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Abstract

Drug combination therapy has gradually become a promising treatment strategy for complex or co-existing diseases. As drug–drug
interactions (DDIs) may cause unexpected adverse drug reactions, DDI prediction is an important task in pharmacology and clinical
applications. Recently, researchers have proposed several deep learning methods to predict DDIs. However, these methods mainly
exploit the chemical or biological features of drugs, which is insufficient and limits the performances of DDI prediction. Here, we
propose a new deep multimodal feature fusion framework for DDI prediction, DMFDDI, which fuses drug molecular graph, DDI network
and the biochemical similarity features of drugs to predict DDIs. To fully extract drug molecular structure, we introduce an attention-
gated graph neural network for capturing the global features of the molecular graph and the local features of each atom. A sparse graph
convolution network is introduced to learn the topological structure information of the DDI network. In the multimodal feature fusion
module, an attention mechanism is used to efficiently fuse different features. To validate the performance of DMFDDI, we compare it
with 10 state-of-the-art methods. The comparison results demonstrate that DMFDDI achieves better performance in DDI prediction.
Our method DMFDDI is implemented in Python using the Pytorch machine-learning library, and it is freely available at https://github.
com/DHUDEBLab/DMFDDI.git.
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INTRODUCTION
Drug combination therapy is a well-established concept for the
treatment of complex or co-existing diseases [1]. As drug–drug
interactions (DDIs) usually occur when a drug is co-administered
with another and multiple drugs, this treatment often can lead
to an increased efficacy compared with single drug treatments.
However, it also may increase the possibility of adverse drug
reactions [2]. Therefore, to maximize synergistic benefits and
minimize unexpected adverse drug reactions, it is crucial to accu-
rately predict potential DDIs while treating complex diseases with
drug combinations [3, 4].

The interactions between drugs currently are confirmed
mainly through clinical trials. Although the clinical experiment
has high reliability, it is usually labor-intensive, time-consuming

and risky, which may cause patients to receive harmful treat-
ments. Machine learning methods provide a new opportunity
to efficiently predict DDIs. Feature similarity-based approaches
assume that drugs with similar features have similar response
patterns [5, 6], which mostly rely on the similarity of the drug
characteristics, such as fingerprinting [7], chemical structure
[8], pharmacological phenotype [9] and RNA [10]. Subsequently,
multiple features are combined to improve model performance
[11, 12, 13]. For example, NLLSS [3] combines three types of
feature information and adopts a least squares classifier based
on Laplace constraints to predict the combined efficacy of drugs.
HNAI [14] analyzes four drug feature similarities and utilizes four
classifiers to construct a prediction model. INDI [12] computes
seven feature similarities and uses logistic regression models
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for classification. NDD [15] is a neural network-based method
for predicting unknown DDIs using various information about
drugs. DDI-IS-SL [16] predicts DDIs based on the integrated
similarity and semi-supervised learning. Overall, these feature
similarity-based methods have made great progress. However,
these methods usually ignore the structural information of the
drugs, and the selection of features relies on expert experience.

Recently, graph neural network (GNN) is introduced to learn
the feature representation of drug chemical structures and pre-
dict DDIs. Current GNN-based approaches broadly fall into two
categories. The first category of algorithms learns embedded
features from drug molecular graphs, adopting a natural and
effective approach to modeling graph structure data [17]. Atoms
are represented as nodes in the drug molecular graph, and the
edges are chemical bonds. Then the drug molecular graph is
embedded by learning the atom features and the information
passed over the chemical bonds. The other category of solutions
takes advantage of the known interaction network of drugs. In
DDI networks, by regarding drugs as nodes and interactions as
edges, DDI prediction can be regarded as a link prediction task.
MR-GNN [18] and GoGNN [19] exploit the powerful feature extrac-
tion capability of GNN to directly learn the embedding of the
molecular structure of a drug. DPDDI [20] applies a deep graph
autoencoder to learn potential representations of drugs from
DDI network, and then feeds back the learned embedding to a
deep feed-forward neural network for DDI prediction. CASTER
[21] is an end-to-end model that predicts DDIs using substruc-
ture information extracted from drug SMILES strings to generate
representations. KGNN [22] is based on a knowledge GNN to mine
the relationships in knowledge graphs to solve the DDI prediction
problem. Bi-GNN [23] utilizes Bi-layer GNN to solve the bio-link
prediction task and learn drug feature representations, which is
further used to predict DDIs. MIRACLE [24] predicts DDI through
multi-view graph contrastive representation learning, which cap-
tures inter-view molecule structure and intra-view interactions
between molecules simultaneously.

Despite the above models achieving remarkable results,
they still have some limitations. Firstly, the existing methods
are mainly based on biological, chemical or drug interaction
features, seldom focusing on potential correlations between other
multimodal features and DDI events. Second, information on
distant atom pairs as well as chemical bonds in drug molecular
graphs is rarely considered, even though they may exhibit
important interactions in the molecule. Third, as drug features
may contain redundant information, the traditional strategies of
combining feature vectors neglect the different importance of
multiple drug features to the drug representation.

