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Abstract: The cell cycle and biological processes rely on RNA and RNA-binding protein (RBP)
interactions. It is crucial to identify the binding sites on RNA. Various deep-learning methods have
been used for RNA-binding site prediction. However, they cannot extract the hierarchical features
of the RNA secondary structure. Therefore, this paper proposes HPNet, which can automatically
identify RNA-binding sites and -binding preferences. HPNet performs feature learning from the two
perspectives of the RNA sequence and the RNA secondary structure. A convolutional neural network
(CNN), a deep-learning method, is used to learn RNA sequence features in HPNet. To capture the
hierarchical information for RNA, we introduced DiffPool into HPNet, a differentiable pooling graph
neural network (GNN). A CNN and DiffPool were combined to improve the binding site prediction
accuracy by leveraging both RNA sequence features and hierarchical features of the RNA secondary
structure. Binding preferences can be extracted based on model outputs and parameters. Overall, the
experimental results showed that HPNet achieved a mean area under the curve (AUC) of 94.5% for
the benchmark dataset, which was more accurate than the state-of-the-art methods. Moreover, these
results demonstrate that the hierarchical features of RNA secondary structure play an essential role
in selecting RNA-binding sites.

Keywords: protein–RNA interaction; RNA-binding sites; deep learning; graph neural network;
hierarchical pooling network; RNA secondary structure

1. Introduction

RNA plays a critical role as a crucial carrier for genetic information [1,2]. RNA-
binding proteins (RBPs) are essential regulators of various stages of cellular RNA, including
RNA transcription, RNA translation, RNA editing, and mRNA localization [3,4]. An RBP
contains at least one RNA-binding domain (RBD) [5]. It can recognize specific binding
sites on RNA and form polymers with RNA, making it possible to regulate the expression
of RNA functions [6–8]. More than 2000 RBPs have been identified [9], but only a few
RBP processes are thoroughly understood. Mutations in genes, RNA function failure, and
other issues are directly linked to aberrant combinations of RBP and RNA, which biological
studies have shown to be a significant contributor to the development of many diseases.
For example, IRP1 binding to FTL mRNA is disrupted by mutations in the iron-responsive
region of the FTL gene, leading to hyperferritinemia-cataract syndrome [10,11]. Therefore,
solving more complex biological problems requires a thorough understanding of RBP-
binding sites and preferences. It is crucial to investigate the binding specificity between
RBP and RNA.

With the advent of high-throughput sequencing technology, biological experiments
have confirmed the binding RNAs and the binding sites of various RBPs [12,13]. Crosslink-
ing and immunoprecipitation sequencing (CLIP-seq) [14] and RNA immunoprecipitation
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sequencing (RIP-seq) [15] have been widely applied to RBP binding sequencing problems.
However, biological sequencing techniques are costly and time-consuming. Developing
computational methods to accurately predict binding sites and preferences utilizing ex-
isting data is crucial. It has been shown that the selection of RBP binding sites is related
to both sequence and secondary structure [16–19]. The secondary structure of RNA is
crucial to scientific research and consists of six substructures. The hierarchical information
from RNA secondary structure has been shown in biological experiments to affect binding
sites [20–22].

Various machine-learning methods have been applied to predict RBP–RNA binding
sites as computational methods have advanced. RNAcontext [23] was used to predict
binding strength by calculating the position weight matrix of binding motifs. RCK [24]
was used to introduce RNA secondary structure, based on RNAcontext, to capture local
preferences more accurately. GraphProt, proposed in [25], was used to encode each RNA
sequence as a hypergraph containing sequence and secondary structure information. The
prediction accuracy could be significantly improved by training the model with a machine-
learning algorithm. However, all the machine-learning algorithms mentioned above require
manual feature extraction and specific prior knowledge.

The development of high-throughput sequencing technology has resulted in large
amounts of data. The implementation of deep-learning algorithms in this field offers
the opportunity to generate fully data-driven predictions of binding sites. Deep-learning
methods can automatically extract features from data, compensating for the limitations of
manual feature extraction in machine learning. DeepBind [26], proposed in 2015, was the
first deep-learning algorithm applied to this problem. The authors used a convolutional
neural network (CNN) to automate the extraction of binding motifs from RNA sequences
fully. iDeepE [27] could learn the features of both long and short sequences using a CNN
and combined the results to predict binding sites. According to biological experiments, the
RNA secondary structure, which is a graph structure, strongly correlates with the choice of
binding site. Based on DeepBind, iDeepS [28] added bi-directional long short-term memory
(Bi-LSTM) and the RNA secondary structure. A CNN was used to extract sequence
features, and the Bi-LSTM extracted long-term dependence between the sequences and
secondary structures. The developers of DeepRPK [29] used a word-embedding algorithm
to extract the features of the RNA sequence and secondary structure. It used the distributed
representation of the k-mers sequence instead of the traditional one-hot encoding. The
distributed representation was used as the input of the CNN and Bi-LSTM to undertake
the prediction task. With the development of graph neural networks (GNNs), more and
more are being applied to predict RBP binding sites [30,31]. The developers of RPI-Net [32]
used a graph convolution network (GCN) to learn a graphical representation of the RNA
secondary structure, making it possible to directly capture RNA structure information.
DeepPN [33] is a deep parallel neural network constructed using a CNN and GCN. It can
use a two-layer CNN and GCN to extract RNA sequence features, but it only considers
sequence information and ignores RNA structure information. Other methods directly
compute global structure information while ignoring the complex hierarchical relationship
between nodes.

