. Web services invoked by the same mashup ser-
vice are considered to have composability relationships.

Definition 3 (Web Service Repository). All theN web serv-
ices form a set S ¼ s1; s2; . . . ; sNf g. All theN 0 mashup services
constitute a setM ¼ m1;m2; . . . ;mN 0f g. A web service reposi-
tory is the union of S andM, i.e., R ¼ S [M.

Based on all the web services in S, we can construct a func-
tionality description set, denoted as W ¼ W s1ð Þ;W s2ð Þ;

�
. . . ;W sNð Þg, and a link set representing service composability
relationships, denoted as L ¼ L s1ð Þ; L s2ð Þ; . . . ; L sNð Þ� �

.

Definition 4 (Web Service Clustering, WSC). It is defined
as a five-tuple,WSC ¼ S;M;W;L; Kh i, where S is a collection
of web services to be clustered,M is a set of mashup services,W
is the set of functionality descriptions of web services, L is the
set of composability links of web services, and K is the number
of service clusters.

ZOU ETAL.: DEEPWSC: CLUSTERINGWEB SERVICES VIA INTEGRATING SERVICE COMPOSABILITY INTO DEEP SEMANTIC... 1941

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

The solution to a WSC problem is K clusters of services,
denoted as SC ¼ sc1; sc2; . . . ; scKf g. Any two service clus-
ters in SC do not have any web services in common, i.e.,
sci \ scj ¼ ;; 8sci; scj 2 SC; i 6¼ j, and each web service can
only and must be included in one of the clusters.

3 FRAMEWORK OVERVIEW

The overall framework of DeepWSC is illustrated in Fig. 1.
The objective of DeepWSC is to partition a set of web serv-
ices into several functionally-differentiated clusters accord-
ing to their functionality descriptions and composability
relationships. DeepWSC consists of four independent but
correlative components, including service semantic repre-
sentation, service composability mining, service implicit
feature integration and service clustering:

� In the component of service semantic representation,
web service descriptions are obtained from web ser-
vice repository and a trainedword embeddingmodel
is employed to transform each word into a dense vec-
tor. Thus, each of the descriptions is expressed as a
matrix. These matrices as service semantic represen-
tations are fed into the deep neural network to train
the service feature extractor.

� In the component of service composability mining,
we first extract service invocation relationships from
mashup services, and then build a service compos-
ability network. After that, network embedding is
performed to embed service composability relation-
ships into dense vectors. These vectors as the mined
service composability features are fed into the deep
neural network as heuristics to boost the training of
the service feature extractor.

� In the component of implicit feature integration, the
deep neural network is trained to generate inte-
grated implicit features of web services by taking the

matrix service semantic representations and the ser-
vice composability features as inputs.

� In the component of service clustering, K-means++
[24], a widely-used clustering algorithm, is employed
to cluster web services into a number of clusters.

4 APPROACH

The structure and training process of the service feature
extractor powered by a deep neural network is illustrated
in Fig. 5. It consists of four layers. (1) In the embedding
layer, as shown in Fig. 5a, a service composability network
is built and embedded to generate service composability
features. (2) In the extraction layer, as shown in Fig. 5b,
DeepWSC first extracts deep semantic features from ser-
vice descriptions, and then integrates service composabil-
ity features to generate service implicit features. (3) In the
provision layer, as shown in Fig. 5c, a WE-LDA model [14]
is trained to provide probabilistic topic distribution vec-
tors as partially correct domain labels to help train the ser-
vice feature extractor. (4) In the fitting layer, as shown in
Fig. 5d, the service feature extractor is trained by updating
its parameters.

4.1 Service Composability Feature Mining

To obtain the service composability features, we first
establish a service composability network by using
mashup services. Fig. 2 presents a mashup service from
ProgrammableWeb, called PriceZombie Price Tracker.2 It
contains a mashup functionality description and a set of
related web services with their functionality domain
labels. Web services exhibit mutually composable rela-
tionships when they are invoked by the same mashup
service, which are used to build a service composability
network (SCN) defined as below.

Definition 5 (Service Composability Network, SCN).
Given a set of mashup services M ¼ m1;m2; . . .f g and their
related web services S ¼ s1; s2; . . .f g, an SCN is an undirected
weighted graph, G ¼ ðV;E;WÞ, where V , E and W are the set
of vertices, edges and weights, respectively. There is an edge
ðsi; sjÞ 2 E if si and sj are invoked by a mashup service. A
weight weðsi; sjÞ 2 W of the edge between two vertices si and

Fig. 1. Overall framework of DeepWSC for web service clustering.

Fig. 2. Mashup service example of price tracking and comparison.
2. https://www.programmableweb.com/mashup/pricezombie-

price-tracker.

1942 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2022

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

https://www.programmableweb.com/mashup/pricezombie-price-tracker
https://www.programmableweb.com/mashup/pricezombie-price-tracker

sj is determined by their different or the same functionality as
below

we si; sj
� � ¼ 1; si and sj share the same functionality

�1; si and sj are functionally different:

�

(1)

From the above definition, the weight of each link in SCN
represents the functional difference or similarity between
two web services in terms of their corresponding domains.
As shown in Fig. 4, a positive link (we ¼ þ1) means that two
web services share the same or similar functionality, while a
negative link (we ¼ �1) means that the functionalities of the
two web services differ from each other.

To integrate service composability features into deep
neural network, vertices in the SCN need to be embedded
into vector representations [25]. Learning vector vertex rep-
resentations has been previously proven to be useful in
many social network analysis tasks [26]. Our SCN contains
links with a weight of þ1 or �1, which is very similar to
positive and negative links in signed social networks [25].
Motivated by the homogeneous structure of social network,
we employ an effective signed network embedding tech-
nique, called signed graph convolutional networks (SGCN)
[26], to embed the service composability network as a dense
matrix, where each vertex is represented as a vector.

The foundation of SGCN is the balance theory in social
network, which implies “the friend of my friend is my
friend, and the foe of my friend is my foe”. Based on this,
paths in a signed network can be classified into balanced or
unbalanced ones, where a balanced path consists of an even
number of negative links, and an unbalanced one has an
odd number of negative links. For a web service si, let N

þ
si

and N�
si
denote the set of services that are directly linked to

si with a link weighted þ1 and �1, respectively. Bsi lð Þ and
Usi lð Þ are the sets of services that reach si along a balanced
and an unbalanced path of l hops, respectively. According
to [26], Bsi lð Þ and Usi lð Þ can be calculated as follows:

For l ¼ 1; Bsið1Þ ¼ sj sj 2 Nþ
si

			n o

Usið1Þ ¼ sj sj 2 N�
si

			n o

For l > 1; Bsiðlþ 1Þ ¼ sj sk 2 BsiðlÞ and sj 2
		 Nþ

sk

n o

[sj sk 2 UsiðlÞ and sj 2
		 N�

sk

n o

Usiðlþ 1Þ ¼ sj sk 2 UsiðlÞ and sj 2
		 Nþ

sk

n o

[sj sk 2 BsiðlÞ and sj 2
		 N�

sk

n o
(2)

As illustrated in Fig. 4, SGCN embeds si in the service
composability network by continuously aggregating the
information of its “friends” and “foes” layer by layer as the
depth of the network gradually increases. The convolution
and aggregation of si in layer 1 is defined as in (3) and (4),

hB 1ð Þ
si

¼ s WB 1ð Þ X
sj2Nþ

si

h 0ð Þ
sj

Nþ
si

			 			 ; h 0ð Þ
si

2
64

3
75

0
B@

1
CA (3)

hU 1ð Þ
si

¼ s WU 1ð Þ X
sk2N�

si

h 0ð Þ
sk

N�
si

			 			 ; h 0ð Þ
si

2
64

3
75

0
B@

1
CA (4)

where “½ �” is the concatenating operation, WBð1Þ and WUð1Þ

are thematrices to transform the representations of “friends”
and “foes” of si, respectively, s represents a non-linear acti-
vation function, and hð0Þ

si
is the initial feature of si.