To address the aforementioned limitations, we propose a new
deep multimodal feature fusion framework for DDI prediction,
named DMFDDI, which fuses drug molecular graphs, the DDI
network and the biochemical similarity features of drugs to
predict DDIs. The proposed framework is composed of three
encoders for multimodal features, a feature fusion model and
a predictor model. These three encoders, respectively, learn
the low-dimensional embedded vectors for drug molecular
graphs, the DDI network and biochemical similarity features.
Specifically, based on the attention-gated graph neural network
(AGRUNN), we extract the molecular structure from the given
drug molecular graphs. A sparse graph convolution network (GCN)
is introduced to learn the topological structure information of the
DDI network. We extract the biochemical feature similarity by
analyzing three feature similarity matrices. Then the learned
different feature embedding of drugs are fused by a multimodal

feature fusion module. Finally, we predict the scores of DDIs
by Multi-Layer Perception (MLP). Extensive experiments on
different scale datasets demonstrate that DMFDDI outperforms
the 10 competing methods. Furthermore, detailed ablation
experiments demonstrate that the AGRUNN and the multimodal
feature fusion model play a key role in improving the prediction
performance.

MATERIALS AND METHODS
Problem Definition
We formulate the DDI prediction task as a binary classification
problem of determining whether two drugs interact with each
other. Assuming that the drug interaction graph is represented
by N = (D, I), where D denotes the drug node set, and I denotes
the edge set of DDIs represented by an adjacency matrix A. The
drug di is further represented by the corresponding molecular
structure graph G = (V, E), where V denotes the atom nodes
and E denotes the chemical bonds connecting pairs of atoms.
We learn drug features from three perspectives, including drug
molecular structure based on drug molecular graphs, drug rela-
tion features based on DDI network and biological features based
on biological feature similarity matrices. Specifically, for the bio-
logical feature similarity, we choose three widely used features
(target, enzyme and transporter) for similarity calculation [25].
The three biological features are, respectively, represented by
drug–drug feature similarity matrices, target Xt, enzyme Xe and
transporter Xp.

Given the adjacency matrix A, the molecular structure graph
G and the three characteristic similarity matrices, DDI prediction
problem is aimed to learn a prediction function f

(
di × dj

) → [0, 1],
to determine the probability of any two drugs interacting with
each other.

Overview of DMFDDI
We propose DMFDDI, a new deep multimodal feature fusion
framework to predict DDIs. As shown in Figure 1, DMFDDI
consists of three main steps, including learning multimodal
drug features based on three feature extraction modules, fusing
learned feature embeddings and predicting the DDIs based on
the predictor. The three feature extraction modules learn the
low-dimensional embedding vectors of different drug features,
including molecular structure-based feature extraction module,
drug interaction network-based feature extraction module and
biological similarity-based feature extraction module. Then the
multimodal feature fusion module fuses the three aspects of drug
feature embeddings. Finally, the fused feature vector is fed into
the predictor to predict the scores of the DDIs.

Feature extraction modules
Feature extraction module based on drug molecular graph
The drug molecular graph is an important molecular structure
representation of drugs. As illustrated in Figure 2, to learn the
molecular structure of drugs, we construct a feature extraction
module based on drug molecular graphs. Firstly, from SMILES
sequences, the molecular graphs of drugs are obtained by RDKit
tool [26]. Subsequently, local information of the drug molecular
graph is extracted with updated node feature and chemical bond
feature. Then the updated graph structure is fed into the AGRUNN.
Finally, readout part obtains an embedding based on the molecu-
lar graph and the extracted key nodes.

Extracting local features of drug molecular structure. Firstly,
the local feature information of the drug molecular graph is
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Figure 1. The framework of DMFDDI. DMFDDI consists of three major steps, including extracting three types of drug features, fusing multimodal
drug features and predicting DDIs. (A) Three core feature extraction modules: feature extraction module based on the AGRUNN, extracting the
molecular structure from drug molecular graph; feature extraction module based on sparse GCN, extracting drug relation features from drug
interaction network graph; feature extraction module based on biochemical feature similarity matrices, extracting the biochemical feature similarities.
(B) The multimodal fusion layer fuses the feature information of three feature extraction modules. (C) The predictor obtains the scores of drug
interactions.

extracted. The initial feature v̄i of each atom is obtained based on
the atom symbol, formal charge, hybridization, chirality, etc. The
initial feature ēij of each bond is obtained based on the bond type,
whether the bond is cyclic and conjugated, etc. To fully extract
the features of atoms and chemical bonds, we first update the
edges with the chemical bond features first and then the atom
node features.

