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Abstract

Single-cell RNA sequencing (scRNA-seq) measures transcriptome-wide gene expression at single-cell resolution. Clustering analysis of
scRNA-seq data enables researchers to characterize cell types and states, shedding new light on cell-to-cell heterogeneity in complex
tissues. Recently, self-supervised contrastive learning has become a prominent technique for underlying feature representation
learning. However, for the noisy, high-dimensional and sparse scRNA-seq data, existing methods still encounter difficulties in capturing
the intrinsic patterns and structures of cells, and seldom utilize prior knowledge, resulting in clusters that mismatch with the real
situation. To this end, we propose scDECL, a novel deep enhanced constraint clustering algorithm for scRNA-seq data analysis based on
contrastive learning and pairwise constraints. Specifically, based on interpolated contrastive learning, a pre-training model is trained
to learn the feature embedding, and then perform clustering according to the constructed enhanced pairwise constraint. In the pre-
training stage, a mixup data augmentation strategy and interpolation loss is introduced to improve the diversity of the dataset and the
robustness of the model. In the clustering stage, the prior information is converted into enhanced pairwise constraints to guide the
clustering. To validate the performance of scDECL, we compare it with six state-of-the-art algorithms on six real scRNA-seq datasets. The
experimental results demonstrate the proposed algorithm outperforms the six competing methods. In addition, the ablation studies on
each module of the algorithm indicate that these modules are complementary to each other and effective in improving the performance
of the proposed algorithm. Our method scDECL is implemented in Python using the Pytorch machine-learning library, and it is freely
available at https://github.com/DBLABDHU/scDECL.
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INTRODUCTION
As the foundational unit of various organisms, cells participate
in various biological process to ensure their functions normal.
The heterogeneity of cells is vital to the growth and development
of complex organisms. Nowadays, single-cell RNA sequencing
(scRNA-seq) permits researchers to measure gene expression lev-
els at single-cell resolution [1]. The large amount of scRNA-seq
data provides researchers with a unique opportunity to charac-
terize different cell states and types in multicellular organisms
and infer their lineage relationships [2]. Among them, the identi-
fication of cell types plays an essential role in further revealing
cell heterogeneity, the complex mechanisms of cell diversity and
cell function in health and diseases. However, due to the degree

of noises, sparsity, batch effects and high dimensionality, it is still
challenging to effectively analyze the scRNA-seq data.

To overcome this challenge, early strategies usually first reduce
the dimension using various dimension reduction techniques
[3], such as principal component analysis, diffusion diagram, t-
Distributed Stochastic Neighbor Embedding (t-SNE) [4], Uniform
Manifold Approximation and Projection [5] etc. After dimensional-
ity reduction, traditional clustering algorithms are subsequently
applied to identify different cell subgroups [6]. For example, Seurat
adopts the clustering method Louvain to perform cell-community
detection on the shared nearest neighbor graph [7]. CIDR intro-
duces an implicit interpolation method to mitigate the dropout
effect of scRNA-seq data, followed by classic hierarchical cluster-
ing [8]. Recently, with the development of deep neural networks,
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deep clustering methods have been gradually proposed for
scRNA-seq data analysis. DEC utilizes an autoencoder to simul-
taneously learn feature representation and cluster assignments
[9]. DCA adopts a zero-inflated negative binomial (ZINB) model-
based loss function to characterize scRNA-seq data [10]. Similarly,
scDeepCluster also adopts the ZINB model-based autoencoder to
learn the latent feature embedding for the subsequent clustering
[11]. scDSC is a deep structural clustering method for scRNA-seq
data, which utilizes ZINB model-based autoencoder and graph
neural network to integrate the structural information into deep
clustering [12]. scVAE introduces a variational autoencoder to
cluster scRNA-seq data [13]. ScVI approximates the underlying
ZINB distribution of the observed expression values, and then
performs several downstream clustering and visualization [14].
Different from the above hard clustering algorithms, scziDesk
selects highly variable genes as input feature and then applies
weighted soft K-means clustering to enhance the association
between similar cells [15]. These deep clustering methods have
made great progress in elucidating cell types of complex tissues;
however, they still encounter two main difficulties.