When l > 1, the aggregation is defined as in (5) and (6),
where WBðlÞ and WUðlÞ are all the matrices to transform the
representations of “friends” and “foes” of si for l > 1.

hB lð Þ
si

¼ s WB lð Þ X
sj2Nþ

si

hB l�1ð Þ
sj

Nþ
si

			 			 ;
X

sk2N�
si

hU l�1ð Þ
sk

N�
si

			 			 ; hB l�1ð Þ
si

2
64

3
75

0
B@

1
CA

(5)

hU lð Þ
si

¼ s WU lð Þ X
sj2Nþ

si

hU l�1ð Þ
sj

Nþ
si

			 			 ;
X

sk2N�
si

hB l�1ð Þ
sk

N�
si

			 			 ; hU l�1ð Þ
si

2
64

3
75

0
B@

1
CA

(6)

After multiple iterations of convolution and aggregation,
the composability feature of si, denoted by hc, is obtained
by concatenating the two hidden representations, hB lmaxð Þ

si
and hU lmaxð Þ

si
, where lmax is the number of layers of SGCN.

4.2 Service Integrated Implicit Feature Extraction

As illustrated in Fig. 5b, DeepWSC first employs a recurrent
convolutional neural network (RCNN) [27] to extract service
deep semantic features, and then combines the service com-
posability features to generate service integrated implicit fea-
tures for further clustering.

To embed service descriptions, each word w in a web ser-
vice description is projected into a dense vector eðwÞ 2 Rd by

Fig. 4. Process illustration of SGCN to embedding service si in the ser-
vice composability network based on [26].

Fig. 3. Illustration of service composability network. Vertices with differ-
ent colors represent web services with different functionalities.

ZOU ETAL.: DEEPWSC: CLUSTERINGWEB SERVICES VIA INTEGRATING SERVICE COMPOSABILITY INTO DEEP SEMANTIC... 1943

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

looking it up in a trained word embedding model, where
d is the dimensionality of the embedded word vectors.
Here, we use the state-of-the-art language representation
model, BERT [23], as the word embedding model. Since
the number of words varies in different web service
descriptions, to ensure the performance of our model,
we set Ldesc as the uniform description length for all the
web services. For those web services whose descriptions
are shorter than Ldesc, zero-padding is performed to pad
them to Ldesc; for those longer than Ldesc, the extra words
at the tail are removed.

After the original vector e wð Þ of each word is obtained,
DeepWSC further learns the enhanced representation of
each word by combining its contextual information. Given a
web service description W sð Þ as a word list, let wi be the i-th
word, cl wið Þ and cr wið Þ are denoted as the left and right con-
textual information of wi, respectively. In [27], cl wið Þ and
cr wið Þ are recursively calculated as follows:

cl wið Þ ¼ f W lð Þcl wi�1ð Þ þW slð Þe wi�1ð Þ

 �

(7)

cr wið Þ ¼ f W rð Þcr wiþ1ð Þ þW srð Þe wiþ1ð Þ

 �

(8)

where f is a non-linear activation function, W lð Þ, W slð Þ, W rð Þ

and W srð Þ are matrices for linear transformation. Here the
left context of wi is obtained by scanning the word list from
the left end to wi�1 with a recurrent structure. Similarly, the
right context of wi is obtained by scanning the word list
from the right end to wiþ1. DeepWSC employs the Gated
Recurrent Unit (GRU) [28], a widely-adopted recurrent
structure, to scan the service description both forward and
backward. As the dimensionality of GRU cells, the hyper
parameter Scell determines how much contextual informa-
tion of cl wið Þ and cr wið Þ is included to enhance the original
word vectors. It can be experimentally adjusted to a fixed
setting to boost service clustering performance. By the

concatenation of contextual information, the enhanced
representation of word wi in a service description consists
of cl wið Þ, e wið Þ and cr wið Þ as in (9):

vi ¼ cl wið Þ; e wið Þ; cr wið Þ½ �: (9)

In service clustering tasks, the functionality features of
web service descriptions should mainly rely on the embed-
ded vectors of the words, rather than the contextual infor-
mation that is primarily used as auxiliary. Specifically, the
main portion of an enhanced word representation vector
originates from the word itself instead of contextual infor-
mation. As the recurrent structure is a biased model that
assigns high weights to later inputs, we magnify the propor-
tion of word wi in the contextual information by optimizing
the calculation process of cl wið Þ and cr wið Þ as in (10) (11),
where e wið Þ is appended to be scanned at the end of each
recursive generation processes of them. After that, the
enhanced word representation vi is concatenated in the
same way as in (9).

cl
0 wið Þ ¼ f W lð Þcl wi�1ð Þ þW slð Þe wið Þ

 �
(10)

cr
0 wið Þ ¼ f W rð Þcr wiþ1ð Þ þW srð Þe wið Þ

 �
(11)

To generate the latent semantic vector yi of word wi

based on the enhanced word vector vi, we apply a linear
transformation with a non-linear leaky relu activation func-
tion to vi as in (12), where m is a slope for negative inputs.
Here, we use the leaky relu as the activation function instead
of tanh in [27] because the convergence speed of tanh is
much slower than that of relu series of the activation func-
tions. Additionally, if we simply use the pure relu function,
when a very large gradient flows through a neuron, it may
no longer be activated by any data after updating the
parameters.

Fig. 5. Multiple layers and training process of the recurrent convolutional neural network for the extraction of service integrated implicit feature.

1944 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2022

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

yi ¼ max W yð Þvi þ b yð Þ; 0

 �

þ m�min W yð Þvi þ b yð Þ; 0

 �

(12)

To further generate the deep semantic feature of a web
service, we apply an element-wise max-pooling that is a
sample-based discretization process to capture the most
important service characteristics as in (13).

hd ¼ max
Ldesc

i¼1
yi (13)

where the j-th element of hd is the maximum among all the
jth elements of yi. As a result, hd is a vector with fixed-
length and contains deep semantic feature of a web service.

To integrate service deep semantic features and compos-
ability features, we first add a linear transformation with a
leaky relu activation function to hc as in (14). It transforms
hc to h0

c that shares the same dimensionality with hd.

h0
c ¼ max W cð Þhc þ b cð Þ; 0

 �
þ m�min W cð Þhc þ b cð Þ; 0

 �
(14)

Then, the integrated implicit feature hi of a web service is
obtained with the fixed length by adding h0

c to hd. The reason
why we do not integrate these two kinds of features in a
concatenating way is that not all the services have compos-
ability information. Specifically, for services that do not
appear in any of the mashup services, their service compos-
ability features cannot be mined, resulting in hc being a zero
vector. In such case, when the integration is performed in the
concatenating way, the distance between two services with-
out composability information decreases compared with
others, because parts of the elements of their service inte-
grated implicit features are exactly equivalent. Conversely,
integrating service deep semantic feature and service compos-
ability feature in a vector-addingway can address this issue.