The features of any edge eij are updated according to the
features of the nodes connected to the edge eij, and the updating
process is defined as

e(l)
ij = ReLU

[(
ē(l−1)

ij

∥∥∥v̄(l−1)

i

∥∥∥ v̄(l−1)

j

)
w(l−1)

e + b(l−1)
e

]
, (1)
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Figure 2. The process of learning the drug molecular structure representation from the drug molecule graph.

where ‖ is the splicing operation, v̄i is the initial characteristic of
each atom, W(l−1)

e and b(l−1)
e , respectively, represent the learnable

weight matrix and the offset.
The feature of any node vi is updated according to the features

of connecting edges and the node itself, and the updating process
is formalized as

ṽ(l)
i = ReLU

⎡
⎣

⎛
⎝v(l−1)

i ‖
∑

j∈M(i)

e(l)
ij

⎞
⎠ W(l−1)

v + b(l−1)
v

⎤
⎦ , (2)

where M(i) denotes the neighbors of node i. The atom features
containing chemical bond information are updated to ṽ(l)

i . Then,
the local information of drug molecular graph is extracted with
the updated node feature and chemical bond feature.

Attention gated graph neural network module. Next, based
on the drug molecular graph with updated node and chemical
bond feature, we further construct an AGRUNN to aggregate and
update feature information among different nodes through a
gating mechanism.

In drug molecules, topologically distant pairs of atoms may
also exhibit important interactions affecting the properties of
the entire molecule, and the atoms may differently contribute to
the representation of a drug molecule. A drug usually depends
on a number of key substructures to interact with other drugs.
Compared with the basic GNN model, the gated recurrent unit
(GRU) model can capture the importance of substructures and
higher order neighborhood information by adding additional con-
trol units (update gate, reset gate) and fusing them layer by
layer [27]. Through effectively modeling the diffusion process of
node information in the graph and improving long-term infor-
mation propagation, the GRU model can extract local structural
features and additional effective features, making the final drug
feature embedding more accurate and representative. Meanwhile,

to retain important feature information between nodes and elim-
inate redundant information, we add attention gates to auto-
matically learn the flow of feature information between atomic
nodes. The attention mechanism can improve the rationality and
completeness of the node feature updating process. Specifically,
the attention score determines the amount of feature information
in each neighbor node that can be integrated into the current
node. For each node, the attention score of its neighboring nodes
is calculated as

attl
i = softmax

(
ṽ(l−1)

i

)
=

exp
(
ṽ(l−1)

i W
)

∑
j∈M exp

(
ṽ(l−1)

j W
) , (3)

where W denotes the linear transformation matrix, M denotes
the set of current nodes and their first-order neighbors and
the softmax function is used to normalize the attention
vector.

Then, the feature information of each node is weighted and
aggregated according to the attention scores of its neighbors:

v̂l
i =

∑
j∈M

attl
j ṽl−1

j , (4)

where M denotes the set of the current node and its first-order
neighbors, and attl

j is the attention score of the neighbor vj.
With the attention gate, the AGRUNN is updated as

al = Âl−1
g ṽl−1

i Wa (5)

Z = σ
(
Wzal + Uzṽi

l−1 + bz

)
(6)

R = σ
(
Wral + Urṽl−1

i + br

)
(7)
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hl = tan
(
Whal + Uh

(
R � ṽl−1

i

)
+ bh

)
(8)

vl
i = hl � Z + ṽl−1

i � (1 − Z) + v̂l
i, (9)

where Z and R, respectively, represent the update gate and reset
gate, W and U are trainable weight matrices, b is the bias vector, σ

represents the sigmoid activation function, Âl−1
g is the symmetric

normalized adjacency matrix of the drug molecular graph and �
denotes the dot product operation.

The hidden state vl−1
i of atom i is updated to vl

i after AGRUNN.
In this process, each node aggregates the feature information
of neighboring nodes using update and reset gates, in addition
to the semantic information associated with the current node
through attention gates. Accordingly, the features of the atoms in
the molecular graph are updated to vl

i.
Readout. After updating the bond and atom information,

the graph readout part is introduced to obtain an embedded
representation of the molecular graph. To integrate the infor-
mation of the whole drug molecular graph and highlight the
features of important nodes, readout adopts the mean and the
max function to integrate the feature representation of each key
node as below:

g = 1
n

n∑
i=1

vl
i‖ max vl

i, (10)

where ‖ denotes the splicing operation, and n is the number of
atoms in the molecular graph. Then, the molecular graph-based
feature matrix FG ∈ RN×dg consisting of N drug molecular graph
features is obtained.

Feature extraction module based on DDI networks
Based on the initial DDI network and the above-obtained drug
molecular structure feature FG, we construct a GCN to extract the
drug relation feature. To handle the sparsity of DDI networks, we
adopt sparse GCN [28] and sparse matrix multiplication (SpMM) in
the module. Sparse GCN is a variant of graph convolution neural
networks, which is suitable for the situations when there is a large
amount of missing information in the graph. SpMM is a way of
multiplying matrices that works well when one matrix is sparse
and the other is dense. Sparse graph convolution can be efficiently
computed by utilizing SpMM, which avoids dealing with the parts
where no connections exist and thus improves computational
efficiency.

