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Abstract
Motivation: Drug combination therapy has exhibited remarkable therapeutic efficacy and has gradually become a promising clinical treatment
strategy of complex diseases such as cancers. As the related databases keep expanding, computational methods based on deep learning model
have become powerful tools to predict synergistic drug combinations. However, predicting effective synergistic drug combinations is still a chal-
lenge due to the high complexity of drug combinations, the lack of biological interpretability, and the large discrepancy in the response of drug
combinations in vivo and in vitro biological systems.

Results: Here, we propose DGSSynADR, a new deep learning method based on global structured features of drugs and targets for predicting synergistic
anticancer drug combinations. DGSSynADR constructs a heterogeneous graph by integrating the drug–drug, drug–target, protein–protein interactions and
multi-omics data, utilizes a low-rank global attention (LRGA) model to perform global weighted aggregation of graph nodes and learn the global structured
features of drugs and targets, and then feeds the embedded features into a bilinear predictor to predict the synergy scores of drug combinations in differ-
ent cancer cell lines. Specifically, LRGA network brings better model generalization ability, and effectively reduces the complexity of graph computation.
The bilinear predictor facilitates the dimension transformation of the features and fuses the feature representation of the two drugs to improve the predic-
tion performance. The loss function Smooth L1 effectively avoids gradient explosion, contributing to better model convergence. To validate the perfor-
mance of DGSSynADR, we compare it with seven competitive methods. The comparison results demonstrate that DGSSynADR achieves better perfor-
mance. Meanwhile, the prediction of DGSSynADR is validated by previous findings in case studies. Furthermore, detailed ablation studies indicate that
the one-hot coding drug feature, LRGAmodel and bilinear predictor play a key role in improving the prediction performance.

Availability and implementation: DGSSynADR is implemented in Python using the Pytorch machine-learning library, and it is freely available at
https://github.com/DHUDBlab/DGSSynADR.

1 Introduction

In complex diseases, monotherapy is likely to encounter with
drug-resistance and high cytotoxicity (Güvenç Paltun et al.
2021). Through inhibiting multiple disease driving signaling
pathways, multi-targeted treatments can greatly enhance efficacy
and avoid monotherapy resistance (Chakravarty et al. 2022).
Therefore, drug combinations have been gradually used to treat
various complex diseases. Although drug combination therapy
has great clinical value, it still faces many practical challenges.

In early stages, synergistic drug combinations are mainly de-
rived from clinical trials. Such trial-based approach is usually
labor-intensive, time-consuming, and risky. With the development
of high-throughput screening (HTS) technology, researchers turn
to discover novel effective drug combinations by HTS-based
methods (Kaemmerer et al. 2021). However, the exponential
growth of possible drug combinations is an unavoidable road-
block for the HTS-based approach. It is necessary to predict and
prioritize a panel of most potent combinations from massive po-
tential combinations for further testing. Machine learning meth-
ods provide the opportunity to efficiently explore the large

combinatorial space. Existing models such as Random Forest
(Breiman 2001), Random Gradient Boosting (Friedman 2001),
and Decision Tree (Quinlan 1986) have been widely used for
drug combination prediction. The method SyDRa (Li et al. 2017)
builds a random forest based on three types of features (drug
chemical structure, drug–target network and drug-genomics) to
predict synergistic anticancer drug combinations. EC-DFR (Lin
et al. 2022) is an enhanced cascade-based deep forest regression
factor method for predicting the synergy scores of drug combina-
tions. These methods are effective for small datasets, whereas it is
difficult to achieve good performance on high-dimensional and
large-scale datasets. Fortunately, with the publication of large
datasets such as NCI-ALMANAC (Sidorov et al. 2019) and
DrugComb (Zheng et al. 2021), deep learning methods have
gradually emerged for drug combination prediction. DeepSynergy
(Preuer et al. 2018) is a pioneer deep learning method for predict-
ing drug combinations, which constructs a DNN based on drug
chemical and genomic information. MatchMaker (Kuru et al.
2021) takes the chemical features of drugs and the gene expres-
sion as the input of a DNN, and utilizes the feature embedding to
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predict synergy scores of drug combinations. Although these
DNN-based methods have made great progress, they usually do
not consider complex biological interactions among proteins,
drugs, and diseases, which lead to the limitations in explicitly
explaining the relevance between different data types and capture
the structural information of drugs and targets.