On one hand, as the learned feature representation is critical
for deep clustering methods, just using autoencoder is not
enough to learn latent feature embedding from complex scRNA-
seq data. Specifically, as the scRNA-seq data are obtained
from different sequencing platforms, the distributions of these
scRNA-seq data are not all applicable to the ZINB distribution.
For example, researchers have argued that the NB distribution
is sufficient for UMI-based data [16]. Differently, contrastive
learning can rely on strong data augmentation to obtain
robustness to dropouts. Since contrastive learning has shown
great potential in feature learning [17], it is gradually utilized
to learn data representation for downstream clustering. SimCLR
treats different augmented versions of a given sample in a large
batch as positive samples, and different augmented versions of
different samples as negative samples [18]. MoCo and MoCoV2
also consider negative samples to be important for contrastive
learning, and therefore explicitly maintain a queue of negative
samples [19, 20]. In scRNA-seq field, to increase model robustness
to the dropout event, the method contrastive-sc augments the
data to expand the sample size, and adopts contrastive learning to
learn the appropriate latent embedding [21], without performing
explicit interpolation before clustering. Based on the contrastive
learning model MOCO, Miscell also achieves the same validity
without performing ZINB-based model [22].

On the other hand, the unsupervised clustering methods usu-
ally ignore the prior knowledge and neglect the distance infor-
mation between similar cells. Recently, prior knowledge has been
gradually available in many sequencing methods such as CITE-
seq [23, 24], including both the single-cell transcriptomics data
and proteomics. The usage of the prior information can contribute
to more accurate and logical analysis. Recently, semi-supervised
clustering can utilize a small amount of supervised information
to achieve better clustering results. With prior knowledge, such as
genes and protein symbols that are highly or lowly expressed in
each cell type, SCINA assigns cell type identities to cells profiled
by scRNA-Seq or Cytof/FACS data [25]. scDCC converts part of
the prior knowledge into pairwise constraints, accordingly con-
structs the constraint loss and utilizes the denoising autoencoder
to perform feature learning and clustering simultaneously [26].
Based on such constraints, the latent feature learning and cell
type assignment can be improved. However, as these methods
are based on simple pairwise constraint [27, 28], the clustering
performance greatly depends on the quality of the constraint. It
is usually susceptible to noisy or incorrect prior information.

Considering both merits and limitations of these previous
scRNA-seq clustering methods, we propose scDECL, a novel deep
enhanced constraint clustering algorithm for scRNA-seq data
analysis based on contrastive learning and pairwise constraint.
Specifically, based on interpolated contrastive learning, a pre-
training model is trained to learn the feature embedding, and
then perform clustering using enhanced pairwise constraint. In
the pre-training stage, a mixup data augmentation strategy and
the interpolation loss are introduced into contrastive learning to
improve the diversity of the dataset and the robustness of the
model. Specifically, mixup is a type of self-supervised learning
in which the learner self-generates virtual instances into the
training set as a combination of individual data points. In the
clustering stage, for few prior label and distance information of
cells, we adopt two types of transformation rules to construct
enhanced pairwise constraints, and optimize the clustering with
the enhanced constraints. To validate the performance of scDECL,
we compare it with six state-of-the-art algorithms on different
real scRNA-seq datasets. The extensive experimental results
demonstrate that scDECL outperforms the competing clustering
methods. In addition, we perform a detailed ablation study to
evaluate the contribution of each module of scDECL in improving
the model performance.

MATERIALS AND METHODS
Model framework
For exploiting the data themselves and constraint information to
guide the analysis of scRNA-seq data, we propose a new deep
enhanced constraint clustering algorithm based on contrastive
learning, named scDECL. As shown in Figure 1, the proposed
method is divided into two main stages. In the first stage, to
learn effective latent feature representation of data, we conduct
the contrastive learning and a pretext task learning. Specifically,
to obtain a pretrained autoencoder with better parameters, the
pretext task is to reconstruct the mask which is utilized to mask
the scRNA-seq data. Here, we adopt a mixup data augmentation
strategy. In the second stage, enhanced constraint clustering is
performed on the embedded latent space. Based on two different
transformation rules, the prior label and pairwise distance infor-
mation of cells are into pairwise constraints, which are further
merged into an enhanced pairwise constraint to optimize the
clustering. In the following text, we first introduce the overall
contrastive learning framework, and then elaborate data aug-
mentation strategy, mask reconstruction and interpolation loss.
Finally, we describe the construction of the enhanced pairwise
constraints and the enhanced constraint clustering.