Consequently, an HPNet algorithm based on deep learning is introduced in this
paper. It can learn specific binding sites and binding preferences from RNA sequences
and secondary structures. HPNet employs a CNN and GNN with hierarchical pooling to
extract sequence and structure information directly. The main contributions of this research
are summarized below.

• HPNet uses DiffPool, a hierarchical pooling network, to discover hierarchical features
of RNA secondary structure. It divides the substructures of the secondary structure
into the same cluster and learns more meaningful graph-level embeddings;

• HPNet recognizes binding sequences and automatically extracts binding motifs using
the CNN and DiffPool. It can determine whether binding sites exist and capture
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binding motifs without domain knowledge. The area under the curve (AUC) for
HPNet was found to be significantly better than the state-of-the-art prediction method;

• A context-average debiasing method is proposed. In response to the traditional
debiasing method of replacing clip sites with random nucleotides, this paper proposes
a debiasing method of replacing clip sites with average-context features of clip sites.

2. Materials and Methods
2.1. Datasets and Data Processing

We research evaluated HPNet against a benchmark dataset called RBP-24, which
contains 24 sub-datasets for 21 RBPs. In this dataset, 23 sub-datasets were derived
from doRiNA [34], and 1 sub-dataset was derived from crosslinking immunoprecipi-
tation (HITS-CLIP) experiments [35]. The doRiNA experiments employed photoactivated
ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) to determine
binding sites. For each sub-dataset, positive samples were determined using CLIP exper-
iments. Each positive sample had a viewpoint region of 12–75 nucleotides, the binding
region determined in biological experiments. Multiple nucleotides were extended to both
sides, with the viewpoint as the center, to provide more associated information from the
context of the viewpoint. Negative samples were obtained by modifying positive sam-
ples when there was no supporting evidence for binding sites. In the original RBP-24
dataset, each sub-dataset consists of training and test sets. In this research, 20% of the
training set was randomly selected as the validation set and 80% as the training set. Except
for ALKBH5 and C7ORF85, each sub-dataset contained 500 positive and 500 negative
samples for the test dataset. The details for the original RBP-24 dataset are shown in
Supplementary Table S1.

2.2. Sequence Coding

“A”, “G”, “C”, and “U” are nucleotides in RNA sequences. To capture RNA sequence
features, nucleotides were represented using one-hot encoding. To ensure that the inputs
to the CNN had the same lengths, “N” was used to pad all sequences to the longest length,
which was used as the standard in this experiment. Given an RNA sequence containing n
nucleotides and a detector with a length of m, the one-hot encoding rules for the sequence
were as follows.

Mi,j =


0.25 if si−m+1 = N or i < m or i > n−m
1 if si−m+1 is (A, C, G, U)
0 otherwise

(1)

where i represents the nucleotide position, j represents the nucleotide category, and the
positions filled with “N” are expressed as a mean value of 0.25.

2.3. Secondary Structure Coding

To extract the features of RNA secondary structure, we used a library called forgi [36]
to operate RNA sequences. It is a tool for converting RNA sequences into graph structures.
The RNA sequences forming the most likely substructures were predicted based on mini-
mum free energy. The resulting secondary substructures were classified as stem (S), hairpin
loop (H), interior loop (I), multiloop (M), fiveprime (F), and threeprime (T) substructures, as
shown in Table 1. The results were represented using one-hot encoding as the input feature
matrix of the nodes. Given a sequence S, the structure encoding Str = (str1, str2, . . . , strn)
can be obtained, and the encoding rules for the substructures are as follows:

SSi,j =


0.16 if stri−m+1 = N or i < m or i > n−m
1 if stri−k+1 is (f, t, s, i, m, h)
0 otherwise

(2)
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where i indicates the position of the substructure in the sequence, j indicates the category
of the substructure, and the position filled with “N” is indicated by 0.16.