4.3 Service Latent Topic Distribution Generation

In service clustering, there is no service domain label as
ground truth. The service feature extractor cannot be trained
in a supervised manner. Inspired by [29], we utilize an aug-
mented probabilistic topic model, WE-LDA [14], to assign
each web service a probabilistic topic distribution vector u

with K elements. These vectors act as a partially correct
domain labels that help train the service feature extractor.

We train a WE-LDA with Skip-Gram algorithm on all the
service descriptions [14]. All the terms in the data set consti-
tute the term set V . They are represented as word vectors by
a trainedWord2vec model [30]. Then, K-means++ algorithm
is employed to cluster these terms into K clusters, denoted
as V ¼ v1;v2; . . . ;vKf g. V is used to semi-supervise the
sampling process for the words in the service descriptions
as in (15), where a, b and � are prior parameters, n

wið Þ
t;:i indi-

cates the number of times that word wi is observed with
topic t, n

�ð Þ
t;:i denotes the number of times words in V are

assigned to topic t, v
sð Þ
t;:i denotes the number of times words

are assigned to topic t in the functionality description of s,
and v

sð Þ
�;:i is the number of all the words in the functionality

description of s.

p zi ¼ t V; �jð Þ / n
wið Þ
t;:i þb

n
�ð Þ
t;:i

� v sð Þ
t;:iþa

v sð Þ
�;:iþKa

�Q
wj;:i2vi

exp �
vij j � z

wj;:ið Þ
t

� (15)

After the above sampling process, the service latent
topics can be obtained as in (16), where p zi ¼ tð Þ represents
the topic probability of topic t.

p zi ¼ tð Þ / v sð Þ
t

þ a

v sð Þ
� þKa

(16)

Finally, the trainedWE-LDAmodel generates a probabilis-
tic topic distribution vector u for each web service, which are
used as service labels to train the service feature extractor.

4.4 Model Training and Service Clustering

Fig. 5d illustrates how we train the service feature extractor
in DeepWSC by updating its parameters. First, a fully-
connected layer is added to transform the service integrated
implicit feature hi toO as in (17).O is an unnormalized prob-
abilistic topic distribution of a web service which has the
same dimensionality with u derived fromWE-LDAmodel.

O ¼ W Oð Þhi þ b Oð Þ (17)

To convert vector O into a normalized topic probabilistic
distribution P ¼ fp1; p2; . . . ; pKg to align with u, we apply
softmax function to O as in (18), where each pi represents
the probability of a web service that belongs to the ith topic.

pi ¼ exp Oið ÞPK
j¼1 exp Oj

� � (18)

Consequently, the objective loss function of the model
training of all theN web services is defined as in (19), where
Q denotes all the parameters to be trained as in (20). The
loss function J calculates the summation of the cross
entropy between P and u of all the web services.

J ¼ �
XN
i¼1

P log u þ 1� Pð Þlog 1� uð Þ si;Qjð Þ (19)

Q ¼ fW lð Þ;W slð Þ;W rð Þ;W srð Þ;W yð Þ; b yð Þ;

W cð Þ; b cð Þ;W Oð Þ; b Oð Þg
(20)

The aim of the training process is to minimize J for all
the web services. We use the Adam [31] optimizer to update
all the parameters that need to be trained in DeepWSC’s
RCNN for service implicit feature extraction as in (21)

Q� h
@J

@Q
! Q (21)

where h is an initial learning rate.When themodel converges,
the fitting layer and the WE-LDA model are removed, the
remaining components are used to generate integrated
implicit feature hi for web service clustering.

The generated integrated implicit features of all the web
services share the same dimensionality, thus, the widely-

ZOU ETAL.: DEEPWSC: CLUSTERINGWEB SERVICES VIA INTEGRATING SERVICE COMPOSABILITY INTO DEEP SEMANTIC... 1945

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

used K-means++ algorithm can be applied to partition web
services into several functionally differentiated clusters.

5 EXPERIMENTS

5.1 Experimental Setup and Data Set

All the experiments were conducted on our workstation
equipped with an NVIDIA GTX 1080TI GPU, an Intel(R)
Xeon(R) Gold 6130 @2:60 GHz CPU and 192 GB RAM.

To validate the performance of DeepWSC, we crawled
web services from ProgrammableWeb until July 1, 2018. This
data set contains 17,923 real-world web services with
domain labels and 6,392mashup services, and is available on
GitHub.3 These web services correspond to 384 categories by
their domain labels. However, the number of services in
each category is uneven, i.e., the category Tools contains 887
web services while Solar only contains two. To prevent
DeepWSC from being impacted by extremely small clusters,
we conducted experiments on the top 20 categories with the
most web services. Note that service domain labels are only
used in the clustering evaluation, instead of the training pro-
cess of DeepWSC. The experimental data set contains 8,459
web services. The numbers of web services in each category
are listed in Table 1, and more statistical information about
the data set is shown in Table 2.

As for the service composability network, we select 513
web services that are used by the 6,392 mashup services as
its vertices. Then, we add weighted links among the vertices
according to their composability relationships, where the
number of links in the network is 2,421. Then, an SGCN
model is trained on this service composability network with
the implementation published on GitHub.4

As for the word embedding model, BERT, we use an
open source implementation on GitHub.5 The pre-trained
BERT model we used in our experiments can be accessed
online.6

5.2 Evaluation Metrics

We evaluate the performance of DeepWSC by four widely-
used evaluation metrics: Purity, Normalized Mutual Infor-
mation (NMI), Recall and F1-measure. Let C* ¼ c�1; c

�
2;

�

. . . ; c�Kg be the set of K original categories, SC ¼ sc1;f
sc2; . . . ; scKg be the set ofK partitioned service clusters, and
n be the number of web services to be clustered in the data
set. Purity calculates the proportion of correctly clustered
services to the total number of services and is calculated as
in (22).

Purity SC;C�ð Þ ¼ 1

n

XK
i¼1

max
j

sci \ c�j
			 			 (22)

NMI evaluates clustering based on information theory. It
is calculated as in (23), (24) and (25), where P indicates the
probability that the service appears in the corresponding
set.

NMI SC;C�ð Þ ¼ I SC;C�ð Þ
H SCð Þ þH C�ð Þð Þ=2 (23)

I SC;C�ð Þ ¼
XK
i¼1

XK
j¼1

P sci \ c�j

 �

log
P sci \ c�j

 �

P scið Þ \ P c�j

 � (24)

H SCð Þ ¼ �
XK
i¼1

P scið ÞlogP scið Þ (25)

Recall and F1-measure regard the clustering as a series of
decisions. Recall is calculated as in (26), where TP and FN
denote the numbers of decisions that two similar services
are assigned to the same and different clusters, respectively.

Recall ¼ TP

TP þ FN
(26)

F1-measure combines Recall and Precision. It is calcu-
lated as in (28), where Precision is defined as in (27).

Precision ¼ TP

TP þ FP
(27)

F1-measure ¼ 2� Precision�Recall

PrecisionþRecall
(28)

All the four evaluationmetrics are real numbers ranged in
½0; 1�. Higher values indicate the higher clustering accuracy.