Contrastive learning
Contrastive learning is a powerful approach to learn feature rep-
resentations in the field of self-supervised learning. In the first
stage, contrastive learning is conducted to obtain a pre-trained
autoencoder and learn the effective latent feature embedding for
scRNA-seq data. Here, a series of data augmentation strategies are
first used to generate different inputs, and the encoder is trained
to learn embedding. The contrastive loss is then computed to
evaluate whether two samples are similar [26]. Contrastive loss
considers the loss of positive pairs and negative pairs of samples.
Specifically, given a minibatch with K samples, we define the
contrastive loss as:

Lcontrast =
K∑

i=1

Lcontrast
i ; (1)
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Figure 1. The framework of scDECL. (A) Pre-training model of scDECL. The original input X is augmented with random shuffling and generated masks
M to obtain two weakly augmented versions X1 and X′

1, and we further use the mixup data augmentation strategy to generate the strong augmented
data X2. Then encoder E learns the feature representation Z1 and Z2 for X1 and X2. Both Z1 and Z2 are trained by minimizing the contrastive loss. The
decoder D reconstructs the mask m1 from the latent embedding Z1. Meanwhile, X1 and X2 are mixed up to obtain the interpolation perturbation X3,
which is fed into the encoder to learn the embedding Z3. Then the interpolation loss is calculated based on Z3 and the mixup value of Z1 and Z2. (B)
Based on the learned embedding, the cells are clustered into different subpopulations, and enhanced constraints are constructed to optimize clustering,
where the enhanced constraints are the intersection of label pairwise constraints and distance pairwise constraints.

Lcontrast
i = − log

exp
(
zi · zpair (i)/τ

)
∑K

i=1 1i �=j exp
(
zi · zpair (i)/τ

) , (2)

where xi represents the sample i, and pair(i) indicates the aug-
mented pair of sample i, 1 � i � K. zi and zpair(i), respectively,

represents the embedding of xi and pair(i). zi · zpair(i) denotes
the dot product between the normalized embedding vectors. τ is
a temperature parameter. In our experiments, the temperature
parameter is set to the recommended value 0.07. The loss function
intends to map similar views to adjacent representations and
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different views to non-adjacent representations, so that similar
samples stay close to each other, while dissimilar ones are far
apart in the embedded space.

As random dropout or permutation is difficult to create appro-
priate positive samples for data augmentation, the baseline con-
trastive learning still has limitations in exploiting inter-cellular
information and purifying noise of data. Therefore, we improve
the baseline contrastive network from three aspects. First, we
utilize a mixup data augmentation strategy to strengthen the
encoder training, resulting in a data-augmented version of the
contrastive learning loss function. Second, we adopt the idea of
interpolation to produce more samples [29], and introduce the
interpolation loss function Linterpo in the pre-training stage, which
encourages prediction of the interpolation to be consistent with
the interpolation of the predictions of those points. In addition, to
better explore the potential patterns and structure of the original
data, our model constructs a mask matrix at the input stage,
reconstructs the mask matrix based on the encoder–decoder and
calculates the cross-entropy loss as the mask loss Lmask [30]. By
masking some genes of the cells, this strategy allows the encoder
to train by incomplete learning, which not only allows better
exploration of the original structure but also improves the model
robustness. In summary, the loss function of the current pre-
training phase is calculated as

Lpretrain = μ · Lcontrast + θ · Linterpo + γ · Lmask , (3)

where Lcontrast , Linterpo and Lmask represent, respectively, the con-
trastive loss, interpolation loss and mask loss, which are defined
in the following text. And μ, θ and γ are the coefficients that
control the relative weights of the three losses.

Data augmentation and mask estimation
In contrastive learning, data augmentation plays a significant role
in model training. There are various ways to enhance the input
data, such as rotation, cropping, overlay and so on [31]. However,
many methods are originally proposed for image data, which are
not suitable for scRNA-seq data. Recently, random dropout or
alignment are widely used for the scRNA-seq data [21]. Here, in
order to improve the pre-training of contrastive learning, we intro-
duce a new strategy of data augmentation, using mixup perturba-
tion and weak augmentation to form strong augmentation. Here,
the weak augmentation refers to standard random shuffle and
random mask, which masks an random set of genes in each view.

Assuming that the preprocessed scRNA-seq data of the model
are X ∈ R

N×D, where N is the number of cells and D is the
number of genes, each row xi represents the gene expression level
of the i-th cell. Specifically, to understand the intrinsic feature
relationships of the data, we use a mask generator M to randomly
generate a binary mask vector m:

m = [m1, . . . , mi, . . . mD]T ∈ {0, 1}D, (4)

where mi is obtained by sampling from a Bernoulli distribution
with probability p, and p is set as 0.7.

Then, using the mask m, the gene expression data xi are mask-
enhanced. That is, we utilize random mask to obtain a weak
augmentation of X. The process is formalized as

x̃i = m � x̄i + (1 − m) � xi, (5)

where x̄i is a feature vector generated by randomly shuffling the
features of xi. We use the mask generator to generate two sets of

Figure 2. Mixing up X1 and X2 to obtain a new interpolation cell data.

masks m1 and m2, then augment the data X by these two masks
to obtain two augmented versions X1 and X′

1.