Recently, Graph Neural Network (GNN) (Wang et al.
2022a) is exploited to learn feature representation of drug
chemical structures and predict drug combinations. DeepDDS
adopts Graph Attention Network (GAT) to learn drug fea-
tures, and integrate the features of cell lines and drug pairs to
identify synergistic drug combinations. PRODeepSyn (Wang
et al. 2022b) utilizes Graph Convolutional Network (GCN)
to integrate protein–protein interaction (PPI) networks with
genomic data. It combines drug molecular fingerprints and
descriptors to predict anticancer synergistic drug combina-
tions. Although these GNN-based methods have achieved su-
perior prediction performance, some limitations still need to
be addressed. The GCN model tends to give important fea-
tures the same weight as other features during propagation,
which inhibits the network to extract more critical features.
The GAT model tends to limit the attention to partial
domains in the graph. The partial feature aggregation is hard
to capture global information and more complex node rela-
tionships, and also makes the graph computation cost grow
significantly as the number of neighbor nodes increases.
Therefore, in the feature extraction process, it is necessary to
consider the topology structure of different types of data and
obtain global structured features with lower complexity.

Here, to tackle these limitations, we propose a new deep learn-
ing method DGSSynADR to predict synergistic anticancer drug
combinations. To integrate different types of biological data and
make the model biologically interpretable, we construct heterog-
enous graphs based on drug–drug, drug–target, and protein–
protein interactions. Meanwhile, using a low-rank global atten-
tion (LRGA)-based network, we perform global weighted aggre-
gation of nodes on the heterogeneous graphs to learn global
structured features of drugs and targets. For feature extraction of
graph structure, the LRGA network effectively reduces the com-
putational complexity of graphs and brings model more general-
ization ability. Subsequently, instead of using the traditional
multi-layer perception (MLP) as a predictor, we connect the
learned drug and cell line features, feed them into the bilinear
predictor, and predict the synergy score of the drug combination
on specific cancer cell lines. On the DrugComb dataset, we com-
pare DGSSynADR with seven competing methods. The exten-
sive results demonstrate that DGSSynADR outperforms the
competing methods. Meanwhile, we evaluate the impact of cell
line and tissue differences on prediction performance of
DGSSynADR. Detailed ablation studies measure the contribu-
tion of each module of DGSSynADR. Further case studies vali-
date the synergistic anticancer drug combinations predicted by
DGSSynADR, implying that DGSSynADR is an effective drug
combination prediction method and could be applied to discover
new anticancer synergistic drug combinations.

2 Materials and methods

2.1 Datasets
Drug synergy scores
DrugComb (Zheng et al. 2021) is the latest comprehensive
drug combination information database, containing the re-
search of NCI-Yearbook, ONEIL and other classic datasets.

Both EC-DFR and Matchmaker (Kuru et al. 2021) choose the
collaborative scores in DrugComb as the source of truth.
Similarly, we obtain the drug synergy dataset through
DrugComb(v1.5). Compared with DrugComb(v1.4), it adds
more drug information covering 751 498 drug combinations
and 717 684 single drug screens, corresponding to
21 621 279 independent data points across 2320 cell lines re-
lated to 225 cancer types and three infectious diseases. For
these drug combinations, DrugComb provides six types of
synergy scores, including CSS (Zheng et al. 2021), S
(Malyutina et al. 2019), ZIP (Yadav et al. 2015), Bliss (Bliss
1939), Loewe (Loewe 1953), and HSA (Borisy et al. 2003).
The evaluation models are developed based on different
assumptions about the expected effect of noninteraction,
which are briefly introduced in the supplementary file.
According to the experimental need, we construct a drug–pro-
tein relationship network using the data obtained from the
drug dataset Chembl and the protein dataset HURI. As the
HURI protein dataset does not include all data related to
Chembl, we obtain 52 drugs as the intersection of multiple
datasets. Then we preprocess the datasets and select 80 877
drug combinations consisting of 52 drugs on 60 cancer cell
lines as the benchmark dataset, where each sample comprises
two drugs, a cell line and the synergy scores under the six
evaluation metrics.

Drug features and drug–target interactions (DTI)
The ChEMBL database is a query platform for drug and
drug–target data, developed by European Bioinformatics
Institute (EBI) (Gaulton et al. 2017). The SMILES representa-
tion and the therapeutic targets of drugs can be searched by
chemical name or index. To better represent chemical struc-
tures of drugs, we further utilize the RDKit (Landrum et al.
2013) toolkit to process the SMILES of drugs, and calculate
the fingerprints, one-hot coding and descriptors for each
drug. Specifically, RDKit is open-source toolkit for chemin-
formatics, which can be used to convert the original SMILEs
representation of the drug into coding. Here, it is represented
as a 1024D binary vector. Finally, we connect these multiple
types of drug representation to obtain the final drug features.
The drug–protein graph data are obtained from the DTI rela-
tionship data.