5.3 Competing Methods

Our main approach is DeepWSC implemented by an RCNN
integrated with the service composability relationships and
an WE-LDA model, called DeepWSC (RCNN, WE-LDA,
Heuristics). To demonstrate the clustering performance, we
compare it with nine competing methods. In the following,
we refer to LDA and WE-LDA model as “LDAs”. The com-
paring methods are detailedly described as below.

TABLE 1
Distribution of the Number of Web Services in Each Category

Category # of services Category # of services

Tools 887 Telephony 342
Financial 757 Security 312
Messaging 591 Reference 304
eCommerce 553 Email 299
Payments 553 Search 290
Social 510 Travel 294
Enterprise 509 Video 281
Mapping 429 Education 277
Government 371 Advertising 274
Science 357 Transportation 269

TABLE 2
Statistics of the Service Data Set

Item Name Value Item Name Value

Number of Services 8,459 Length (min) 16
Number of Categories 20 Length (average) 69.3
Number of Terms 25,479 Number of Vertices 513
Length (max) 406 Number of Links 2,421

3. https://github.com/zhenqincn/ProgrammableWebDataSet
4. https://github.com/benedekrozemberczki/SGCN
5. https://github.com/hanxiao/bert-as-service
6. https://storage.googleapis.com/bert_models/2018_10_18/

uncased_L-12_H-768_A-12.zip

1946 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2022

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

https://github.com/zhenqincn/ProgrammableWebDataSet
https://github.com/benedekrozemberczki/SGCN
https://github.com/hanxiao/bert-as-service
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip

� TF-IDF [12]: Thismethod obtains service features based
on the term frequency and inverse document fre-
quency. Based on the syntactic service features, the K-
means++ algorithm is adopted to clusterweb services.

� LDA [13]: It generates a probabilistic topic distribu-
tion vector for each web service, which is assigned to
the latent topic with the maximum probability. Web
services assigned to the same latent topic are parti-
tioned in the same cluster.

� LDA+K [4]: Unlike pure LDA, this method calculates
the similarity between two web services based on the
probabilistic topic distribution vectors from LDA and
then employs the K-means++ algorithm to cluster web
services.

� WE-LDA [14]: It uses theWE-LDAmodel to assignweb
services to latent topics that have the highest values in
their probabilistic topic distributions. Web services
assigned to the same latent topic are clustered together.

� WE-LDA+K [14]: This method first calculates the
similarity between two web services based on the
probabilistic topic distribution vector using WE-
LDA and then employs the K-means++ algorithm to
cluster web services.

� DeepWSC (Text-CNN, LDA): It is our first self-devel-
oped method from [3]. Its service feature extractor is
implemented with a Text-CNN [32] trained based on
LDA.

� DeepWSC (Text-CNN, WE-LDA): It is our second
self-developed method from [3]. Its service feature
extractor is implemented with a Text-CNN trained
under the guidance of a WE-LDAmodel.

� DeepWSC (RCNN, LDA): It is our third self-developed
method from [3]. Its service feature extractor is imple-
mentedwith anRCNN trainedbased on anLDAmodel.

� DeepWSC (RCNN, WE-LDA): It is our self-developed
method from [3] with the best performance. Its service
feature extractor is implemented with an RCNN
trained under the guidance of aWE-LDAmodel.

5.4 Experiment Results

5.4.1 Overall Clustering Comparison

For the TF-IDFmethod, we perform the K-means++ algorithm
for five times based on the term frequency and inverse

document frequency features and calculate its average perfor-
mance. For the four LDAs-basedmethods,we conduct a group
of experiments under different prior-parameter settings and
select the LDAs with the best performance. The best LDAs are
obtained when both a and b are 0.1 and � is 3.0 in the WE-
LDAmodel. For the four self-developedmethods from [3], we
conduct the experiments for five times at each of the different
hyperparameter settings and then select the trained models
with the best average performance for feature extraction and
web services clustering. For our two newmethods,we conduct
a series of experiments with different hyperparameter combi-
nations to find the best hyperparameter setting. Then, we per-
formed model training and service clustering for five times
under the best hyperparameter setting that yields the average
performance. Table 3 compares the performance in web serv-
ices clustering among the eleven competingmethods.

It can be observed from Table 3 that DeepWSC (RCNN,
WE-LDA, Heuristics) outperforms the five existing tradi-
tional methods, including TF-IDF and the LDAs-based ones.
Taking the best two traditional methods, WE-LDA and WE-
LDA+K, as an example, DeepWSC (RCNN, WE-LDA, Heu-
ristics) achieves an average advantage of 21.15 percent over
WE-LDA and 23.21 percent over WE-LDA+K across all the
evaluation metrics. It proves the superior clustering perfor-
mance of our newDeepWSC.

To further validate the performance of our newDeepWSC
that combines service composability features and utilizes a
new word embedding method, we compare DeepWSC
(RCNN, WE-LDA, Heuristics) with the version without the
heuristics. The results show that the former is on average
9.91 percent better than the latter. This indicates that the
enhancement onDeepWSCpresented in this paper can effec-
tively improve the clustering performance.

To evaluate the effectiveness of service deep semantic
features, we remove the use of the service composability
features from DeepWSC and obtain the self-developed
approach named DeepWSC (RCNN, WE-LDA), where the
service implicit feature is only composed of service deep
semantic feature obtained by the RCNN model. It is
observed from Table 3 that DeepWSC (RCNN, WE-LDA)
outperforms the existing LDAs-based methods. Specifically,
it achieves an average advantage of 10.25 percent over WE-
LDA and 12.12 percent over WE-LDA+K across all the

TABLE 3
Performance Comparisons of Web Service Clustering Among Competing Methods

Methods Purity NMI Recall F11-measure

TF-IDF 0.4673 0.3930 0.3427 0.1996
LDA+K 0.5200 0.4262 0.3199 0.3383
LDA 0.5285 0.4341 0.3321 0.3503
WE-LDA+K 0.5372 0.4363 0.3282 0.3466
WE-LDA 0.5420 0.4403 0.3370 0.3543

DeepWSC (Text-CNN, LDA) 0.5400 0.4625 0.3484 0.3662
DeepWSC (Text-CNN, WE-LDA) 0.5553 0.4668 0.3572 0.3733
DeepWSC (RCNN, LDA) 0.5492 0.4704 0.3614 0.3784
DeepWSC (RCNN, WE-LDA) 0.5708 0.4856 0.3821 0.3969

DeepWSC (RCNN, WE-LDA, Heuristics) 0.6379 0.5273 0.4186 0.4356

Gains on WE-LDA 17.69% 19.76% 24.21% 22.95%
Gains on DeepWSC (without Heuristics) 11.76% 8.59% 9.55% 9.75%

ZOU ETAL.: DEEPWSC: CLUSTERINGWEB SERVICES VIA INTEGRATING SERVICE COMPOSABILITY INTO DEEP SEMANTIC... 1947

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

evaluation metrics. Moreover, by replacing DeepWSC
(RCNN, WE-LDA) with a Text-CNN [32], DeepWSC (Text-
CNN, WE-LDA) is compared with WE-LDA. The results
show that it has an average advantage of 4.75 percent over
WE-LDA and 6.72 percent over WE-LDA+K across all the
evaluation metrics. Therefore, we can demonstrate that the
use of deep semantic features of web services helps
DeepWSC outperforms LDAs-based methods that only lev-
erages explicit semantic features.