Assuming that the adjacency matrix of the DDI network is
represented by A ∈ RN×N, the number of drugs in the DDI network
is denoted by N, and the drug molecular graph feature matrix
FG ∈ RN×dg is input. Prior to the graph convolution operation, we
normalize the adjacency matrix A as

Â = D̃− 1
2 ÃD̃− 1

2 , (11)

where D̃ = D + I, Ã = A + I,I represents the identity matrix, and D
represents the degree matrix.

Then we apply the GCN encoder framework as follows:

N(1) = U
(
A, G, W(0)

u , W(1)
u

) = Â ReLU
(
ÂGW(0)

u

)
W(1)

u , (12)

where W(0)
u and W(1)

u , respectively, denote the two learnable weight
parameters of layer 0 and layer 1 of the GCN encoder. After

multiple layers of GCN, we finally obtain the drug relation feature
matrix FN ∈ RN×dg from the DDI network.

For the GCN-based DDI feature extraction module, the weight
parameters of the model are first initialized, and then the GCN
model structure is defined, including the number of GCN layers
and the dimensionality of each layer. During the training process,
the drug molecular map features are input to the GCN model and
are processed through multiple GCN layers to obtain the drug
representation. To optimize the performance of the model, the
binary cross entropy is chosen as the loss function to measure the
difference between the predictions and the actual labels. The back
propagation algorithm is adopted during training to calculate the
gradient of the loss function, and the Adam optimizer is used to
update the parameters of the model. To improve training stability
and performance, an exponential decay method is used to adjust
the learning rate. Together, these steps ensure that the GCN model
can effectively extract features from the DDI network.

Feature extraction module based on biochemical feature
similarities
We further extract biochemical features that may affect drug
interactions, including targets, enzymes and transporters. A
feature matrix of drugs (drug–enzyme, drug–target and drug–
transporter) is constructed to represent these drug features. Each
feature corresponds to a set of descriptors, and then the drug
can be represented as a binary feature vector, where each entry
indicates the presence or absence of the corresponding descriptor.
However, the high sparsity and dimensionality of the feature
vector may degrade the performance of the model. To reduce
the sparsity and improve the accuracy of the feature vector, we
utilize principal component analysis[29] for feature reduction.
Then we calculate pairwise drug–drug similarity based on the
Jaccard similarity metric:

J(fdi
, fdj

) = |fdi
∩ fdj

|
|fdi

∪ fdj
| = |fdi

∩ fdj
|

|fdi
| + |fdj

| − |fdi
∩ fdj

| , (13)

where fdi
and fdj

, respectively, represent feature vectors drugs i and
j, |fdi

∩ fdj
| is the intersection of fdi

and fdj
and |fdi

∪ fdj
| is the union.

Through the Jaccard similarity, we accordingly obtain the target
similarity matrix Xt ∈ RN×dg, the enzyme similarity matrix Xe ∈
RN×dg and the transporter similarity matrix Xp ∈ RN×dg, where N
is the number of drugs and the dg is the dimensionality of the
feature embedding.

Finally, to further explore the complementarity among differ-
ent biochemical feature similarities, we concatenate these three
vectors as the final heterogeneous feature embedding of di as

FS,di
= xt

di
⊕ xe

di
⊕ xp

di
, (14)

where xt
di ∈ Xt, xt

di is the feature vector corresponding to drug di in
row i of the target similarity matrix, and similarly, xe

di ∈ Xe, xp
di ∈ Xp,

and the symbol ⊕ is the cascade operation of drug di features. The
feature matrix FS ∈ RN×dg based on biometric similarity is finally
obtained by feature dimensionality reduction operation, where
the superscript dg is the feature embedding dimension.

Multimodal feature fusion module
After learning the feature embedding of drug molecular graph,
DDI network and biochemical feature similarities of drugs, we
introduce a multimodal fusion neural layer to explore their com-
plementarity and fuse the feature embedding. The multimodal
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feature fusion layer fuses important features based on an atten-
tion mechanism. The critical information is fused by employing
an attention mechanism to assign learnable weights.

Given the obtained FG, FN and FS, the attention mechanism is
calculated as follows:

(
αg, αN, αS

) = att (FG, FN, FS) , (15)

where αg, αN and αS denote the attention coefficients of embed-
ding FG, FN, FS, respectively.

For these different types of features, their attentions (αg, αN, αS)
are learned during the training process of the model. The model
automatically determines which features are more important,
and adjusts the attention coefficients using the back propagation
algorithm to optimize the loss function [30]. This learning process
allows the model to better adapt to a given DDI prediction task
and make full use of the information from each feature [31].