PPI network
Human Protein Interactome Map (HuRI) is a comprehensive
human protein interactome map that contains 53 000 PPIs
(Luck et al. 2020). ELMo (Heinzinger et al. 2019) is a model
based on a natural language framework. By modeling protein
sequences, it effectively captures the biological features of life
language from unlabeled data and forms protein embedding.
We utilize the ELMo model to calculate the embedding of
protein sequences of the HuRI dataset and generate learnable
protein embedding that obey a normal distribution. These
two feature representations are subsequently connected as the
protein features of the input model.

Cell line genomic data
We obtain cell line features such as gene mutation through
the Cancer Cell Line Encyclopedia (CCLE) (Ghandi et al.
2019) and the LINCS project (Duan et al. 2014).
Accordingly, we select 1956 genes and input their gene ex-
pression profiles to the model.
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2.2 Framework of the proposed model

We propose DGSSynADR for predicting anticancer synergis-
tic drug combinations based on the global structural features
of drugs and proteins. We model the drug synergy prediction
problem as a regression task. For a given drug pair (drug i,
drug j) and cell line k, drug i and drug j are respectively
represented by feature vectors Xi and Xj, and cell line k is
represented by feature vector Ck. The synergy score of the
drug pair obtained from DrugComb is represented as lST;ijk

,

and the predicted synergy score of the drug pair obtained by
DGSSynADR is lSP;ijk

. Then, the regression problem is to use

the feature vectors Xi, Xj and Ck to predict the corresponding
synergy score lSP;ijk

. During the training process, the predicted

synergy scores gradually approach the target synergy scores.
To solve the regression problem, the proposed deep learning
method DGSSynADR extracts the global structural features
of drugs and proteins, and predicts anticancer synergistic drug
combinations. As shown in Fig. 1, DGSSynADR consists of
three main steps, including constructing diversified heteroge-
neous graphs, extracting drug and target features based on
LRGA model, and predicting the synergistic scores based on bi-
linear predictors. Specifically, besides bringing the model better
generalization ability, the LRGA network can effectively reduce
the complexity of graph computation and feature extraction.
The bilinear predictor facilitates the dimension transformation
of the features and fuses the feature representation of the two
drugs to improve the model performance. DGSSynADR trains
the entire network end-to-end using Smooth L1 loss, which is a
fast converging and robust loss function.

Constructing heterogeneous graph for multiple types of bi-
ological data. We respectively construct PPI and DTI net-
works based on the preprocessed dataset obtained from HuRI
and Chembl. Meanwhile, the cell line features such as gene
mutation and genomic data are obtained from CCLE and the
Cancer Dependency Map (CDM). The synergy scores of each
drug pair on specific cell lines are downloaded from the
DrugComb database. Based on Loewe scores from
DrugComb, drug combinations with Loewe scores larger
than 0 are considered as synergistic, otherwise they are
regarded as contrastive. We select 52 drugs which are publicly
available in both Chembl and DrugComb databases, and set
the corresponding protein and drug indexes based on HuRI
and Chembl. Using these selected drugs, we construct a het-
erogeneous network with drug–protein–protein multivariate
biological data.

LRGA-based graph convolutional network. As the hetero-
geneous graph contains multiple types of nonregular data, we
adopt a multi-level message passing network (Pei et al. 2020)
to map different types of information into low-dimensional
embedding vector. Message passing networks usually com-
prises three steps, including aggregating the features of neigh-
boring nodes, updating nodes, and reading out information.
In the constructed heterogeneous drug–protein–protein net-
work, we define the node relationship as a set of graphs:
G ¼ fV;Eg, where V denotes the set of vertexes and E
denotes the edges. For any node vi, the features of this node
are represented as hl�1

i , and the features of edges connecting
to neighbor nodes are denoted as eij. The central node updates
iteratively along the edges by passing information among
neighboring nodes. During this process, the message vector is
represented as:

ml
i ¼

X
j2NðiÞ

Mtðhl�1
i ;hl�1

j ; eijÞ; (1)

where NðiÞ is the neighbor set of the central node vi, Mtð�Þ is
the message aggregation function (summation operation),
and ml