X1 = x̃i = m1 � x̄i + (1 − m1) � xi

X′
1 = x̃i = m2 � x̄i + (1 − m2) � xi

, (6)

where X1 and X′
1 are both generated by randomly masking X.

According to the mixup data augmentation strategy, the
learner combines pairs of training instances to produce a virtual
third instance. Further, we generate a weighted combination of
X1 and X′

1 as the strong augmentation X2:

X2 = α · X1 + (1 − α) · X′
1, (7)

where α is the mixup parameter. For the pre-training task, X1 is
input to the encoder. Then, the learned embedding Z1 is further
input into the decoder to obtain the output D(Z1), and the decoder
reconstructs the mask m1 from the latent embedding Z1. The
mask reconstruction loss Lmask is calculated as the cross-entropy
between m1 and D(Z1):

Lmask = l (m1, D(Z1)) (8)

Then, we can obtain a better data representation by minimizing
the binary cross entropy between m1 and D(Z1).

Interpolation-based contrastive learning
Previous research has shown that the low-density separation
hypothesis is more conducive to semi-supervised learning, which
inspires recent consistency-regularization semi-supervised learn-
ing methods, such as the VAT [32] and Interpolation Consistency
Training. Specifically, as consistency-based regularization regu-
lates semi-supervised learning by consistently predicting interpo-
lation of unlabeled points, interpolation is a better choice than
random perturbation [29]. Therefore, we adopt interpolation per-
turbation to generate more cells in the pre-training phase and
make the pretrained model more robust. Figure 2 illustrates the
idea of generating interpolation perturbation data.

Input X1 and X2 are mixed up to obtain the interpolation per-
turbation X3, which is fed into the encoder to learn the embedding
Z3. After obtaining the interpolated representation, the encoder E
provides predictions of the interpolation:

Mix λ (X1, X2) = λX1 + (1 − λ)X2 (9)

E
(
Mix λ (X1, X2)

) ≈ Mix λ (E (X1) , E (X2)) (10)

where λ is the interpolation parameter. According to extensive
experiments, λ is set as 0.9. Based on the idea that the out-
put of the mixup should be as close as possible to the mixup
of the output, the model uses binary cross-entropy to evaluate
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the consistency between the interpolation Mix λ(E(X1), E(X2) =
Mix λ(Z1, Z2) and the model prediction Z3 = E(Mix λ(X1, X2)):

Linterpo = l(Mix λ(Z1, Z2), Z3) (11)

Enhanced constrained clustering
For semi-supervised clustering, it is common to utilize some prior
knowledge to optimize the clustering. The widely used constraint
information include pairwise constraints (must-link and cannot-
link) and label constraints (positive and negative labels) [33–35].
For example, the method scDCC utilizes pairwise constraints to
adjust the clustering. The performance of clustering methods
depends on the quality of the constraints [27]; however, single
constraint is susceptible to noisy or incorrect constraints. To solve
this issue, we construct enhanced constraints to optimize the
clustering.

Converting label constraints. First, we construct pairwise con-
straint matrices through transforming the given label constraints.
Assuming that the prior label information is an n ∗ d data matrix
LM, where each row lmi indicates the i-th cell belonging to a
certain cluster. For each row, only one element is 1, others are -
1, representing that this cell belongs to the corresponding cluster.

The pairwise constraint is an n ∗ n matrix MG =
[
MG

(ij)

]
, which is

different from label constraints. Therefore, to effectively utilize
these two type of constraints, we need to convert them into a
uniform representation. For the label constraint, to represent and
preserve prior information constraints among cells, we convert LM
to a pairwise matrix MG based on the following rules:

Assuming that Li and Lj are the labels of cell ci and cell cj, if Li

and Lj are the same positive label, there is a must-link constraint
between ci and cj. If Li and Lj are different positive labels, they
should have a cannot-link constraint. The pairwise matrix MG can
be defined as

MG
(ij) =

{
1, Li = Lj

−1, Li �= Lj
(12)

According to the above rules, the pairwise constraint matrix MG

is converted from the label matrix LM, which can be further used
to optimize the clustering phase.