Supposed that node i in the embedding vector g is represented
as gi. We first apply the nonlinear transformation and then multi-
ply it by the shared attention vector q to obtain its attention value
Wgi as follows:

Wgi = qT · tanh
(

w ·
(
gi

)T + b
)

, (16)

where w is the weight matrix, b is a bias vectorand q is a shared
attention vector. This step considers the contribution of each fea-
ture in the fusion and is modeled by a nonlinear transformation.
Then, we use the softmax function to regularize the attention
values and obtain their attention coefficients. These coefficients
determine the weight of each feature in the final fusion. Softmax
function ensures that the sum of these coefficients is equal to 1,
so they indicate the relative importance of different features:

αi
g = soft

(
wi

g

)
=

exp
(
wi

g

)
exp

(
wi

g

)
+ exp

(
wi

n

) + exp
(
wi

s

) (17)

Similarly, αi
n = soft

(
wi

n

)
, αi

s = soft
(
wi

s

)
.

Finally, the final drug embedding E is obtained as

E = αg · FG + αn · FN + αs · FS (18)

Then, the drug feature embedding E is obtained through the
multimodal feature fusion layer, integrating information of the
molecular structure, biological similarity and drug interaction
network of drugs.

DDI prediction
Based on the multimodal feature fusion representation of drugs,
we perform the prediction task using a fully connected deep learn-
ing network. First, we obtain an interaction-linked representation
by multiplying the two drug representations, input it into the
MLPand predict the probability score of the DDI as follows:

ŷij = σ
(
MLP

(
ei � ej

))
, (19)

where σ denotes the element-wise product, and MLP consists of
two fully connected layers.

Our learning goal is to minimize the distance between the
prediction and the actual label. DMFDDI achieves the best DDI

prediction performance by jointly training the feature extraction
module and the feature fusion module, which learn together to
minimize the loss function and learn effective feature represen-
tations from the different feature extraction modules. Since the
prediction of DDI is a two-class problem, we use binary cross
entropy as the loss function:

L = − 1
N

N∑
i=1

yij log ŷij + (
1 − yij

)
log

(
1 − ŷij

)
, (20)

where yij ∈ {0, 1} denotes the interaction label for the drug pair
(di,dj) in binary-classification tasks and ŷij is the predicted DDI
probability.

EXPERIMENTS
Dataset
To validate the effectiveness of the proposed DMFDDI, we evaluate
the model on small-, medium- and large-scale datasets. For the
small-scale ZhangDDI dataset [32], it contains 572 drugs and 48
548 known edges. Although the number of drugs is relatively
small, fingerprints of all drugs are available. In the medium-scale
ChCh-Mine dataset[33], there are 1514 drugs and 48 514 known
edges. It contains almost three times the drugs than the ZhangDDI
dataset; however, only the same number of tagged DDI links are
available. In the large-scale DeepDDI dataset [34], there are 1704
drugs and 192 284 known edges. In these datasets, drugs are
associated with their SMILES string representations. Based on the
open-source tool RDKit3, we convert the obtained SMILES string of
each drug into the molecular graph, where atoms are represented
as nodes, and chemical bonds as edges. Meanwhile, to integrate
different biochemical feature similarities of drugs into DMFDDI,
we obtain and combine the required biochemical feature data
from well-known databases, including DrugBank [35] and KEGG
[36]. As in the previous study [32], we select three features (targets,
enzymes and transporters) for similarity calculation.

Evaluation metrics and Experimental setup
To estimate the performance of DMFDDI from different aspects,
we adopt three widely used metrics, including area under the
receiver operating characteristic curve (AUROC), area under the
precision-recall curve (AUPRC) and F1. These metrics have differ-
ent emphasis. For classification problems, AUROC is suitable for
class-balanced datasets, while AUPRC reflects the generalization
ability of models on unbalanced datasets. In our experiments, we
report the average values of these metrics in 10 replications.

We utilize the Adam optimizer to train the model [37] and
Xavier to initialize the model [38]. The exponential decay method
is adopted to set the learning rate, where the initial learning rate
is 0.0001 and the multiplication factor is 0.96. The model applies
a loss layer to the output of each intermediate layer [39], where
the loss rate is 0.3. In the biochemical similarity-based feature
extraction module, we utilize a three-layer network structure, and
set the number of neurons in each layer as half of the previous
layer. The number of neurons in the last hidden layer is fixed
at 256. Also, the number of GCN layers is set to two for the
drug molecular graph feature extraction module and DDI feature
extraction module, and the dimensionality of the extracted drug
representations is set to 256.

To evaluate the performance of different parameter settings
and monitor the training process of the model, we randomly split
the dataset into training, validation and testing sets with a ratio
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of 6:2:2. The validation set provides an independent dataset for
the model during training, which helps prevent overfitting and
improve the model’s generalization ability. As previous studies
did [24], the drug pairs that are not known DDIs in the dataset
are regarded as the negative samples. We randomly choose the
same number of negative samples as the positive samples for
our experiments. This balances the positive and negative samples,
and prevents the model from being biased toward predicting
positive samples.

Baselines Methods
In the comparative analysis, we compare our model against the
following baselines, including the traditional and the recent state-
of-the-art deep learning methods.

• NN [40] identifies new DDIs based on the molecular struc-
tural similarity of drugs involved in the established DDIs.

• GCN [41] uses GCNs for the semi-supervised node classifica-
tion task. As a baseline, we apply GCN to encode the drug
molecular graph, and then feed the embedded features into
DNN for prediction.