i aggregates information from the neighbors of the
central node and the edges between nodes. Note that the
updating process is a local operation, depending only on the
neighbors of node vi. As it is unrelated to the size of the
graph, the space/time complexity is reduced to O(n), rather
than O(E) of the sparse graph (Dwivedi et al. 2020). After
aggregating messages through the first step, the node updates
its hidden features hl

i using its features hl
i and the message

vector ml
i, and the aggregated information hl

i can be defined
as:

hl
i ¼ Utðhl�1

i ;ml
iÞ; (2)

where Utð�Þ is the message update function (summation oper-
ation). Specifically, as shown in Fig. 2, the message passing
process is different for drug–protein, protein–drug, and pro-
tein–protein. As shown in Fig. 2b, the features of drug node
vid are represented as hl�1

id . It receives message from its neigh-
bor protein nodes such as vjp , and the edge information eidjp

between them. We denote the features of protein node vjp as
hl�1

jp , and the passed messages as ml
idjp . Then the messages Ml

d
received by the drug node vid is defined as:

Ml
d ¼ ml

idjp ¼
X

j2NðiÞ

�
eidjp � f ðhl�1

id ;hl�1
jp Þ

�
; (3)

where the function f ðhl�1
id ; hl�1

jp Þ represents the projection of
vector hl�1

id onto hl�1
jp direction, which can be understood as a

linear mapping relationship.
After the integration of the passed message from the neigh-

bor nodes, the updated feature representation hl
id of drug

node i can be calculated as:

hl
id ¼Ml

d þ eðhl�1
id Þ: (4)

The feature of protein node vjp is represented as hl�1
jp , which

passes messages through the neighbor drug nodes and protein
nodes. For the neighbor protein node vkp , the feature is
denoted as hl�1

kp . The connected edge between protein vjp and
vkp is defined as ejpkp , and the passed messages are denoted as
mjpkp . The messages passing from the neighbor drug nodes to
the protein nodes are denoted as ml

jpid . The messages received
by the protein nodes vjp can be denoted as Ml

p:

Ml
p ¼ ml

jpid þml
jpkp (5)

Ml
p ¼

X
i2NðjÞ

�
ejpid � f ðhl�1

jp ; hl�1
id Þ

�
þ
X

k2NðjÞ�
ejpkp � f ðhl�1

jp ;hl�1
kp Þ

�
:

(6)

After the protein node vjp receives and integrates the mes-
sages from neighbor drug nodes, neighbor protein nodes and
the edge information, the feature representation of the protein
node can be updated as:
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hl
jp ¼Ml

p þ eðhl�1
jp Þ; (7)

where Nð�Þ is the set of all neighbor nodes of the central node,
f denotes a small linear projection, and eðhÞ is the self-loop of
the node. As the aggregation process aggregates the features

of adjacent nodes, we add the self-loop to contain its own fea-
ture in the aggregation.

After obtaining the initial drug and protein features through
the message passing network, we construct a LRGA-based
network to extract the global structured features of drugs and

(a)

(b)

(c)

Figure 1. The framework of DGSSynADR. DGSSynADR consists of three major steps, including (a) constructing heterogeneous hectograph of drug–drug,

drug–target, and protein–protein; (b) LRGA-based drug and protein feature extraction. LRGA is utilized to perform global weighted aggregation of nodes,

and learn feature representations of drugs and proteins from the heterogeneous graph by multi-layer convolutional layers and LRGA-based attention

pooling layers; (c) predicting the synergistic scores by bilinear predictors. Two parallel MLPs are trained to learn the feature representations of two drugs

on specific cell lines, which are further processed by bilinear operations and jointly fed to the final layer of MLPs. Using Smooth L1 as the loss function,

the whole network is trained in an end-to-end way to predict the synergy scores of drug combinations on each specific cancer cell line.
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proteins. Figure 3 shows the operation process of the matrix in
detail. LRGA utilizes the protein/drug feature matrix hl

i as in-
put, which can be defined as below:

mðhl
iÞ ¼ ½m1ðhl

iÞ; m2ðhl
iÞ . . . ;mnðhl

iÞ�
T (8)

gðhl
iÞ ¼

1
n

�
1Tm1ðhl

iÞ
��

m2ðhl
iÞ

T1
�

(9)

LRGAðhl
iÞ ¼

1

gðhl
iÞ

m1ðhl
iÞ
�

m2ðhl
iÞ

Tm3ðhl
iÞ
�
;m4ðhl

iÞ
" #

: (10)