Table 1. Abbreviations, descriptions, and common graphic representations of the six RNA secondary
structure types.

Structure
(Abbreviation) Description Graphical Representation

Stem (S) Consecutive nucleotide-paired regions
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Fiveprime (F) The unpaired nucleotides at the 5′ end of a
molecule/chain /

Threeprime (T) The unpaired nucleotides at the 3′ end of a
molecule/chain /

According to the forgi extracted results, some substructures may have a link between
two nucleotides, but others may not. Therefore, to capture folding uncertainty and consider
all the possibilities for RNA secondary structures, we adopted the RNAplfold [37] method
to calculate the probability adjacency matrix for NA secondary structures.

2.4. HPNet Architecture

This research proposes a hierarchical pooling graph neural network method based
on a CNN [38] and DiffPool [39]. The architecture is displayed in Figure 1. Initially, the
original RNA sequences in the dataset were represented using one-hot encoding and RNA
secondary structure graph representations, respectively. Then, both types of data were pro-
cessed independently. A two-layer CNN was used to discover sequence features within the
one-hot encoding matrix, while DiffPool was employed to extract graph representations of
the RNA secondary structures. In the initial DiffPool layer, global information was learned
using a GCN. Since the nodes in the graph structures corresponded to the nucleotides in
the sequences, the features extracted by the same nucleotide in different models could be
shared. The results of the first layer of the CNN could be expressed as weight features,
representing each nucleotide’s importance in the RNA sequences. Combining the weight
features with the features of each node in the graph structures highlighted the nucleotide
nodes with high importance in the secondary structures, facilitating better feature extraction
of the RNA secondary structures. Finally, the DiffPool and CNN results were connected
and fed to the fully connected layers for prediction. The model outputs predicted labels
representing the presence or absence of a binding site in the RNA sequences.



Appl. Sci. 2023, 13, 3247 5 of 17Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 
Figure 1. Overall structure diagram of HPNet architecture. 

2.5. The Convolutional Neural Network in HPNet 
CNNs are artificial neural networks that have been applied in many fields. Typically, 

a CNN consists of three layers, as shown in Figure 2: the convolutional layer, the pooling 
layer, and the fully connected layer. The function of the convolutional layer is to automat-
ically extract features from the input using filters. A single convolutional layer may have 
poor feature extraction capabilities, while increasing the number of convolutional layers 
can make it possible to extract more complex features. The pooling layers mainly sample 
the features learned in the convolutional layers to emphasize the most critical features and 
prevent overfitting. The CNN adjusts the weight parameters in the model backward using 
gradient descent and improves its accuracy through iterative training. 

The CNN’s input in this experiment was the RNA sequences’ one-hot encoding ma-
trix. The filters moved over the input matrix with a particular step size to perform the dot 
product operation. Padding had to be added to the input matrix to ensure that the output 
matrix was the same size as the input matrix during the convolution operation. Given an 
input matrix M ∈ ℝ ×  and a filter F ∈ ℝ × , the output matrix has a size of X ∈ℝ × . 

The activation function is essential for a CNN to learn nonlinear features. Therefore, 
this research employed the rectified linear unit (ReLU) activation function, defined as fol-
lows: ReLU x = 0 if x < 0x otherwise (3) 

Then, the output of the convolutional layer was fed into the pooling layer and filtered 
using a pooling operation to highlight the most critical features and prevent overfitting. 
There are two popular pooling techniques: max pooling, which selects the most significant 
value in the region to represent the area; and mean pooling, which determines the mean 
value for the part to serve as a representation. A sensible pooling operation can reduce 
the numbers of features and neurons and the computational burden. However, an over-
sampling area may result in information loss and a sharp feature reduction. In this exper-
iment, mean pooling was used. 

Finally, the high-level features obtained from pooling were flattened and fed into the 
fully connected layer for prediction. 

Figure 1. Overall structure diagram of HPNet architecture.

2.5. The Convolutional Neural Network in HPNet

CNNs are artificial neural networks that have been applied in many fields. Typically, a
CNN consists of three layers, as shown in Figure 2: the convolutional layer, the pooling layer,
and the fully connected layer. The function of the convolutional layer is to automatically
extract features from the input using filters. A single convolutional layer may have poor
feature extraction capabilities, while increasing the number of convolutional layers can
make it possible to extract more complex features. The pooling layers mainly sample the
features learned in the convolutional layers to emphasize the most critical features and
prevent overfitting. The CNN adjusts the weight parameters in the model backward using
gradient descent and improves its accuracy through iterative training.
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The CNN’s input in this experiment was the RNA sequences’ one-hot encoding
matrix. The filters moved over the input matrix with a particular step size to perform the
dot product operation. Padding had to be added to the input matrix to ensure that the
output matrix was the same size as the input matrix during the convolution operation.
Given an input matrix M ∈ Rh×w and a filter F ∈ Rn×m, the output matrix has a size of
X ∈ R(h−n+1)×(w−m+1).
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The activation function is essential for a CNN to learn nonlinear features. There-
fore, this research employed the rectified linear unit (ReLU) activation function, defined
as follows:

ReLU(x) =
{

0 if x < 0
x otherwise

(3)

Then, the output of the convolutional layer was fed into the pooling layer and filtered
using a pooling operation to highlight the most critical features and prevent overfitting.
There are two popular pooling techniques: max pooling, which selects the most significant
value in the region to represent the area; and mean pooling, which determines the mean
value for the part to serve as a representation. A sensible pooling operation can reduce the
numbers of features and neurons and the computational burden. However, an oversam-
pling area may result in information loss and a sharp feature reduction. In this experiment,
mean pooling was used.

Finally, the high-level features obtained from pooling were flattened and fed into the
fully connected layer for prediction.

2.6. DiffPool in HPNet

Various tools can be used to produce graphical representations of RNA secondary
structures. Previous studies have employed CNNs or GNNs to aggregate the entire graph
information directly, but they ignored the complex hierarchical relationships that may exist
between each node. Therefore, this research employed DiffPool for the learning of RNA
secondary structure information. DiffPool is a differentiable and end-to-end multilayer
GNN model. As shown in Figure 3, in the first layer, structurally adjacent nucleotides
within the same double-stranded stem or unpaired loop region were clustered into a single
node in the coarsened graph of the next layer. Information extraction and node aggregation
were then performed in each layer to produce a coarsening graph for the next layer. By
aggregating the multilayer network, a node was obtained that represented the entire
graph structure.
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The layer l network in this experiment can be expressed as follows:

Z(l) = GNN
(

A(l), X(l)
)

(4)

A(l+1), X(l+1) = DiffPool
(

A(l), Z(l)
)

(5)

where A is the predicted adjacency matrix and A ∈ Rn×n, X is the input matrix and
X ∈ Rn×d, and Z represents the features learned by the GNN in the graph and Z ∈ Rn×d.
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DiffPool generally consists of two operations. The first employs two GNNs to extract
features and learn the distribution of the node weight matrix, respectively. The distribution
of nodes in the next layer is determined according to the node weight matrix. The two
GNNs use similar methods.

Z(l) = GNNl,embed

(
A(l), X(l)

)
(6)

S(l) = softmax
(

GNNl,pool

(
A(l), X(l)

))
(7)

The second operation is the aggregation of nodes according to the node weight matrix,
which can be written mathematically as follows:

X(l+1) = S(l)
T
Z(l) ∈ Rnl+1×d (8)

A(l+1) = S(l)
T
A(l)S(l) ∈ Rnl+1×nl+1 (9)

This experiment used a GCN for the initial GNN layer, while GraphSAGE [40] was
used for the remaining GNN. The information transfer equation for the GCN algorithm
can be expressed as follows.

H(k) = M
(

A, H(k−1); W(k)
)
= ReLU

(
D̃
− 1

2 ÃD̃
− 1

2 H(k−1)W(k−1)
)

(10)

where H denotes the input matrix and k denotes the k-th layer network.
DiffPool is a non-convex optimization model. Two regularization terms are added to

the model to prevent the model from falling into the local minimum, which can be written
as follows.

LLP = ‖A(l), S(l)S(l)
T
‖F (11)

LE =
1
n

n

∑
i=1

H(Si) (12)

The first regularization term can assist the link in predicting the target. It minimizes
LLP and continuously corrects S(l), ensuring that two highly similar nodes are mapped to
the same coarsening node. The second regularization term reduces the uncertainty of the
mapping distribution to ensure that each node is assigned to a coarsening node.

After each DiffPool operation, the number of graph nodes decreases until a single
node is obtained that aggregates the information for the entire graph.

2.7. Fully Connected Layer and Loss Function

The fully connected layer was designed to mimic the neural architecture of the human
brain, where each node in the layer is connected to all the nodes in the following layer.
Classification based on the features previously extracted by the CNN and DiffPool was the
fundamental goal of the fully connected layer. It took these features as inputs and used
three fully connected layers to make a prediction.

The loss function was used to measure the percentage difference between the pre-
dicted and actual values to optimize the model. When the loss values did not meet the
requirements, backpropagation was employed to adjust the parameters to minimize the
loss and improve the stability of the model. The binary cross-entropy loss function was im-
plemented in this experiment to discover model parameters without introducing gradient
dissipation.