• GIN [42] utilizes a graph isomorphic network (GIN) for learn-
ing molecular representations in various monomer property
prediction tasks. As a baseline method, we use GIN to encode
the drug molecular graph, and then feed the feature embed-
ding into DNN for prediction.

• GAT [43] is based on graph attention network (GAT) to learn
node embeddings by designing good attention mechanisms
on the graph. We utilize GAT to obtain drug features based on
DDI network, and then feed the extracted features into DNN
for prediction as a baseline.

• SEAL-CI [44] applies a hierarchical graph representation
learning framework to a semi-supervised graph classifica-
tion task.

• DeepDDI [45] constructs a drug similarity matrix based on
fingerprint, reduces the feature dimension and then utilizes
DNN to predict DDIs.

• DPDDI [20] is a GCN-based method to predict DDIs. It utilizes
GCN to capture the topological relationships of drugs in DDI
networks.

• MIRACLE [24] learns both inter-view molecular structure and
intra-view interaction information of the drug for DDI predic-
tion.

• DM-DDI [31] combines drug features and topologies to learn
representative drug embedding for DDI prediction. A deep
neural network model is used on the drug feature matrix
to extract feature information and a graph convolutional
network model is used to capture structural information from
the adjacency matrix.

• MFDA [46] employs a dual-level attention mechanism, includ-
ing node-level and view-level, to obtain uniform drug embed-
ding for drug interaction prediction.

Performance comparison with competing
methods
We compare the DMFDDI with 10 competing DDI prediction mod-
els on three different scale datasets. We utilize three widely used
metrics (AUROC, AUPRC and FI) to evaluate the prediction perfor-
mance of each algorithm. Table 1 shows the performance of these
DDI prediction methods. For each method, we show the average
values of 10 replicate experiments. The best results are high-
lighted in bold. We observe that the proposed DMFDDI achieves
better AUPRC and F1 values than the competitive methods on

all the datasets with three different scales. For the evaluation
metric AUROC, it achieves better performance on the ZhangDDI
dataset and the ChCh-Miner dataset, while its performance is
close with MIRACLE on the DeepDDI dataset. Specifically, the
performance of the algorithm NN is relatively poor, which only
uses the similarity-based fingerprints feature. In contrast, MIR-
ACLE obtains better results because it utilizes different features,
indicating the importance of integrating multiple features to pre-
dict DDIs. Also the graph-based methods have poor performance
because they rely only on single-view graph information. GCN,
GIN and GAT encode drug molecule graphs through different GNN
frameworks and they make pairwise predictions of DDIs based on
the obtained drug molecule representations. DPDDI learns drug
representations directly from DDI relationships and utilizes the
inner product of the target drug pair embedding results for pre-
diction. The performances of DeepDDI and DPDDI are better than
those of GCN, GIN and GAT only using drug molecular features.
The two newly developed models DM-DDI and MFDA achieve
better performance on the ZhangDDI dataset than on the medium
and large datasets. The performance on different datasets may
be affected by dataset differences. Further, the prediction models
perform better when considering drug molecular maps and drug
interaction network maps together, such as MIRACLE. Overall,
DMFDDI achieves better performance on different datasets, which
integrate three types of features, including molecular structure
information, DDI information and biologically relevant feature
similarities. The comparison results indicate that the fusion of
multiple types of features can improve the performance of the
model. Besides the ZhangDDI dataset, we also conduct experi-
ments on the two large-scale datasets (the ChCh-Miner dataset
and the DeepDDI dataset), and the results validate the scalability
of DMFDDI.

Furthermore, we evaluate the ability of DMFDDI to predict
DDIs between new drugs. First, the drugs rather than DDIs are
randomly divided into five portions, where four portions are used
as the training drugs and the rest as the test drugs. The models
are trained on the DDIs between the training drugs and then are
tested on the DDIs between the test drugs. Here, the two newly
developed models, DM-DDI and MFDA, are also included in the
comparison with DMFDDI on the ZhangDDI dataset. As shown in
Table 2, DMFDDI achieves the best results compared with DM-
DDI and MFDA. However, the performance of all models declines
when new drugs are used for prediction. For DMFDDI, the AUROC,
AUPR and F1 score are, respectively, decreased to 0.9314, 0.7241
and 0.4863. For prediction task on new drugs, positive samples
are usually much less than negative samples, resulting in data
imbalance, which might lead to the performance decrease.

Sensitivity analysis
Aiming to explore the impact of important parameters on pre-
diction performance, we assign them with different values, and
then evaluate the performance of DMFDDI on the ZhangDDI
dataset. We analyze the dimensionality of the drug features dg,
the learning rate lr and the number of GCN layers of the drug
molecular graph feature extraction module Lm. By fixing other
parameters, we investigate the effect of different key parameter
settings on the performance of DMFDDI.