Obtaining enhanced pairwise constraints. The CITE-seq PBMC
dataset contains the read counts of messenger RNAs and
proteins. Based on the normalized protein read counts, we can
further calculate the Euclidean distances for all cell pairs, which
can be regarded as the pairwise distance constraints among
cells. Then, we utilize the distance constraint information to
construct an n ∗ n pairwise constraint matrix MD. As in previous
method scDCC, cells pairs with pairwise distances less than the
0.5th percentile of all pairwise distances is assigned a positive
label, whereas those cell pairs with pairwise distances greater
than the 95th percentile is a negative label. Finally, the two
constructed pairwise constraints matrices MG and MD are inte-
grated to enhance pairwise constraint matrix MR. The process is
formalized as

MD
(ij) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, Ed(ci, cj) < 0.5th percentile

−1, Ed(ci, cj) > 95th percentile

0, otherwise

(13)

MR = MG ∩ MD (14)

As illustrated in Figure 3, the green square with ‘+’ will be
stored in the MR matrix only when the labels at two identical

positions in the matrices MG and MD are positive. On the contrary,
only if the same positions in both matrices are orange, it will set
as orange in the matrix MR. If the relationship between ci and cj

in MG and MD are different, indicating that constraint information
is controversial, then, in the enhanced constraint matrix, there
is not a constraint between ci and cj, which represents as a blue
square in MR.

According to these rules, we select better quality information
for the clustering constraint. It is worth noting that the final
MR matrix contains less information than MD and MG. Since we
randomly select 10% of the labels to construct the label constraint
matrix, the information is enough for us to subsequently build
pairwise constraints.

Deep enhanced constrained clustering. Based on learned
embedded latent vector Z1, scDECL performs K-means clustering.
Here, we define the clustering loss function as the Kullback–
Leibler (KL) divergence between P and Q:

Lcluster = KL(P‖Q) =
∑

i

∑
j

pij log
pij

qij
; (15)

qij =
(
1+‖zi−μj‖2

)−1

∑
j′
(
1+‖zi−μj‖2

)−1 ; (16)

pij =
q2

ij/
∑

i qij∑
j′

(
q2

ij′ /
∑

i qij′
) , (17)

where qij is the soft label of embedded point zi. Specifically, qij

measures the similarity between point zi and cluster center μj

calculated by the Student t-distribution [36]. pij represents the
target distribution, which is derived from qij. At each iteration,
minimizing the loss function Lcluster will make Q moving toward
the derived target distribution P.

Based on the resulted clusters, we utilize the enhanced
pairwise constraints matrix MR to fine-tune the clustering
process. From this matrix, enhanced cannot-link (CL) and must-
link (ML) pairwise constraints are respectively chosen, where the
must-link constraint encourages the related two cells to have the
same soft label.

LML = −
∑

(a,b)∈ML

log
∑

j

qaj × qbj (18)

In contrast, two cells with cannot-link are required to have
different soft labels.

LCL = −
∑

(a,b)∈CL

log

⎛
⎝1 −

∑
j

qaj × qbj

⎞
⎠ , (19)

where qij is the soft label of embedded point zi, qaj and qbj is chosen
in the matrix MR, The enhanced constraint loss consists of the
above two losses:

LenConstraint = LML + LCL (20)

Therefore, the loss function of the clustering stage is defined
as

LenCluster = Lcluster + LenConstraint (21)

Lcluster is presented by Equation 15. In summary, the loss func-
tion of the model is calculated as

Ltotal = Lpretrain + LenCluster (22)
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Figure 3. Integrating pairwise constraint matrix MG and MD into enhanced constraint matrix MR with higher quality. The green square with ‘+’ in MG and
MD indicates, respectively, MG

(ij) = 1 and MD
(ij) = 1. The orange square with ‘-’ indicates, respectively, MG

(ij) = −1 and MD
(ij) = −1. The blue color means that

the constraint information is not clear, and MD
(ij) = 0. Since the square in diagonal line represents the constraints with itself, it is no longer represented

by the ‘+’ sign in MR and is not included in the constraint set.

Table 1. Summary Of the real scRNA-seq datasets

Datasets Sequencing platform Cells Genes Subtypes

Mouse bladder cells Microwell-seq 2746 20 670 16
Worm neuron cells sci-RNA-seq 4186 13 488 10
10X PBMC 10X 4271 16 449 8
Human kidney cells 10X 5685 25 215 11
CITE-seq PBMC CITE-seq 8617 4293 12
Macosko mouse retina cells Drop-seq 14 653 11 422 39

Datasets
To evaluate the performance of the proposed algorithm, we con-
duct the experiments on six real scRNA-seq datasets to compare it
with six state-of-the-art clustering algorithms. These scRNA-seq
datasets contain label information as a prior, which is validated
in previous studies. The detailed characteristics of these datasets
are summarized in Table 1.