As shown in Fig. 3, m1ðhl
iÞ, m2ðhl

iÞ, m3ðhl
iÞ, m4ðhl

iÞ : Rn�k are
the different feature modules split along the feature dimen-
sion. n is the number of samples, and k is the number of fea-
tures. The mðhl

iÞ is the general form of m1ðhl
iÞ, m2ðhl

iÞ, m3ðhl
iÞ,

and m4ðhl
iÞ. Specifically, m1 is Query Matrix, m2 is Bond

Matrix, m3 is Value Matrix and m4 is Update Matrix. gð�Þ is
the normalization factor, and 1 ¼ ð1; 1; . . . ;1ÞT 2 Rn denotes
the transpose of the 1D matrix. Thus, we obtain the feature
hlþ1

i containing information with attention:

hlþ1
i  ½hl

i;LRGAðhl
iÞ; GNNðhl

iÞ�; (11)

where ½�� denotes connecting along the feature dimension.
Here, the attention feature vector obtained by the LRGA
model is connected with the previous message passing
network.

Compared with the computation process of the attention
matrix in the traditional Transformer (Vaswani et al. 2017),
m1, m2, and m3 in LRGA correspond to the query matrix,
key matrix, and value matrix in the self-attention mechanism.
Different from the matrix operation in Transformer, LRGA

avoids the secondary cost of its obvious computation
(Dwivedi et al. 2020) and reduces the computation cost to lin-
ear by the combination of normalization factor and matrix
multiplication. The update matrix module m4 in LRGA con-
forms to the 2-FWL update rule (Lee et al. 2019), which can
effectively improve the performance of LRGA.

MLP bilinear-based predictor. The feature matrix of drugs
is defined as Xd 2 RNd�Fd , where Nd is the number of drugs
and Fd is the dimensionality of drug features. The feature ma-
trix is obtained by the feature extraction process through the
LRGA-based graph convolution network. The cell line fea-
tures are merged with the drug features to relieve the dimen-
sional imbalance between the drug and cell line feature
vectors. The cell line feature matrix is Xc 2 RNc�Fc , where Nc

is the number of cell line types and Fc is the dimensionality of
cell line features.

We define the drug pair and the corresponding cell line as a
triple fi; j;kg. Each triple can be split into two corresponding
binary groups fi; kg and fj; kg. Let the feature matrices of
drug i and j be Xi

d, Xj
d, and the feature matrix of the corre-

sponding cell line be Xk
c . We connect Xi

d, Xj
d with Xk

c along
the feature dimension to obtain the binary feature matrix of
the drug-cell line. Note that the connection here refers to the
connection of the matrix in the vertical direction. The con-
nected feature matrix is subsequently fed into the fully con-
nected MLP to obtain the drug features Xi0

d and Xj0

d in the
second stage as follows:

Xi0
d ¼MLPð½Xi

d;X
k
c �Þ;X

j0

d ¼MLPð½Xj
d;X

k
c �Þ: (12)

Distinct from the traditional MLP, we adopt a bilinear op-
eration to process the drug features Xi0

d and Xj0

d, and feed the
combined drug i and j feature matrix Xi;j

d into the MLP to pre-
dict the synergy score SP;ijk. The process is formulated as
follows:

(a) (c)

(b)

Figure 2. The process of message passing and information aggregation of neighbor nodes.
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Xi;j
d ¼

�
ðw �Xi0

dÞ
T � ðw �Xj0

dÞ�b
�

(13)

SP;ijk ¼MLP Xi;j
d ;X

k
c

h i� �
; (14)

where w is the bilinear weight, b is the bilinear operation bias,
� denotes the multiplication operation of the matrix, and �

denotes the addition operation of the matrix. The structural
parameters of the MLP are elaborated in the Hyperparameter
setting section.

Loss function. Although MSE is commonly used loss func-
tion between the predicted synergy score and the true synergy
score, gradient explosion may occur during the training pro-
cess as the predicted synergy score differs significantly from
the true value at the early stage of the model training. Smooth
L1 combines the advantages of L1 and L2 loss (Girshick
2015). It improves the zero-point un-smoothing problem
compared with the L1 loss, and is not sensitive to outliers and
discrete points compared with L2 loss. Overall, Smooth L1
can avoid the gradient explosion well and is more robust,
which is beneficial to better convergence of the model.