To determine the optimal setting of dg, we vary the dimen-
sionality from 2 to 1024. As shown in Figure 3(a), when dg is set
to 256, the three metrics are optimal and the model achieves
the best performance. Specifically, as the dimensionality of drug
features increases, DMFDDI can extract more useful information.
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Table 1: Performance comparison of DMFDDI and 10 competing methods on three different scale datasets, measured by AUROC,
AUPRC and F1

Dataset Method AUROC AUPRC F1

NN 0.6781 0.5261 0.4984
GCN 0.9193 0.8865 0.8161
GIN 0.8145 0.7716 0.6415
GAT 0.9149 0.9069 0.8121

ZhangDDI SEAL-CI 0.9319 0.9285 0.8476
DeepDDI 0.9201 0.8876 0.8025
DPDDI 0.9516 0.9021 0.8423
Miracle 0.9895 0.9817 0.9320
DM-DDI 0.9876 0.9642 0.8521
MFDA 0.9989 0.9627 0.8513
DMFDDI 0.9927 0.9836 0.9741
NN 0.7315 0.7723 0.5314
GCN 0.8284 0.8427 0.7054
GIN 0.7032 0.7241 0.6554
GAT 0.8584 0.8814 0.7651

ChCh-Miner SEAL-CI 0.9093 0.8938 0.8474
DeepDDI 0.9212 0.9307 0.8541
DPDDI 0.9583 0.9228 0.8452
Miracle 0.9615 0.9557 0.9226
DM-DDI 0.9587 0.7979 0.5476
MFDA 0.9795 0.8468 0.7041
DMFDDI 0.9712 0.9851 0.9623
NN 0.8181 0.8082 0.7137
GCN 0.8553 0.8327 0.7218
GIN 0.7228 0.7027 0.6771
GAT 0.8484 0.8114 0.7351

DeepDDI SEAL-CI 0.9382 0.9044 0.8170
DeepDDI 0.9226 0.9047 0.7922
DPDDI 0.9285 0.9148 0.8531
Miracle 0.9551 0.9234 0.8360
DM-DDI 0.9065 0.4741 0.2298
MFDA 0.9519 0.7247 0.4868
DMFDDI 0.9514 0.9633 0.9257

Table 2: New Drug Predictive Analytical Experiment

Method AUROC AUPRC F1

DM-DDI 0.8518 0.3646 0.1597
MFDA 0.9179 0.4745 0.2298
DMFDDI 0.9314 0.7241 0.4863

However, too high dimensionality may increase noise and lead
to performance degradation. Similarly, we vary lr to 0.01, 0.001,
0.0001, 0.00001 and fix the other parameter settings, and the
performance of DMFDDI with different lr is shown in Figure 3(b).
We observe that the model performs best when lr=0.0001. As
shown in Figure 3(c), for the number of GCN layers of the drug
molecular graph feature extraction module, the performance of
DMFDDI improves as Lm increases. When Lm=2, these three met-
rics are optimal and the model achieves the best performance.
However, too many layers may lead to over-smoothing and result
in performance degradation.

Ablation study
To validate the effectiveness of each type of drug features, we use
different feature combinations to predict DDIs on the ZhangDDI
dataset. As shown in Figure 4, the combined features outperform

the individual features, and the best performance is obtained
when all three types of features are fused together, achieving
AUROC, AUPRC and F1 values of 0.9921, 0.9815 and 0.9712, respec-
tively. Each feature type contributes to DDI prediction to some
extent. Specifically, the drug molecular graph features and the
DDI features are more effective than the biochemical features.
Among the pairwise feature combinations, the fusion of drug
molecular graph features and DDI features leads to the best
results, with AUROC, AUPRC and F1 values of 0.9815, 0.9806 and
0.9327, respectively. The model that integrates all three features
improves the F1 value by 3.85% compared with the best pairwise
combination, demonstrating that multi-modal feature fusion can
better capture the multi-level characteristics of drugs. The results
confirm that multi-modal feature fusion can enhance drug rep-
resentation and DDI prediction performance.

In the drug molecular graph based feature extraction mod-
ule, our model introduces an AGRUNN that captures the hid-
den key relationships and extracts the global features of the
drug molecular graph. To validate its effectiveness, we compare
the performance of DMFDDI with the AGRUNN and that of the
model with the ordinary message passing network (MPNN) on the
ChCh-Miner dataset. The results are shown in Table 2. We observe
that DMFDDI with the AGRUNN model outperforms the model
with the MPNN. The values of AUROC, AUPRC and F1 are improved
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Figure 3. Performance comparison of the proposed DMFDDI with different drug feature dimensionality, learning rate and the number of GCN layers.

Figure 4. The performance comparison of DMFDDI with different feature combinations on ZhangDDl dataset. S denotes biochemical feature similarity,
G denotes drug molecular graph features and N denotes DDI network features.

by 0.97%, 2.94% and 3.97%, respectively. The comparison results
demonstrate that the AGRUNN can make full use of the neigh-
borhood information of different orders, including the relation-
ship between atom pairs separated by long topological distances,
which further promotes accurate extraction of the features from
the molecular graph and facilitates the DDI prediction.