For these scRNA-seq datasets obtained from different plat-
forms, we perform data pre-processing based on their
characteristics. We first filter out genes that are not expressed
in any cell that does not capture any reads. Then, we normalize
the data and transform the data by logTPM. In addition, we select
the first 2000 genes with high variance for training, which can
improve training efficiency and save training costs.

Evaluation metrics
To effectively validate the proposed method, three widely used
metrics are utilized to evaluate the clustering performance,
including clustering accuracy (ACC), normalized Mutual Infor-
mation (NMI) and adjusted Rand Index (ARI). The larger value
means higher concordance between the predicted labels and the
real labels.

Clustering accuracy (ACC) can be defined as the match
between the predicted clustering assignment and the true
clusters. ACC is calculated as

ACC =
∑N

i=1 δ(Li, map(Ui))

N
, (23)

where δ(x1, x2) is an indicator function, if x1 = x2 then δ(x1, x2) = 1,
otherwise δ(x1, x2) = 0.

NMI is used to measure the similarity between two clustering
results and is a normalized form of mutual information. NMI is
defined as

NMI = MI(Y, U)

F(H(Y), H(U))
, (24)

where MI = ∑N
i=1

∑C
j=1 pi,jlog

(
pi,j

pi ,pj

)
calculates the mutual infor-

mation between Y and U, H(Y) = −∑N
i=1 pilog(pi) and H(U) =

−∑C
j=1 pjlog(pj), respectively, represent the information entropy of

label vectors Y and U. F(x1, x2) can be max, min or mean function,
here we choose the max function.

The ARI is adjusted based on the Rand Index (RI), which mea-
sures the consistency of the predicted clustering assignment with
the true clusters. By calculation, we assume that the overlap
between the two label groups Y and U is summarized in the
contingency table R. Each item in table R represents the number
of objects shared between Y and U; then ARI can be defined as

ARI =
∑

i,j

(ni,j

2

) −
[∑

i

(ai
2

) ∑
j

(bj

2

)]
/
(n

2

)
[∑

i

(ai
2

) ∑
j

(bj

2

)]
/2 −

[∑
i

(ai
2

) ∑
j

(bj

2

)]
/
(n

2

) , (25)

where (.) denotes the binomial coefficient, nij denotes the data in
the contingency table Y, ai is the sum of the i line of Y and bj is the
sum of the j column of Y.

RESULTS
Model and Hyper-parameter
We implement our model based on an autoencoder, which con-
sists of several stacked linear layers. Specifically, the size of the
autoencoder is (256, 64, 32, 64, 256), and the size of the embedding
layer is 32. And each layer is followed by a ReLU activation
function.

For the hyperparameters, we conduct extensive experiments to
determine their optimal values. Specifically, the μ, θ and γ is set to
1, 2, 1. In Equation 7, α ranges from 0.8 to 0.95. For the correspond-
ing six datasets in Table 1, the recommended values, respectively,
are 0.85, 0.9, 0.8, 0.85, 0.85, 0.95. In Equations 9 and 10, λ is set
as 0.9, which is chosen experimentally from the range [0.5,0.9],
and Figure 4 shows the impact of different parameter values on
the six datasets. For the optimizer, we use Adam and Adadelta
for the self-supervised pre-training stage and fine-tuning stage,
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Figure 4. Performance comparison (NMI) of scDECL on six real datasets under different λ parameters.

Figure 5. Performances comparison of scDECL and scDCC with different number of pairwise constraints on four representative datasets. The clustering
performance is measured by ACC, NMI and ARI. (A) Human kidney cells. (B) Worm neuron cells. (C) Mouse bladder cells. (D) 10X PBMC cells.

respectively. The initial learning rate of the Adam optimizer is
set to 0.001, and the parameters of the Adadelta optimizer are
set as lr=1.0 and rho=0.95. Then we pre-trained the Autoencoder
for 300 epochs. We randomly select 10% of the total cells as
the holdout cell set to generate pairwise constraints and left the
remaining cells for evaluation. Specifically, we randomly select
1000, 2000, 3000, 4000 and 5000 cell pairs from the holdout cell
set and construct Must-link and Cannot-link constraints based
on the collected label information. We then run scDECL on the
entire dataset using the generated constraints and evaluate the
clustering performance on the remaining 90% of cells.

Performance of scDECL with different number of
pairwise constraints
To evaluate the effectiveness of the pairwise constraints, we com-
pare the clustering performance of scDECL with different number
of constructed pairwise constraints. Specifically, we construct 0,
1000, 2000, 3000, 4000, and 5000 pairwise constraints for four
representative scRNA-seq datasets, including Human kidney cells,
Worm neuron cells, Mouse bladder cells and 10X PBMC datasets.
Meanwhile, scDECL is compared with the previous method scDCC,
which is also based on constraint clustering.