Therefore, we choose Smooth L1 as the loss function of
our model and train the whole network in an end-to-end
manner.

Loss ¼ 0:5ðSP;ijk � ST;ijkÞ2 if jSP;ijk � ST;ijkj < 1
jSP;ijk � ST;ijkj � 0:5 jSP;ijk � ST;ijkj � 1

;

(
(15)

where SP;ijk and ST;ijk respectively denote the predicted and
true synergy scores of drug i and drug j in cell line k.

3 Results

3.1 Hyperparameter setting

The hyperparameters of DGSSynADR include the number of
layers and units of each network structure, activation func-
tion, and learning rate. As manual parameter screening is in-
feasible, we adopt the grid search approach to adjust these
hyperparameters. To evaluate the performance of different
parameter settings, we divide the dataset into the training set,
validation set and testing set according to the ratio 6:2:2. We
adjust the hyperparameters by the validation set and report

(a)

(b)

(c)

Figure 3. Schematic diagram of matrix operation in LRGA, including (a) m1, m2, m3, and m4 are segmented from the feature matrix of the drug,

representing Query Matrix, Bond Matrix, Value Matrix, and Update Matrix, respectively; (b) the calculation process of gðhl
i Þ; (c) the calculation process of

LRGAðhl
i Þ

6 Gan et al.



the final performance of the model on the testing set. As
shown in Supplementary Table S1, we test different values of
these hyperparameters via 5-fold cross validation on these
benchmark datasets. Specifically, the LRGA network is based
on a total of 64 layers, and the model achieves the best perfor-
mance and stability for different data segments with the bold
parameter values.

3.2 Performance comparison

To validate the performance of DGSSynADR, we compare it
with seven competing methods, including two deep learning-
based methods (EC-DFR and MatchMaker) and five classical
machine learning methods (XGB, Random Forest, Decision
Tree, GBDT, and Bagging Regressor). Specifically, EC-DFR
(Lin et al. 2022) is an enhanced cascade-based deep forest re-
gression factor method for predicting synergy scores of drug
combinations. MatchMaker (Kuru et al. 2021) is a deep neu-
ral network-based drug synergy prediction algorithm. Among
the machine learning methods, Random Forest and Bagging
Regressor are classical integrated learning methods based on
the Bagging model, and GB, XGB, and GBDT are integrated
learning methods based on decision tree, which have shown
good performance in synergy prediction of drug combina-
tions. We adopt four widely used metrics to evaluate the pre-
dicted synergy scores of drug combinations, including Mean
Square Error (MSE), Root Mean Squared Error (RMSE), co-
efficient of determination (R2), and Pearson Correlation
Coefficient (PCC). MSE represents the mean squared differ-
ence between the predicted scores and true scores, and RMSE
is the fitted standard deviation of the regression and is the
square root of MSE. R2 represents the degree of relevance be-
tween the predicted and true scores. The PCC are used to
quantify the correlation between the predicted and true
scores.

Figure 4 shows the prediction performance of
DGSSynADR and seven competing methods under different
evaluation metrics. We observe that the proposed
DGSSynADR achieves better performance than the competi-
tive methods for all four evaluation metrics. The MSE of
DGSSynADR is 92.43, which is 27.87 lower than EC-DFR,
29.99 lower than Matchmaker, and 34.16 lower than XGB.
That means DGSSynADR is 23:16% better than EC-DFR and
24:50% better than Matchmaker for the MSE evaluation met-
ric. The same trend is observed when the performance is eval-
uated using RMSE. The R2 of DGSSynADR is 0.5203, which
is respectively 11:15%, 12:78%, and 13:90% better than EC-
DFR, Matchmaker and XGB. The PCC of our method is
0.7313, which is 8:87% better than that of the suboptimal
method EC-DFR, and 9:07% better than Matchmaker. Here,
it is noteworthy that the classical machine learning methods,
such as XGB, GradientBoost and Random Forest, also obtain
competitive performance. Overall, our method achieves supe-
rior performance on all four evaluation metrics compared to

the two advanced deep learning methods and five classical
machine learning methods.