To evaluate the effectiveness of the multimodal feature fusion
model, we compare our model with traditional fusion strate-
gies, including cascading and summation methods. We imple-
ment the traditional fusion approach in the fusion layer of the
model. Table 3 shows the comparison results of different fea-
ture fusion strategies on the ZhangDDI dataset. DMFDDI out-
performs DMFDDI_concat and DMFDDI_sum in all three evalu-
ation metrics. Specifically, the performance is improved by 4.05%,
7.94% and 13.88% in AUROC, AUPRC and F1, respectively, over the
second ranking DMFDDI_concat method, further validating the

Table 3: Ablation experiments of drug molecular graph feature
extraction module

Method AUROC AUPRC F1

MPNN 0.9615 0.9557 0.9226
AGRUNN 0.9712 0.9851 0.9623

effectiveness of the proposed fusion strategy. Our feature fusion
module fuses the feature information extracted from each mod-
ule by exploring the complementarity between multimodal repre-
sentations of drugs, resulting in better representation of the drug
features.

Case study
Furthermore, we evaluate the performance of DMFDDI in predict-
ing the unobserved DDIs. Specifically, we perform DDI predictions
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Table 4: Ablation experiments of multimodal fusion layers

Method AUROC AUPRC F1

DMFDDI_sum 0.9201 0.8653 0.8126
DMFDDI_concat 0.9516 0.9021 0.8324
DMFDDI 0.9921 0.9815 0.9712

Table 5: Top 10 DDIs predicted by DMFDDI

Number Drug1 Drug2 Validation Source

1 Abemaciclib Astemizole Drugbank
2 Abiraterone Fentanyl Drugbank
3 Digoxin Ergocalciferol Drugbank
4 Acetylcholine Cinchocaine Drugbank
5 Naproxen Clofarabine Drugbank
6 Hydroxyzine Cisplatin N.A.
7 Anagrelide Lomefloxacin Drugbank
8 Alimemazine Eprosartan Drugbank
9 Aprepitant Bivalirudin N.A.
10 Bortezomib Hydroxyzine Drugbank

across 572 drugs and 37 264 pairs of drugs with a few of known
interactions. We predict 289 920 unknown drug interactions to
validate the capability of the model. Higher scores for unobserved
drug pairs indicate a higher probability of interaction between
these drugs. We validate the high ranking predictions in DrugBank
[34]. The experimental results are shown in Table 4. Of the top 10
predicted DDI events, eight responses are confirmed. For exam-
ple, the highest predicted response scores are for Abemaciclib
and Astemizole, followed by higher scores for Abiraterone and
Fentanyl, indicating an Abemaciclib–Astemizole interaction and
an Abiraterone–Fentanyl interaction, respectively. This is also
confirmed in Drugbank. The metabolism of Abemaciclib can be
decreased when combined with Astemizole. The metabolism of
Butyrfentanyl can be decreased when combined with Abiraterone.
These case studies demonstrate that our DMFDDI can effectively
detect the potential DDIs.

CONCLUSION
As adverse DDIs pose unexpected risk to patients, it is crucial
to identify potential DDIs. As single drug feature is insufficient
to comprehensively represent drug information. Therefore, in
this study, we construct a new end-to-end DDI prediction learn-
ing framework, DMFDDI, which effectively fuses drug molecular
structure features, DDI network and drug biochemical feature
similarities. Specifically, based on the AGRUNN, we extract the
molecular structure from the given drug molecular graphs. A
sparse GCN is introduced to learn the topological structure infor-
mation of the known DDI network. We extract the biochemical
feature similarity by analyzing three feature similarity matrices.
Then, in the multimodal feature fusion module, we explore the
complementarity between multi-modal representations of drugs
using an attention mechanism to fuse the feature information
extracted from each module. Finally, the scores of DDIs are pre-
dicted by the predictor. Extensive experiments on different scale
datasets demonstrate that DMFDDI outperforms the 10 compet-
ing methods. Furthermore, detailed ablation studies demonstrate
that the AGRUNN and the multimodal feature fusion model play
a key role in improving the prediction performance.

Key Points

• We propose DMFDDI, a multi-modal deep learning fea-
ture fusion framework for DDI prediction. The proposed
model can effectively fuse multimodal features, includ-
ing drug molecular structure features, the DDI network
as well as biochemical feature similarities.

• To accurately extract the local and global structure
of drug molecules, we construct a feature extraction
module based on AGRUNN, which can aggregate and
update feature information of different atom nodes and
chemical bonds through a gating mechanism. A sparse
GCN is introduced to learn the topological structure
information of the DDI network.

• We introduce a multimodal fusion model to explore the
complementarity among different types of drug features
and fuse the feature embedding learned by each module,
making the final drug feature representation more accu-
rate.

• The extensive experiments demonstrate that DMFDDI
achieves better performance compared with the 10 com-
petitive methods. The predictions of DMFDDI are further
validated by case studies, implying its capability in the
predicting unknown DDIs.
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