L(w) = −
n

∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) (13)

where the actual label is yi and the predicted label is ŷi.
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2.8. Debiasing Data

In biological experiments, RNA cleavage enzymes are commonly utilized to isolate
specific RNA sequences. The method often results in many positive samples with identical
cleavage sites, which means that the nucleotides at the beginning and end of the RNA
viewpoint fragments are identical. In the positive samples, the viewpoints usually begin
with “G” and end with “G”. However, machine-learning models tend to emphasize RNA
fragment boundaries more during feature extraction, leading to biased results. Therefore,
removing the bias in the data can ensure the prediction results’ authenticity. RPI-Net
suggests solving the problem by replacing boundary nucleotides with random nucleotides.
However, we found that this method can lead to the loss of information in the combined
sequence and increase the uncertainty of the prediction results. Notably, the sequence
context has a vital role in selecting binding sites. Therefore, this research proposes a
debiasing method that incorporates boundary contexts. In other words, the areas three
nucleotides ahead and behind of the central nucleotide served as the context. The mean
values of the context features replaced the feature of the central nucleotide. This method
involved replacing the nucleotides in a window of size 3 centered at the “G” preceding
the viewpoint and in a window of size 3 centered at the end of the viewpoint. It could
maximize the integrity of the combined information. Given an RNA sequence S, the feature
calculation method for its boundary nucleotides is as follows.

Fi =
1
6

3

∑
j=−3

Fi+j (14)

where F represents the feature matrix of the RNA sequences, i represents the position of
the nucleotide, and j represents the position of the context of nucleotide i.

2.9. Parameter Optimization

We used the Pytorch framework in Ubuntu to create the model and accelerated using
GPU. The Adam algorithm was employed for optimization during model training, and
the maximum number of model iterations was set to 50. Due to the massive size of the
training set, the computational performance of the model would have been reduced if sub-
datasets were traversed directly during each iteration. Thus, the mini-batch algorithm was
introduced into the experiment. It undertakes calculations while making adjustments by
using small samples for calculation and by making several gradient descents in a traversal.
The calculation efficiency is thus increased while the time complexity is decreased. Typically,
a power of 2 between 64 and 512 is chosen as the mini-batch size. Mini-batch sizes of
128 were used in the experiment because they struck a balance between speed and precision.
Furthermore, a GCN was used to learn the graph structure globally, which is necessary
when learning the hierarchical features of a secondary structure. The dropout approach
was implemented during training to prevent local optimization of model parameters. By
randomly discarding some neurons, the random correction of the extracted features and
the avoidance of overfitting were achieved. We used the AUC as the model evaluation
metric. The AUC evaluates the classification ability of a model; here, the ability of HPNet
to correctly predict the presence of binding sites in RNA. In general, larger AUC values
are better.

3. Results
3.1. Baseline

Numerous deep-learning methods have been applied to predict RNA-binding sites.
HPNet was evaluated in this experiment and compared to the following methods:

• GraphProt: This method uses a hypergraph to describe the RNA secondary structure
fully and uses a graph kernel approach to extract features from the hypergraph. The
model is then trained through machine learning based on the features to predict
RNA-binding sites;
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• Deepnet-rbp [41]: This method added the RNA tertiary structure to the prediction
model for the first time. It involves constructing a framework containing the RNA
sequence, secondary structure, and tertiary structure, which represent the specificities
of the RBP-binding sites in three dimensions, respectively;

• iDeppE: This method uses two CNNs to learn global and local RNA sequence features.
For the global CNN, an entire sequence is padded to the same length and used directly
as the input. For the local CNN, an RNA sequence is split into multiple overlapping
fixed-length subsequences, and each sub-sequence is used as a separate signal channel
of the full-length sequence. The two CNNs are trained independently and then
combined for prediction;

• RPI-Net: This method introduces GCN and LSTM deep-learning models. The graph-
ical representation of RNA secondary structure can be effectively learned using the
GCN and message passing takes place through the LSTM. The learned graphical fea-
tures are then inputted into the Bi-LSTM to learn the global embedding. An end-to-end
learning method is implemented;

• DeepPN: This method consists of a CNN and a GCN, a parallel learning network.
The CNN and GCN are used to learn sequence features from different perspectives to
compensate for the lack of features.