From the above, we conclude that DeepWSC, taking into
account deep semantic feature and composability feature of
web services, outperforms all the comparing methods for
clustering web services in multiple evaluation metrics.

5.4.2 Analysis of Scatter Diagrams

To illustrate the features of web services for further cluster-
ing by different approaches, we visualize 2-dimensional
embeddings of service features in Fig. 6 by t-SNE [33]. For
our DeepWSC based methods shown in Figs. 6d, 6e, and 6f,
the results exhibit clear color boundaries between different
categories of web services. Especially, in Fig. 6f, the colors
of the points within each cluster are almost the same, which
indicates that most of the web services in each cluster share
the same domain label. For LDAs-based methods as illus-
trated in Figs. 6b and 6c, many web service points in differ-
ent colors are included in the same clusters, leading to a low
service clustering accuracy.

We observe that the service features embedded in Figs. 6b
and 6c show much clearer clusters but less color boundaries
compared with those in Figs. 6d, 6e, and 6f. It can be
explained that the 2-D embeddings are obtained by reducing
the service features generated by corresponding approaches.
For LDAs, the dimensionality of a service feature isK, where
each element represents the relevance between a web service

to its corresponding latent topic. Therefore, most service fea-
tures obtained by LDAs have an element whose value is
much higher than the others, resulting in the 2-D embed-
dings to form more obvious clusters. As for DeepWSC, the
generated integrated implicit features of web services are
very high-dimensional, of which any single element has no
specificmeaning. Accordingly, which elements in the service
features have relatively larger values is irregular, leading to a
relatively lower marginal distance between service clusters
of the 2-D embeddings. However, service features from
DeepWSC containmore deep semantic features and compos-
ability relationships as heuristics than those from LDAs. By
applying K-means++, these high-dimensional service fea-
tures can be better clustered according to their functionalities
comparedwith those generated by LDAs.

More importantly, from the 2-D embeddings, we observe
some interesting and meaningful phenomena out of domain
labels. As shown in Figs. 6c, 6d, and 6e, the 2-D embeddings
of web services affiliated toMessage and Telephony are mixed
together, however, they are partitioned into two distinct clus-
ters in Figs. 6a and 6b. The primary reason of this phenome-
non is the functionality descriptions of web services within
the two categories share high similarities in semantics. For
example, web service Twilio SMS7 and TelAPI8 have the
similar semantic meanings from the perspective of human
understanding. As we know, TF-IDF and LDA are based on
Bag-of-Words model, where description terms with similar
semantics are regarded as completely unrelated ones. Since
functionality descriptions of service withinMessage and Tele-
phony contain specific terms related to their corresponding
domains, the service features obtained by TF-IDF and LDA
can generate two distinct clusters. Furthermore, WE-LDA as

Fig. 6. 2-dimensional service clustering visualization where web service features are extracted by competing approaches. Each point represents a
web service, and the points sharing the same color represent that these services belong to the same domain.

7. https://www.programmableweb.com/api/twilio-sms
8. https://www.programmableweb.com/api/telapi

1948 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2022

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

https://www.programmableweb.com/api/twilio-sms
https://www.programmableweb.com/api/telapi

the word embeddings augmented LDA model leverages the
augmented semantics from word vectors to boost its service
clustering performance, while DeepWSC (Text-CNN, WE-
LDA) and DeepWSC (RCNN, WE-LDA) depend on the deep
semantic features to cluster web services. Both the aug-
mented semantics and deep semantic features enable the cor-
responding approaches to handle functionality descriptions
closer to human understanding, leading to small distance
between the extracted service features of the two categories
in Figs. 6c, 6d, and 6e. It may lead to better clustering results
in terms of human understanding, instead of evaluated by
domain labels.

In DeepWSC (RCNN, WE-LDA, Heuristics), service com-
posability features are introduced as heuristics and inte-
grated into deep semantic features. As show in Fig. 6f, web
services withinMessage and Telephony are partitioned as two
adjacently mixed but mutually independent clusters. Since
they belong to different domains, the spatial distance
between their composability features is relatively far, which
is beneficial to better differentiate the two categories of web
services with semantically similar functional descriptions.
That is, the 2-D embeddings of web services with similar
semantics of functional descriptions are gathered together,
while the service composability features as heuristics can
help divide them into independent clusters. It improves clus-
tering accuracy in terms of domain labels, as shown in
Table 3. In such case, when the granularity of service cluster-
ing is enlarged in application scenarios, web services within
the two categories could be merged together as one cluster.
As a result, we can obtain diverse and reasonable clusters
with other granularities different from domain labels.

Additionally, we also found that there is a category Tools
where some services are incorrectly clustered. Specifically,
the 2-D embeddings of many services within this category
are scattered throughout the plane space of Fig. 6. The
underlying reason is that the category of Tools is so abstract
that it may contain a variety of web services across multiple
different functionalities. This phenomenon may potentially
decrease the clustering accuracy in terms of both human
understanding and domain labels.

5.5 The Performance Impact of Hyperparameters

In the experiments, two groups of hyperparameters impact
the clustering performance of DeepWSC. (1) The quality of
the service feature extractor is mainly related to four hyper-
parameters, including the service description length Ldesc,
training batch size Sbatch, the size of GRU cells Scell, and the
dimensionality of integrated implicit features Shi . (2)

Additionally, a as a hyperparameters in WE-LDA model
reflects the relationships among latent topics that impacts
the quality of the service feature extractor. We test the two
groups of hyperparameters and analyze how they impact
the clustering performance of DeepWSC. Fig. 7 presents the
clustering performance of DeepWSC with different values
of Ldesc and Sbatch by four evaluation metrics.

Service descriptions are different from common short
texts. Usually, it first describes the service functionality
and then how to invoke the service. It is observed that
clustering task mainly focuses on service functionality
descriptions rather than invocation descriptions. More-
over, a lot of information in the invocation descriptions is
repetitive. It hinders the extraction of service integrated
implicit features, lowering the clustering performance. In
the experiments, we uniformly prune the service descrip-
tions to Ldesc words in order to remove the invocation
information in the latter part of a service description and
improve the quality of service clustering. Fig. 7a illustrates
the changes of DeepWSC’s clustering performance under
different settings of Ldesc. DeepWSC achieves the best clus-
tering accuracy when Ldesc is set as 60. However, if we
abandon too many words, e.g., setting Ldesc as 40, Deep-
WSC’s clustering performance decreases due to the loss of
functionality description.

Note that uniformly pruning the tail of all the services
potentially causes the useful parts of descriptions to be lost.
Theoretically, the best way to eliminate the influence of the
redundant descriptions is to individually identify the useless
part of each service description and prune it accordingly.
However, due to the lack of existing precise technique to rec-
ognize the redundant part of descriptions individually, we
use an uniform but effective scheme to prune the descriptions
to a suitable length in order to reduce the influence of the
redundant parts. It improves the performance of DeepWSC
over the entireweb service repository.

A smaller Sbatch allows DeepWSC to more precisely learn
the integrated implicit features. However, it may trigger
overfitting of the trained model by amplifying the discrimi-
nations among integrated implicit features. Conversely, a
large Sbatch allows DeepWSC to once handle more services
when calculating the loss function, which may cause it
underfitting. Therefore, how to balance the value of Sbatch is
a tradeoff. The performance achieved by DeepWSC with
different Sbatch is shown in Fig. 7b. It is observed that
when Sbatch is set as 64, DeepWSC achieves the best cluster-
ing performance. As it becomes larger or smaller, the perfor-
mance decreases.