Figure 5 shows the performance of scDECL and scDCC evalu-
ated by ARI, NMI and ACC on these four datasets. Overall, when
the number of pairwise constraints increases from 0 to 2000, we
observe that the performance of scDECL achieves a significant
improvement on the four datasets. And it is worth noting that
when the number of pairwise constraints is above 3000, the
clustering performance is not obviously better, indicating that
more pairwise constraints are not simply better. Therefore, we
construct 1000 pairwise constraints for the following analysis.
Furthermore, compared with the competing constraint clustering
method scDCC, scDECL achieves better clustering performance
with different number of pairwise constraints, indicating that our

constructed enhanced constraints are effective in exploiting the
prior information and optimizing the clustering process.

Performance comparison with previous methods
To further validate the performance of scDECL, we compare it
with six competing clustering algorithms on six real scRNA-seq
datasets. These competing methods include scDSC [12],
contrastive-sc, scDCC, scDeepCluster, Seurat and SIMLR. Specif-
ically, scDSC is a new deep clustering algorithms based on
deep graph network. contrastive-sc is a classical application
of contrastive learning to scRNA-seq data analyis. scDCC is
a semi-supervised method for scRNA-seq data using pairwise
constraints. scDeepCluster learns feature representation and
cluster based pm a ZINB distribution (ZINB) model, which
simulates the distribution of scRNA-seq data. Seurat adopts the
traditional clustering method Louvain to perform cell-community
detection on the shared nearest neighbor graph. SIMLR combines
multiple cores to learn the similarity between samples and
perform spectral clustering. Here, we adopt three widely used
metrics to evaluate the clustering performance of these methods,
including accuracy (ACC), ARI and NMI. For the three metrics,
higher scores imply better clustering performance.

Figure 6 shows the performance comparison among scDECL,
contrastive-sc, scDCC, scDeepcluster, scDSC, seurat and SIMLR
on the six real scRNA-seq datasets. As described in the previous
section, scDECL uses 1000 pairwise constraints for the fair perfor-
mance comparison. Overall, we observe that the proposed scDECL
performs better and more robust than six competitive methods.
For the metric ACC, scDECL achieves the best performance on all
six analyzed datasets. For the metrics NMI and ARI, scDECL also
outperforms the competing methods on five datasets, except the
datasets 10X PBMC and worm. On the 10X PBMC datasets, scDECL
is the suboptimal method, whose NMI is not as good as scDSC.
According to the clustering results, we observe that the identified
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Figure 6. Performances comparison of scDECL, contrastive-sc, scDCC, scDeepcluster, scDSC, seurat and SIMLR, measured by ACC, NMI, ARI.

clusters are more structurally closed than other datasets. It might
be the reason that the deep structural clustering method scDSC
performs better on 10X PMBC.

Specifically, on the Human kidney cells dataset, com-
pared with the method contrastive sc, our proposed method
significantly improves by 26.98% on ARI, 9.47% on NMI and
16.88% on ACC. On the Mouse bladder cells, compared with the
suboptimal method scDSC, our proposed algorithm improves by
8.32% on ARI, 5.59% on NMI and 2.73% on ACC. Our method
scDECL also outperforms the compared methods on the large
Macosko mouse retina cells dataset. Compared with the method
scDCC, our method scDECL increases by 8.13% on ARI, 2.78% on
ACC and 2.06% on NMI.

To intuitively validate the capability of our proposed model in
learning the low-dimensional representation of high-dimensional
data, we utilize t-SNE to project the feature embedding learned
from the coding layer into two-dimensional space. Figure 7 shows
the visualization of the identified clusters of scDECL on the six
real datasets. In the figure, each point represents an cell, and
each color indicates different cell type. Meanwhile, as shown in
Figure 7(a) and 7(b), we compare in detail the results of scDECL
and six competing methods on mouse bladder cells and worm
neuron cells, which are two real datasets with more subtypes
and higher complexity. Specifically, on the Worm dataset, scDECL,
scDCC and scDSC can identify different types of clusters in a
sparse manner, whereas the identified clusters of the other meth-
ods are dispersed, and the boundaries between clusters are mixed.

Compared with the six competing methods, the proposed method
scDECL achieves a good separation among different clusters.