3.2. Prediction Results for the Original Dataset

As shown in Table 2, HPNet achieved the best mean AUC of 0.945 with the RBP-24
dataset, 6.5% higher than GraphProt, 4.8% higher than Deepnet-rbp, 1.5% higher than
iDeepE, and 2.8% higher than DeepPN. Moreover, HPNet achieved the best AUCs with
21 sub-datasets, with AUCs of 0.95 or higher with 16 sub-datasets. Among these baseline
models, iDeepE and DeepPN only use RNA sequence features for model training, limit-
ing their ability to learn RNA structure information and decreasing prediction accuracy.
GraphProt adds RNA secondary structure information to the model, expressed as a graph
structure. However, GraphProt uses machine-learning methods to train the model, which
depend on pre-processing features and may cause problems, such as feature loss. The
tertiary structure of RNA is predicted based on the secondary structure. Deepnet-rbp
incorporates the tertiary structure into the model, and all three dimensions indicate binding
specificity. However, the prediction of RNA tertiary structure is challenging and uncertain,
which may also lead to feature loss and decreased accuracy.

HPNet introduces the concept of hierarchical pooling in its utilization of secondary
structures. It has been shown experimentally that RNA hierarchical features play an
essential role in RBP–RNA interaction. For example, for the ZC3H7B protein, HPNet
achieved a 1.9% improvement over iDeepE and a 13% improvement over Deepnet-rbp.
Notably, HPNet performed better with RBPs with smaller training sets, such as ALKBH5,
which has 2410 training samples, and C17ORF85, which has 3709 training samples.

Figure 4 depicts the results of a statistical comparison of the four methods and HPNet.
If the AUC of HPNet was higher than that of the baseline method with the same sub-
dataset, it is marked with “.”. Otherwise, it is marked with “x”. Each dotted line in the
figure represents a difference of 1%, and the p-value represents the significance test level.
Generally, two methods are significantly different when the p-value is less than or equal to
0.05. A p-value of less than 0.001 indicates a highly significant difference. Figure 4 shows
that the p-values for all four experiments were significantly lower than 0.001, demonstrating
that HPNet is markedly different from the other four methods.
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Table 2. Performance of HPNet and baseline methods with RBP-24 dataset.

RBPs GraphProt Deepnet-rbp iDeepE DeepPN HPNet

ALKBH5 0.68 0.714 0.758 0.66 0.78
C17ORF85 0.800 0.820 0.830 0.837 0.893
C22ORF28 0.751 0.792 0.837 0.785 0.856
CAPRIN1 0.855 0.834 0.893 0.886 0.912

AGO2 0.765 0.809 0.884 0.868 0.895
ELAVL1H 0.955 0.966 0.979 0.978 0.994

SFRS1 0.898 0.931 0.946 0.936 0.957
HNRNPC 0.952 0.962 0.976 0.977 0.983

TDP43 0.874 0.876 0.945 0.936 0.957
TIA1 0.861 0.891 0.937 0.928 0.958

TIAL1 0.833 0.870 0.934 0.926 0.953
AGO1-4 0.895 0.881 0.915 0.912 0.939

ELAVL1B 0.935 0.961 0.971 0.976 0.975
ELAVL1A 0.959 0.966 0.964 0.967 0.973

EWSR1 0.935 0.966 0.969 0.954 0.975
FUS 0.968 0.980 0.985 0.977 0.986

ELAVL1C 0.991 0.994 0.988 0.994 0.992
IGF2BP1-3 0.889 0.879 0.947 0.928 0.973

MOV10 0.863 0.854 0.916 0.904 0.927
PUM2 0.954 0.971 0.967 0.952 0.982
QKI 0.957 0.983 0.970 0.975 0.981

TAF15 0.970 0.983 0.976 0.974 0.986
PTB 0.937 0.983 0.944 0.938 0.958

ZC3H7B 0.820 0.796 0.907 0.898 0.916

Mean 0.887 0.902 0.931 0.919 0.945
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In the experiment, the model automatically stopped training when the loss of the test
sets was lower than 0.1 or the number of epochs reached 50. Figure 5 shows the training
process for six sub-datasets. When the number of epochs was set to 10, the accuracies for
the test sets exceeded 0.8. The accuracy gradually improved as the loss decreased until the
stopping criterion was met.
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and QKI.

3.3. Prediction Results for the Debiased Datasets

To evaluate the effectiveness of the proposed debiasing method, both the context-
average debiasing method and the RPI-Net random debiasing method were evaluated in
this experiment. HPNet-r uses the random debiasing method, while HPNet-m uses the
context-average debiasing method. The experimental results are shown in Table 3; the mean
AUC for RPI-Net was 0.927, the mean AUC for HPNet-r was 0.930, and the mean AUC for
HPNet-m was 0.933. HPNet-r performed better than RPI-Net, and HPNet-m performed
better than HPNet-r. Although RPI-Net automatically extracts features from secondary
structures and sequences through a GCN and LSTM and has improved prediction accuracy,
it ignores the hierarchical features of secondary structures, resulting in a slightly lower
accuracy than HPNet-r and HPNet-m.