Fig. 7. Clustering performance of DeepWSC versus description length Ldesc and batch size Sbatch.

ZOU ETAL.: DEEPWSC: CLUSTERINGWEB SERVICES VIA INTEGRATING SERVICE COMPOSABILITY INTO DEEP SEMANTIC... 1949

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

When Scell and Shi are overly large, redundant informa-
tion may be included in the enhanced representations of
words and integrated implicit features of web services. Con-
versely, if they are too small, DeepWSC may not be able to
acquire rich information when extracting integrated implicit
features. To find the best setting of Scell and Shi , we train
DeepWSC by tuning the combination of them under a wide
range of search space. Fig. 8 shows the clustering perfor-
mance with different combinations of Scell and Shi , indicat-
ing that DeepWSC achieves the best performance when Scell

and Shi are set as 512 and 640, respectively.
Since the deep neural network in DeepWSC is trained

based on LDAs, the hyperparameter a in WE-LDA impacts
the clustering accuracy. Fig. 9 compares the clustering per-
formance between DeepWSC and WE-LDA with different
values of a on four evaluation metrics. It shows that
DeepWSC outperforms WE-LDA under different settings of
a across all the evaluation metrics, and they both achieve
the best performance when a is set to 0.1.

5.6 Time Overhead

To evaluate the applicability of DeepWSC, we present the
additional time overhead incurred by training and applying

the service feature extractor. Since it is closely related to
Ldesc and Sbatch, we change them to test DeepWSC’s corre-
sponding time overhead by fixing the other hyperpara-
meters to their optimal values.

As shown in Fig. 10a, the additional time overhead of
DeepWSC (RCNN, WE-LDA, Heuristics) is at its top with
approximately 15 minutes when Ldesc is 90, and at its bottom
wtih around 8 minutes when Ldesc is 50. In the case with the
highest service clustering accuracy (Ldesc is set to 60), the
additional time overhead is about 9 minutes, which is a
short time compared with the consumption for training a
WE-LDA model. In regard to DeepWSC (RCNN, WE-LDA),
the additional time overhead is slightly lower. Furthermore,
when we use Text-CNN as the service feature extractor, the
additional time overhead is lower than a minute. Similarly,
the additional time overhead of DeepWSC increases along
with the growth of Sbatch, which is shown in Fig. 10b.

5.7 Discussion

5.7.1 Clustering Accuracy Discussion

Intuitively, the clustering accuracy of DeepWSC can be fur-
ther improved by more sophisticated techniques. Currently,
it is mainly restricted by the following three reasons.

Fig. 8. Clustering performance of DeepWSC with different combinations of feature size Shi and cell size Scell.

Fig. 9. Clustering performance between DeepWSC and WE-LDA with different hyperparameter a.

1950 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2022

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

First, there are some traditional web service clustering
approaches which present a relatively high clustering accu-
racy [17], [18], [19], [20], [21], however, they mainly cluster
web services described in standard and strictly structured
language such as WSDL. In recent years, web services
described in natural language are becomingmainstream, e.g.,
ProgrammableWeb as the world’s largest online web service
repository, manages all the API and mashup web services
that are described in natural language. Since natural language
has more expressiveness than WSDL, it also brings greater
flexibility and complexity. Existing widely-used advanced
approaches of natural language oriented applications have
demonstrated the common disadvantage of achieving rela-
tively low accuracy [27], [29], [32]. Thus, web service cluster-
ing approaches on ProgrammableWeb are intrinsically
difficult to receive a very high absolute value of clustering
accuracy comparedwith those byWSDLdescriptions.

Second, the number of web services and their corre-
sponding domains can both affect the clustering accuracy.
As observed in [18], [19], the performance of service cluster-
ing declines quickly as the number of web services
increases. Although these approaches [17], [18], [19], [20],
[21] can achieve a relatively high clustering accuracy, they
are experimentally validated on a small scale data set,
including no more than 500 web services distributed in less
than 5 categories. On the contrary, the experimental results
of our research are obtained on a large number of real-world
web services from ProgrammableWeb, leading to the clus-
tering accuracy with possibility of being further improved.

Finally, as discussed in Section 5.4.2, the composability of
service invocations as heuristics can help distinguish those
semantically similar web services that are distributed among
different domains, which can effectively promote the service
clustering performance when domain labels are taken as eval-
uation criteria. However, as shown in Table 2, there are only
513 web services invoked by mashup services, indicating that
most web services have not been invoked by anymashup ser-
vice, resulting in the limited heuristic information mined
from service composability relationships. This phenomenon
is also mentioned in [1], which may potentially affect the
improve of service clustering accuracy of DeepWSC.

5.7.2 Threats to Validity

In the experiments, the performance of DeepWSC can be
affected by the tuning and optimization of hyperparameters.
As show in Section 5.5, Ldesc, Sbatch, Scell, Shi and a can affect
the accuracy of service clustering of DeepWSC. However,

there is no effective theoretical method to guide the settings of
these hyperparameters. The process of finding a set of optimal
hyperparameters depends on the comparison of multiple
rounds of experiments. Thus, when faced with different data
sets, it is better to reassign suitable hyperparameter values to
ensure the effectiveness of the approach.

6 RELATED WORK

Functional-based service clustering initially focused on the
similarity of service functionality descriptions by WSDL.
Some researchers applied text mining techniques to WSDL
descriptions to cluster web services. Elgazzar et al. proposed
[5] an approach that used five key features extracted from
WSDL descriptions to cluster web services. In order to
improve the clustering accuracy, subsequent researchers
proposed enhanced approaches that aim at further mining
semantic information in WSDL descriptions based on topic
models [12], [13]. However, due to the limited number of
terms in WSDL descriptions, it is difficult for these tradi-
tional approaches to precisely obtain service features.

Furthermore, some researchers exploited domain ontolo-
gies to cluster web services. Xie et al. [17] proposed an ontol-
ogy-based semantic clustering approach which measured
the service similarity in two aspects, including function sim-
ilarity and process similarity. Kumara et al. [18] proposed a
hybrid approach which calculated service similarity by gen-
erating an ontology via hidden semantic patterns, or using
an information retrieval-based way equipped with term-
similarity measuring techniques. Additionally, they pro-
posed an approach to identify cluster centers by using simi-
larity values and TF-IDF values of service names, handling
the issue that clustering accuracy can be affected by unsuit-
able cluster centers. Considering domain specific terms can
describe more semantic information than general ones,
Rupasingha et al. [19] proposed an ontology-based web ser-
vice clustering approach that takes domain specificity into
account. It is observed that these approaches are based on
WSDL or other strictly structured semantic oriented
description languages, which are more conductive to per-
form concept extraction from constructed ontology and use-
ful to mine semantic features for clustering web services.
However, it is hard for domain ontologies to cover all func-
tionality descriptions of web services across multiple appli-
cation domains. What’s more, when facing a large number
of services from different service providers or developers, it
is a challenging and labor-intensive task to manually desig-
nate domain terms from ontologies for service descriptions.

Fig. 10. Additional time overhead for training and applying the service feature extractor in DeepWSC along with the changes of Ldesc and Sbatch.