3.3 Model performance on different cell lines

(tissues)

We further evaluate the predictive performance of
DGSSynADR for different cells line separately. Here we
choose PCC as the representative evaluation metric. As shown
in Fig. 5, the different color bars indicate the tissue types cor-
responding to that cell line. The PCC of DGSSynADR is
higher than 0.75 for 29 of the 60 cell lines. Specifically, it
achieves the highest PCC of 0.82 for the cell line NCIH23,
whereas the cell line HCC-2998 had the lowest PCC of 0.58.
Theoretically, we consider a drug combination with a positive
synergy score to be synergistic and the opposite to be antago-
nistic. The true and predicted synergy scores for Sunitinib and
Gefitinib were �58.88 and �6.94. They were not predicted
to be the opposite of the true, but the difference between the
predicted and true scores was significant. The problem was
also found on cell lines with relatively low PCC, such as RXF
393 and PC-3. Figure 5 shows that DGSSynADR also
achieves good performance under the MSE evaluation metric.
The top three performance cell lines on MSE were MALME-
3M, M14 and EKVX (59.03, 64.76, 66.78).

As these cell lines are related to different tissues, we further
divide them into 10 tissue subgroups. Subsequently, we evalu-
ate the prediction performance of DGSSynADR on different
tissues. Regarding the four evaluation metrics, DGSSynADR
achieves better performance on three tissues, including the
ovary, breast, and lung. Specifically, the PCC between the
predicted scores and the true synergy scores is above 0.70 in
all these issues except the intestinal tissue, where the PCC
score (0.695) was slightly below 0.70. Overall, DGSSynADR
exhibits good performance on most tissues, indicating the ca-
pability of DGSSynADR in predicting the synergistic drug
combinations for different tissues and cell lines.

3.4 Ablation study

DGSSynADR is mainly divided into three modules, including
the heterogeneous graphs composed of a variety of biological
data, graph attention network based on the LRGA model and
bilinear operations. We respectively evaluate their contribu-
tion to the prediction performance. Accordingly, seven differ-
ent variants of DGSSynADR are designed:

• DGSSynADR-fps only utilizes the Morgan fingerprint as
the original drug feature.

• DGSSynADR-MSE uses MSE as the loss function.
• DGSSynADR-NOPPI constructs heterogeneous graphs

without PPI networks. Accordingly, the drug–protein in-
teraction network (DTI) is also removed with the removal
of PPI.

Figure 4. Performance comparison between DGSSynADR and seven competing methods, measured by MSE, RMSE, R2, and PCC.
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• DGSSynADR-GNN adopts basic GNN to learn drug
features.

• DGSSynADR-GAT uses GAT to learn drug features.
• DGSSynADR-LRGA-m4 extracts drug features without

using GAT to update the matrix structure in LRGA.
• DGSSynADR-MLP uses MLP for drug synergy prediction.

Table 1 shows the performance comparison among differ-
ent variants of DGSSynADR. Compared to DGSSynADR-
MSE, DGSSynADR achieves lower MSE and higher PCC
(6.60% improvement in PCC), indicating that Smooth L1 loss
is more suitable for the model and improves model prediction
performance. DGSSynADR achieves a significant (33.71%
improvement in PCC) compared to DGSSynADR-fps, which
confirms the key role of the one-hot encoding drug feature in
the model. The performance of DGSSynADR-NOPPI proves
that the lack of PPI network information reduces the predic-
tion accuracy. DGSSynADR-GAT obtains a significant im-
provement (24.31% in PCC) over DGSSynADR-GNN,
indicating that the GAT structure can extract drug features
more effectively. Meanwhile, the runtime of DGSSynADR-
GAT is about three times longer than DGSSynADR-LRGA.

The reason for the difference is that DGSSynADR-LRGA
avoids the secondary cost of explicit computation by the at-
tention mechanism. DGSSynADR-MLP performs the predic-
tion task using a simple MLP, and its prediction performance
is much poorer than DGSSynADR. This result indicates that
the bilinear MLP in DGSSynADR effectively improves the
prediction performance. Overall, DGSSynADR achieves the
best prediction performance compared to its seven structural
variants, and the different variants validate the importance of
each component of DGSSynADR on the whole model
performance.