Table 3. Mean AUCs of three debiasing methods.

Method Mean AUC

RPI-Net 0.927
HPNet-r 0.930
HPNet-m 0.933



Appl. Sci. 2023, 13, 3247 12 of 17

Figure 6 shows the performance results for the three methods with debiased data. It
can be observed that the performance of HPNet-r was better than that of RPI-Net with some
proteins, with the most significant improvement observed with the protein ZC3H7B at
7.5%. The box diagram in Figure 7 demonstrates that the median for HPNet-r was smaller
than for RPI-Net, but the range for HPNet-r was smaller than for RPI-Net, indicating
that HPNet had better stability. The median and average values for HPNet-m were more
significant than those for HPNet-r, confirming the effectiveness of the context-average
debiasing method proposed in this research. It can be seen from Figure 8 that when
the data were debiased, the AUCs of most proteins decreased. The AUCs of several
proteins, such as ALKBH5, CAPRIN1, and MOV10, decreased significantly. The reduced
performance of ALKBH5 can be attributed to the small dataset, while the deviations in the
dataset for CAPRIN1 and MOV10, which were obtained in the PAR-CLIP experiment, were
relatively large.
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3.4. Motif Visualizations

In this research, binding motifs representing binding preferences were automatically
extracted according to the parameters and other information in HPNet. Based on the results
of a biological study, a database of RBP motifs and specificities has been constructed named
the RNA Inferred Sequence Binding Protein Catalog (CISBP-RNA) [42]. Therefore, the pat-
terns retrieved by HPNet can be compared with the motifs in CISBP-RNA. TOMTOM [43]
can fulfill this function. It rates the similarity between the input motifs and the pre-existing
database of known motifs and selects the p-value as the measure.

In this experiment, the first-layer output of the GCN represented the importance of
the nucleotide nodes. The weights output by the first layer of the CNN represented the
importance of the nucleotides in the sequence. The mean value for the node importance
and sequence importance for each nucleotide was calculated as the nucleotide-binding
affinity and expanded into 7-mer motifs centered on the most significant 5% of nucleotides.
Then, the RCK technique was utilized to convert the binding nucleotide sequences into
PWM based on the selected nucleotides. We used TOMTOM to visualize and compare
experimentally generated motifs.

Table 4 displays the RBP-binding motifs extracted by HPNet and the motifs in the
CISBP-RNA database. It also shows the “U” enrichment in the binding motif of TIA1 and
HNRNPC proteins. The results of TOMTOM were consistent with the motifs previously
found in CISBP-RNA, with p-values of 0.00046 and 0.00017, respectively. The binding motif
of the SFRS1 protein was rich in the segment of “GAGGA”, which was the same as a result
in the CISBP-RNA database. According to the CISBP-RNA database, the “UGCA” region
was highly typical in the binding motif of the PUM2 protein. The binding motif of the
protein QKI contained a “CUAA” fragment. However, the outcomes for the IGF2BP1-3
protein need to be made clearer.

Table 4. Comparison of motifs extracted by HPNet (bottom) and motifs in the CISBP-RNA database (top).

RBPs Motifs RBPs Motifs RBPs Motifs

HNRNPC

p-value: 3.22 × 10−5
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CISBP-RNA database. It also shows the “U” enrichment in the binding motif of TIA1 and 
HNRNPC proteins. The results of TOMTOM were consistent with the motifs previously 
found in CISBP-RNA, with p-values of 0.00046 and 0.00017, respectively. The binding mo-
tif of the SFRS1 protein was rich in the segment of “GAGGA”, which was the same as a 
result in the CISBP-RNA database. According to the CISBP-RNA database, the “UGCA” 
region was highly typical in the binding motif of the PUM2 protein. The binding motif of 
the protein QKI contained a “CUAA” fragment. However, the outcomes for the IGF2BP1-
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However, the CISBP-RNA database only contains known experimental RBP binding 
motifs. Several RBPs have binding motifs that still need to be verified. Therefore, we em-
ployed Multiple EM for Motive Elicitation (MEME) [44] to develop the models of untested 
binding motifs, as given in Table 5, which also compares the results with relevant previous 
findings. Table 5 demonstrates that the ELAVL1 protein and its related proteins have a 
high affinity for “U”-rich motifs, consistent with the biological experiment results in [45]. 
The binding motif of the TIAL1 protein and TIA1 protein is rich in “UU”, consistent with 
the results from [46]. In addition, the binding motifs of FUS, TAF15, and EWSR1 are rich 
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However, the CISBP-RNA database only contains known experimental RBP binding
motifs. Several RBPs have binding motifs that still need to be verified. Therefore, we
employed Multiple EM for Motive Elicitation (MEME) [44] to develop the models of
untested binding motifs, as given in Table 5, which also compares the results with relevant
previous findings. Table 5 demonstrates that the ELAVL1 protein and its related proteins
have a high affinity for “U”-rich motifs, consistent with the biological experiment results
in [45]. The binding motif of the TIAL1 protein and TIA1 protein is rich in “UU”, consistent
with the results from [46]. In addition, the binding motifs of FUS, TAF15, and EWSR1 are
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rich in “AU”, while PTB is rich in “UC”. The character’s height indicates each position’s
information retention degree (bit) at that point in the illustration.