ZOU ETAL.: DEEPWSC: CLUSTERINGWEB SERVICES VIA INTEGRATING SERVICE COMPOSABILITY INTO DEEP SEMANTIC... 1951

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

In recent years, there are also context-based approaches
for web service clustering. Zhang et al. [20] proposed a con-
text-based approach that jointly inherent WSDL service
description and service usage context. The topology mod-
eled from service collaboration relationships is used to make
up for the limitations of keyword retrieval in WSDL web
services. However, it is difficult to obtain the topology of ser-
vice collaboration relationships from online web service
repository. Kumara et al. [21] extracted domain context and
generated feature vectors through WSDL web services,
which is fed to train SVMs whose outputs are converted to
the posterior probabilities for calculating term similarity.
The calculated term similarity is used to help fine-tuning the
wrongly clustered web services. Unlike the ontology-based
and context-based approaches, DeepWSC aims to cluster
web services described in unstructured natural language,
which has been becoming the mainstream way for building
service-oriented software systems.

As API-based web services described by natural lan-
guage become increasingly popular and mainstream, many
researchers have investigated new approaches to cluster web
services described in natural language. Shi et al. [14] proposed
a word embedding augmented LDA model for web service
clustering, which extracts service semantic feature from ser-
vice functionality description and leads to superior service
clustering accuracy. He et al. [15] extended probabilistic
model for more accurate service clustering by incorporating
mutual invocation relationshipswith service characterization.
Cao et al. [16] boosted clustering performance by taking into
account service invocation relationships and the tags, where
the semantic features are extracted by aDoc2vecmodel.

With the advances of deep learning, many approaches
based on deep neural network outperform traditional ones
in natural language processing tasks [23], [27], [29], [32].
Some researchers have also utilized deep learning techni-
ques to boost the accuracy of web service classification.
Yang et al. [34] proposed a deep neural network called Ser-
veNet, which applied CNN to obtain local relations and
LSTM to retain global long-term dependencies. By the com-
bination of deep neural networks, it can automatically
extract high-level features without manual feature engineer-
ing, which achieves the state-of-the-art performance on web
service classification task. The main differences between
ServeNet with our approach DeepWSC are twofold. On one
hand, ServeNet is trained in a supervised manner for web
service classification, while DeepWSC is designed as an
unsupervised manner for web service clustering. On the
other hand, ServeNet mainly combines deep neural net-
works to extract deep semantic features from functionality
descriptions, while it has not taken into account any domain
heuristics. However, DeepWSC not only leverages deep
neural network to extract deep semantic features of web
services, but also incorporates composability features of
web services. These two kind of features are jointly synthe-
sized as integrated implicit features for more precisely clus-
tering web services.

7 CONCLUSION AND FUTURE WORKS

In this paper, we propose a novel framework for web ser-
vice clustering that integrates deep neural network with

service composability relationship, called DeepWSC. It first
generates deep semantic features and service composability
features that can be leveraged by the deep neural network.
Then, we train a service feature extractor to extract inte-
grated implicit feature of each web service. Finally, the task
of clustering web services is performed by a widely-used K-
means++ clustering algorithm. The results demonstrate that
DeepWSC outperforms the state-of-the-art approaches for
web service clustering in multiple evaluation metrics.

In the future, we plan to further explore advanced clus-
tering algorithms to improve the clustering accuracy and
obtain diverse granularities of service clusters.

ACKNOWLEDGMENTS

Thisworkwas supported inpart by theNational KeyResearch
and Development Program of China (No. 2017YFC0907505),
Shanghai Natural Science Foundation (No. 18ZR1414400,
17ZR1400200), National Natural Science Foundation of China
(No. 61772128, 61602109), and Shanghai Sailing Program
(No. 16YF1400300).

REFERENCES

[1] B. Xia, Y. Fan, W. Tan, K. Huang, J. Zhang, and C. Wu, “Category-
aware API clustering and distributed recommendation for auto-
matic mashup creation,” IEEE Trans. Services Comput., vol. 8, no. 5,
pp. 674–687, Sep./Oct. 2015.

[2] F. Chen, S. Yuan, and B. Mu, “User-QoS-based web service clus-
tering for QoS prediction,” in Proc. IEEE Int. Conf. Web Services,
2015, pp. 583–590.

[3] G. Zou, Z. Qin, Q. He, P. Wang, B. Zhang, and Y. Gan, “DeepWSC:
A novel framework with deep neural network for web service
clustering,” in Proc. IEEE Int. Conf. Web Services, 2019, pp. 434–436.

[4] B. Cao et al., “Mashup service clustering based on an integration
of service content and network via exploiting a two-level topic
model,” in Proc. IEEE Int. Conf. Web Services, 2016, pp. 212–219.

[5] K. Elgazzar, A. E. Hassan, and P. Martin, “Clustering WSDL
documents to bootstrap the discovery of web services,” in Proc.
IEEE Int. Conf. Web Services, 2010, pp. 147–154.

[6] Y. Xia, P. Chen, L. Bao, M. Wang, and J. Yang, “A QoS-aware web
service selection algorithm based on clustering,” in Proc. IEEE Int.
Conf. Web Services, 2011, pp. 428–435.

[7] B. Cao, X. Liu, M. M. Rahman, B. Li, J. Liu, and M. Tang,
“Integrated content and network-based service clustering and
web apis recommendation for mashup development,” IEEE Trans.
Services Comput., vol. 13, no. 1, pp. 99–113, Jan./Feb. 2020.

[8] D. Skoutas, D. Sacharidis, A. Simitsis, and T. Sellis, “Ranking
and clustering web services using multicriteria dominance
relationships,” IEEE Trans. Services Comput., vol. 3, no. 3,
pp. 163–177, Third Quarter 2010.

[9] M. Shi, Y. Tang, and J. Liu, “Functional and contextual attention-
based LSTM for service recommendation in mashup creation,”
IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 5, pp. 1077–1090,
May 2019.

[10] M. Shi, J. Liu, D. Zhou, M. Tang, F. Xie, and T. Zhang, “A probabi-
listic topic model for mashup tag recommendation,” in Proc. IEEE
Int. Conf. Web Services, 2016, pp. 444–451.

[11] G. Cassar, P. Barnaghi, and K. Moessner, “Probabilistic match-
making methods for automated service discovery,” IEEE Trans.
Services Comput., vol. 7, no. 4, pp. 654–666, Fourth Quarter 2013.

[12] L. Chen et al., “WTCluster: Utilizing tags forweb services clustering,”
inProc. Int. Conf. Service-Oriented Comput., 2011, pp. 204–218.

[13] L. Chen, Y. Wang, Q. Yu, Z. Zheng, and J. Wu, “WT-LDA: User
tagging augmented LDA for web service clustering,” in Proc. Int.
Conf. Service-Oriented Comput., 2013, pp. 162–176.

[14] M. Shi, J. Liu, D. Zhou, M. Tang, and B. Cao, “WE-LDA: A word
embeddings augmented LDA model for web services clustering,”
in Proc. IEEE Int. Conf. Web Services, 2017, pp. 9–16.

[15] D. He et al., “A probabilistic model for service clustering-jointly
using service invocation and service characteristics,” in Proc. IEEE
Int. Conf. Web Services, 2018, pp. 302–305.