Ablation study
Furthermore, we perform an ablation study to evaluate the effect
of introducing the mask estimation pre-task, interpolation loss
and mixup data augmentation strategy in scDECL. Therefore,
we, respectively, set three variants of scDECL, including scDECL
(without mask) (removing mask estimation to validate the effec-
tiveness of mask pretask), scDECL (without interpolation) (remov-
ing interpolation to validate the effectiveness of the interpola-
tion loss) and scDECL (without augmentation) (removing mixup
augmentation to validate the effectiveness of mixup strategy).
Figure 8 shows the performance comparison of scDECL and its
three different variants. We observe that scDECL achieves bet-
ter performance than its three variants. Specifically, the mixup
data augmentation strategy improves the clustering accuracy in
these representative datasets, which is especially obvious for the
human kidney cells and worm neuron cells datasets. The result
indicates that the three aspects all contribute in improving the
performance of the proposed model.

To validate the effect of enhanced pairwise constraints, we par-
ticularly compare the performance of scDECL with different pair-
wise constraint, including enhanced pairwise constraints, normal
pairwise constraints and broken pairwise constraints. Figure 9
shows the performance comparison of scDECL with these three
different pairwise constraints on the dataset CITE-seq PBMC. The
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Figure 7. The visualization of the identified clusters of scDECL and six competitive methods. Each point represents a cell, and each color indicates
different cell type. (A) The worm neuron cells. (B) The mouse bladder cells. (C) The human kidney cells. (D) The CITE-seq PBMC cells. (E) The 10X PBMC
cells. (F) The macosko mouse retina cells.

Figure 8. Ablation experiments on three representative datasets, comparing performance of scDECL and its three different variants with under 2000
pairwise constraints.

broken pairwise constraints are pairwise constraints formed by
Ed(ci, cj) greater than 95th percentile but Li is equal to Lj, and
Ed(ci, cj) less than 0.5th percentile but Li is not equal to Lj. Specifi-
cally, the number of constraints ranges from 0 to 5000. As shown

in Figure 5, when the number of constrains arrives 1000, scDECL
can achieve good performance. As the comparison analysis
also includes other clustering method without prior constraint
information, we only use 1000 pairwise constraints for fair
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Figure 9. Ablation experiments on CITE-seq PBMC datasets, comparing
performance (evaluated by NMI) of scDECL with normal, enhanced and
broken pairwise constraints.

comparison. We also observe the result of enhanced pairwise
constraints is significantly better than normal pairwise con-
straints alone. In addition, the broken pairwise constraints leads
to worse performance.

CONCLUSION
scRNA-seq measures transcriptome-wide gene expression at
single-cell resolution, which enables researchers to characterize
cell types and cell-to-cell heterogeneity in complex tissues.
However, as scRNA-seq data are subject to noises, high dimen-
sionality and dropout events, existing methods usually encounter
difficulties in capturing the intrinsic patterns and structures of
cells, and seldom utilize prior knowledge, resulting in clusters
that mismatch with the real situation. To address these issues,
we propose scDECL, a novel deep enhanced constraint clustering
algorithm for scRNA-seq data analysis based on contrastive
learning. Specifically, based on interpolated contrastive learning,
a pre-training model is trained to learn the feature embedding,
and then perform clustering based on constructed enhanced
constraint. In the pre-training stage, a new data augmentation
strategy and interpolation loss are introduced to improve the
robustness. In the clustering stage, the prior information of
the cells is converted into enhanced pairwise constraints to
optimize the clustering. We compare scDECL with six competing
algorithms on six real scRNA-seq datasets. The experimental
results demonstrate the proposed algorithm achieves better
performance. In addition, the ablation studies on each module
of the algorithm indicate that these modules are complementary
to each other and effective in improving the performance of the
proposed algorithm.

Further, with the advent of more scRNA-seq techniques, we
can obtain more information between cells, so we hope to not
only rely on labeled tags to make judgments but can combine
multiple aspects of information for a more comprehensive clus-
tering effect. Therefore, since dimensionality reduction methods
and labeling information will be increasingly crucial for scRNA-
seq analysis, we hope this article shows the prospect of using the
following principles of semi-supervised learning for scRNA-seq
analysis, and it provides an example of implementation to guide
future research on semi-supervised learning of genetic data.

Key Points

• We propose a novel deep enhanced constraint clustering
algorithm scDECL for scRNA-seq data analysis based on
contrastive learning. Specifically, based on interpolated

contrastive learning, a pre-training model is trained to
learn the feature embedding, and then perform cluster-
ing based on constructed enhanced constraint.

• In the pre-training stage, a new data augmentation strat-
egy and interpolation loss are introduced to improve the
robustness. In the clustering stage, the prior information
of the cells is converted into enhanced pairwise con-
straints to optimize the clustering.

• The experimental results on six real scRNA-seq datasets
show that scDECL achieves better performance com-
pared with state-of-the-art methods.
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