Table 5. Binding motifs extracted by the HPNet model but not in the database.

RBPs Motifs RBPs Motifs RBPs Motifs RBPs Motifs
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4. Discussion 
Despite HPNet’s significant performance gains, it can still be improved in many 

ways. First, HPNet uses a CNN to study sequence features. However, all sequences must 
be the same length, and the padding values are replaced by mean values, which can in-
troduce bias in the learning results and require additional storage space. The CCNN ap-
proach [47] described by Romero et al. can be utilized to address this issue. It employs a 
universal CNN that works with inputs of arbitrary length. Second, HPNet uses DiffPool 
to learn RNA secondary structure hierarchical information. However, dense graphs can 
be generated after pooling, which can increase the complexity of the model and reduce 
the computational efficiency. To overcome this problem, the self-attention approach can 
be used to simplify the network and speed up computation by eliminating unneeded 
nodes. Finally, while HPNet uses a deep-learning network for prediction, the details of 
how it arrives at its conclusions are hidden from view. Therefore, it is crucial to investigate 
the interpretability of the deep learning, as it could shed light on the RBP–RNA binding 
process. 

5. Conclusions 
This paper proposes a deep-learning method based on hierarchical pooling called 

HPNet for the prediction of RBP–-RNA binding sites. Additionally, a debiasing method 
targeting clip boundaries is also proposed. First, a CNN is used to learn RNA sequence 
features. The first-layer results are considered weights for the nucleotides, which can 
guide DiffPool in learning the hierarchical features of the secondary structure. DiffPool 
then clusters similar nodes in each layer into the same cluster. Finally, the sequence fea-
tures and the hierarchical features of the secondary structure are connected for prediction. 
The method was trained and evaluated with the original and debiased RBP-24 datasets. It 
could be concluded that: (1) HPNet could automatically identify binding sites and extract 
binding preferences, and its AUC outperformed the state-of-the-art methods; (2) the 
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universal CNN that works with inputs of arbitrary length. Second, HPNet uses DiffPool 
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nodes. Finally, while HPNet uses a deep-learning network for prediction, the details of 
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could be concluded that: (1) HPNet could automatically identify binding sites and extract 
binding preferences, and its AUC outperformed the state-of-the-art methods; (2) the 
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4. Discussion

Despite HPNet’s significant performance gains, it can still be improved in many ways.
First, HPNet uses a CNN to study sequence features. However, all sequences must be the
same length, and the padding values are replaced by mean values, which can introduce
bias in the learning results and require additional storage space. The CCNN approach [47]
described by Romero et al. can be utilized to address this issue. It employs a universal CNN
that works with inputs of arbitrary length. Second, HPNet uses DiffPool to learn RNA
secondary structure hierarchical information. However, dense graphs can be generated
after pooling, which can increase the complexity of the model and reduce the computational
efficiency. To overcome this problem, the self-attention approach can be used to simplify
the network and speed up computation by eliminating unneeded nodes. Finally, while
HPNet uses a deep-learning network for prediction, the details of how it arrives at its
conclusions are hidden from view. Therefore, it is crucial to investigate the interpretability
of the deep learning, as it could shed light on the RBP–RNA binding process.

5. Conclusions

This paper proposes a deep-learning method based on hierarchical pooling called
HPNet for the prediction of RBP—RNA binding sites. Additionally, a debiasing method
targeting clip boundaries is also proposed. First, a CNN is used to learn RNA sequence
features. The first-layer results are considered weights for the nucleotides, which can guide
DiffPool in learning the hierarchical features of the secondary structure. DiffPool then
clusters similar nodes in each layer into the same cluster. Finally, the sequence features
and the hierarchical features of the secondary structure are connected for prediction. The
method was trained and evaluated with the original and debiased RBP-24 datasets. It could
be concluded that: (1) HPNet could automatically identify binding sites and extract binding
preferences, and its AUC outperformed the state-of-the-art methods; (2) the hierarchical
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features of the secondary structure play an essential role in RBP–RNA binding; (3) the
context-average debiasing method is effective.
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