3.5 Case study

To verify the reliability of the predictions, we perform a de-
tailed literature search, and present the relevant references for
the predicted drug combinations in Table 2. Among these re-
lated literatures, we find at least 10 predicted synergistic drug
combinations are consistent with clinical or in vitro studies.
For example, the combination of Mitoxantrone and 5-fluoro-
uracil has validated to be effective in the treatment of ad-
vanced breast cancer and is a positive combination option
with moderate and manageable toxicity (Samonigg et al.
1991). In our study, its predicted synergy score is 4.9814 for
the cell line HS 578T, associated with breast cancer. The com-
bination of systemic administration of Temozolomide and lo-
cal administration of Mitozantrone is reported to reduce the
risk of death in adult patients with U87 cells (Glioblastoma)
to 50% (Boiardi et al. 2008). A synergistic effect of Erlotinib
and Quinacrine Hydrochloride is confirmed in the combina-
tion treatment of nonsmall alveolar cell carcinoma (Kulkarni
et al. 2021), consistent with the predicted results of
DGSSynADR. Based on in vitro experiments, Gonca et al. val-
idated that U87 cells treated with the combination of 5-fluo-
rouracil and Ruxolitinib shows a more prominent decrease in
cell viability compared to U87 cells treated with 5-fluoroura-
cil monotherapy. For this drug combination, the predicted

Figure 5. The predicted performance of DGSSynADR on different cell lines.

Table 1. The results of the ablation study.

Method* MSE RMSE R2 PCC Running time (s)

DGSSynADR 92.44 9.61 0.52 0.73 3581
DGSSynADR-MSE 117.50 10.84 0.43 0.67 4496
DGSSynADR-fps 170.53 13.06 0.09 0.33 2992
DGSSynADR-NOPPI 115.53 10.75 0.44 0.67 38
DGSSynADR-GNN 159.06 12.61 0.16 0.40 969
DGSSynADR-GAT 122.53 11.07 0.35 0.64 9947
DGSSynADR-LRGA-

m4
117.49 10.84 0.41 0.67 41

DGSSynADR-MLP 180.90 13.45 0.13 0.36 33

* The highest values are highlighted in bold.
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synergy score of DGSSynADR is respectively 7.83 and 68.95
for the cell lines U251 and SF-295, associated with glioblas-
toma in the dataset. Through clinical studies, Brown et al.
(Bleiberg et al. 1990) demonstrated that Erlotinib has signifi-
cant toxicity in combination with Temozolomide, and com-
bining with Erlotinib did not show an additional advantage.
Consistently, the predicted synergy scores of Erlotinib with
Temozolomide on cell lines SF-268 and SNB-75 were �16.78
and �28.38. These results show that the predicted synergy
effects of drug combinations by DGSSynADR are consistent
with previous findings based on in vitro and clinical studies,
validating the reliability of the proposed DGSSynADR.

4 Discussion and conclusion

This paper proposes a new deep learning method
DGSSynADR for predicting synergistic anticancer drug com-
binations. DGSSynADR constructs heterogeneous networks
based on diverse biological data by combining drug–drug,
drug–target, and PPI networks, adopts LRGA model to learn
global structured features of drug and protein, and feeds them
into a bilinear predictor to predict the synergy scores of drug
combinations in specific cancer cell lines. Specifically, LRGA
network brings better model generalization ability, and effec-
tively reduces graph computation complexity. The bilinear
predictor facilitates the dimension transformation of the fea-
tures and fuses the feature representation of drug pairs to im-
prove the prediction performance. The loss function Smooth
L1 effectively avoids gradient explosion, contributing to bet-
ter model convergence. To validate the effectiveness of
DGSSynADR, we compare it with seven competing methods
on the latest large dataset DrugComb. The comparison results
demonstrate that DGSSynADR achieves better performance
than these methods. To further evaluate the specificity of drug
combinations and the performance of DGSSynADR on differ-
ent cell lines and tissues, we compare MSE, RMSE, R2 and
PCC on 60 cell lines from 10 tissues. In addition, detailed ab-
lation studies show that the one-hot coding drug feature, the
updated matrix m4 of LRGA, and the bilinear operation of
the predictor plays a key role in the improvement of the model
prediction performance. Finally, case studies indicate that the
synergistic drug combinations predicted by DGSSynADR are
highly consistent with previous clinical studies. Overall, these
extensive experimental results demonstrate that DGSSynADR
is an effective drug combination prediction method and could
be applied to discover new anticancer synergistic drug
combinations.

Although the proposed DGSSynADR method shows prom-
ising results in terms of prediction performance and biological
interpretability, it is still limited by the experimental data
available. Meanwhile, the clinical utility of predicted

synergistic drug combination may depend on the individual
differences in patients with complex diseases. As more data
from clinical trials are added to the drug database, the pro-
posed method may be enhanced to achieve higher accuracy in
predicting drug combinations. Furthermore, since previous
studies (Kuenzi et al. 2020) have investigated the synergistic
effects of multiple drugs, we may explore more diverse drug
combinations in our future work.
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Supplementary data are available at Bioinformatics online.
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