1952 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 15, NO. 4, JULY/AUGUST 2022

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

[16] Y. Cao, J. Liu, M. Shi, B. Cao, X. Zhang, and Y. Wang,
“Relationship network augmented web services clustering,” in
Proc. IEEE Int. Conf. Web Services, 2019, pp. 247–254.

[17] L. Xie, F. Chen, and J. Kou, “Ontology-based Semantic Web serv-
ices clustering,” in Proc. IEEE Int. Conf. Ind. Eng. Eng. Manage.,
2011, pp. 2075–2079.

[18] B. T. G. S. Kumara, I. Paik, and W. Chen, “Web-service clustering
with a hybrid of ontology learning and information-retrieval-
based term similarity,” in Proc. IEEE Int. Conf. Web Services, 2013,
pp. 340–347.

[19] R. A. H. M. Rupasingha, I. Paik, and B. T. G. S. Kumara,
“Improving web service clustering through a novel ontology gen-
eration method by domain specificity,” in Proc. IEEE Int. Conf.
Web Services, 2017, pp. 744–751.

[20] R. Zhang, K. Zettsu, T. Nakanishi, Y. Kidawara, and Y. Kiyoki,
“Context-based web service clustering,” in Proc. Int. Conf. Seman-
tics Knowl. Grid, 2009, pp. 192–199.

[21] B. T.G. S. Kumara, I. Paik,H.Ohashi,W.Chen, andK. R. C.Koswatte,
“Context aware post-filtering for web service clustering,” in Proc.
IEEE Int. Conf. Services Comput., 2014, pp. 440–447.

[22] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet
allocation,” J. Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[23] J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language under-
standing,” in Proc. Annu. Conf. North Amer. Chapter Assoc. Comput.
Linguistics: Human Lang. Technol., 2019, pp. 4171–4186.

[24] D. Arthur and S. Vassilvitskii, “K-means++: The advantages of
careful seeding,” in Proc. Annu. ACM-SIAM Symp. Discrete Algo-
rithms, 2007, pp. 1027–1035.

[25] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu, “Signed net-
work embedding in social media,” in Proc. SIAM Int. Conf. Data
Mining, 2017, pp. 327–335.

[26] T. Derr, Y. Ma, and J. Tang, “Signed graph convolutional
networks,” in Proc. IEEE Int. Conf. Data Mining, 2018,
pp. 929–934.

[27] S. Lai, L. Xu, K. Liu, and J. Zhao, “Recurrent convolutional neural
networks for text classification,” in Proc. AAAI Conf. Artif. Intell.,
2015, pp. 2267–2273.

[28] K. Cho et al., “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” in Proc. Conf.
Empir. Methods Natural Lang. Process., 2014, pp. 1724–1734.

[29] J. Xu et al., “Short text clustering via convolutional neural
networks.” in Proc. Annu. Conf. North Amer. Chapter Assoc. Comput.
Linguistics: Human Lang. Technol., 2015, pp. 62–69.

[30] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their
compositionality,” in Proc. Advances Neural Inf. Process. Syst., 2013,
pp. 3111–3119.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” in Proc. Int. Conf. Learn. Representations, 2015, pp. 1–15.

[32] Y. Kim, “Convolutional neural networks for sentence classi-
fication,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2014,
pp. 1746–1751.

[33] L. V. D. Maaten and G. Hinton, “Visualizing data using t-SNE,” J.
Mach. Learn. Res., vol. 9, pp. 2579–2605, 2008.

[34] Y. Yang, P. Liu, L. Ding, B. Shen, and W. Wang, “ServeNet: A
deep neural network for web service classification,” 2019,
arXiv:1806.05437. [Online]. Available: https://arxiv.org/abs/
1806.05437

Guobing Zou received the PhD degree in com-
puter science from Tongji University, Shanghai,
China, 2012. He is currently an associate professor
and dean of the Department of Computer Science
and Technology, Shanghai University, China. He
has worked as a visiting scholar with the Depart-
ment of Computer Science and Engineering,
Washington University in St. Louis from 2009 to
2011, USA. His current research interests mainly
focus on services computing, data mining, intelli-
gent algorithms and recommender systems. He

has published around 70 papers on premier international journals and
conferences, including the IEEE Transactions on Services Computing,
IEEE International Conference onWeb Services, International Conference
on Service-Oriented Computing, IEEE International Conference on Serv-
icesComputing, etc.

Zhen Qin received the bachelor’s degree in com-
puter science and technology from Shanghai Uni-
versity, 2018. He is currently working toward the
master’s degree with the School of Computer Engi-
neering and Science, Shanghai University, China.
His research interests include web service cluster-
ing, deep learning, and intelligent algorithms. He
has published a paper on the 26th IEEE Interna-
tional Conference onWebServices (ICWS).

Qiang He received the 1st PhD degree from the
Swinburne University of Technology (SUT), Aus-
tralia, in 2009, and the 2nd PhD degree in com-
puter science and engineering from the Huazhong
University of Science and Technology (HUST),
China, in 2010. He is currently working as a senior
lecturer with the Department of Computer Science
and Software Engineering, Swinburne University
of Technology, Australia. His research interests
include software engineering, cloud computing,
services computing, big data analytics, and green

computing. He received the Best Paper Awards from ICWS 2017, ICSOC
2018, and SCC 2018. For more details please visit: https://sites.google.
com/site/heqiang/.

Pengwei Wang received the BS and MS degrees
in computer science from the Shandong University
of Science and Technology, Qingdao, China, in
2005 and 2008, respectively, and the PhD degree
in computer science from Tongji University, Shang-
hai, China, in 2013. He is currently an associate
professor with the School of Computer Science
and Technology, Donghua University, Shanghai,
China. He experienced a postdoctoral research fel-
lowwith theDepartment ofComputer Science, Uni-
versity of Pisa, Italy. His research interests include

services computing, cloud computing, and Petri nets. He has published
more than 30 papers on premier international journals and conferences.

Bofeng Zhang received the PhD degree from the
Northwestern Polytechnic University (NPU), in
1997, China. He is currently a full professor with
the School of Computer Engineering and Sci-
ence, Shanghai University. He experienced a
postdoctoral research with Zhejiang University
from 1997 to 1999, China. He worked as a visiting
professor with the University of Aizu from 2006
to 2007, Japan. His research interests include
personalized service recommendation, intelligent
human-computer interaction, and data mining. He

has published more than 150 papers on international journals and
conferences.

Yanglan Gan received the PhD degree in com-
puter science from Tongji University, Shanghai,
China, 2012. She is currently an associate profes-
sor with the school of Computer Science and Tech-
nology, Donghua University, Shanghai, China. Her
research interests include bioinformatics, web
services, and datamining. She has publishedmore
than 30 papers on premier international journals
and conferences, including Bioinformatics, BMC
Bioinformatics, the IEEE/ACM Transactions on
Computational Biology and Bioinformatics, IEEE

International Conference onWebServices, IEEE International Conference
on Service-Oriented Computing, Neurocomputing, and Knowledge-Based
Systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZOU ETAL.: DEEPWSC: CLUSTERINGWEB SERVICES VIA INTEGRATING SERVICE COMPOSABILITY INTO DEEP SEMANTIC... 1953

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 11,2022 at 08:49:12 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1806.05437
https://arxiv.org/abs/1806.05437
https://sites.google.com/site/heqiang/
https://sites.google.com/site/heqiang/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

