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Abstract—In service recommender system, graph neural net-
works (GNNs) perform message passing through diffusion mech-
anism based on user-service relationship graph. However, existing
GNN-based service recommendation models suffer from two
limitations: (1) message passing is only carried out at first-
order neighbors, as higher-order may cause over-smoothing
phenomenon, confining feature propagation in GNNs; and (2) due
to sparse and noisy interactions, the distribution of embedding
vectors is nonuniform in the latent space, resulting in unsatisfac-
tory performance for downstream applications. To this end, we
propose a fixed global graph diffusion view that is independent
of the original user-service observed local view to form a multi-
view learning by building contrastive learning (CL) relationship,
named as Multi-View Graph Contrastive Learning (MVGCL).
Specifically, it enhances the capability of message passing through
constructed local and global multi-view graphs, and alleviates
the sparse and noisy influences by performing intra-CL within
local/global view and inter-CL between multi-view to obtain a
more uniform distribution of user and service node representa-
tions. Extensive experiments are conducted on three benchmark
datasets within different scales, and the results demonstrate that
our proposed MVGCL can remarkably outperforms state-of-the-
art competing baselines on various evaluation metrics.

Index Terms—Service Recommendation, Multi-view Graph,
Contrastive Learning, Collaborative Filtering, Graph Neural
Network

I. INTRODUCTION

With the development of smart service, “big data + AI

algorithms” social infrastructure has been applied to service-

oriented downstream tasks [1], such as service discovery,

selection, composition, recommendation, and mashup creation

[2]–[5]. Service recommendation techniques, which effectively

alleviate the issues of information overload and users’ un-

specified needs, have been generally applied in the field of

e-commerce and social media [6], [7].

Collaborative filtering (CF), as a fundamental approach,

utilizes the prior knowledge of collective intelligence to rec-

ommend services for target users based on the preferences

of groups with similar interests, which leverages recorded

user-service interactions to predict unrecorded interactions,

such as click-through rates, ratings, etc. Matrix factorization

(MF) [8], from the linear mutual learning perspective of

*Corresponding author.

CF, firstly projects users and services into the latent space

independently, and then connects their latent features by using

dot product operation, achieving the purpose of modeling

user-service interactions. Furthermore, with the considerable

success made in deep neural networks (DNNs) [9], enormous

efforts [10], [11] have been devoted to yielding collaborative

signals by modeling complex nonlinear interactions. Thus,

deeper semantic features of users and services can be extracted

for diverse service recommendations, including QoS prediction

and mashup service creation.

Graph collaborative filtering [12], [13], which exploits the

user-service graph structure, focuses on node representations

made by collaborative signal rather than modeling complex

nonlinear interactions between users and services for better

recommendation performance. Despite the recent advance-

ments of graph collaborative filtering, it still suffers from

two issues. First, data sparsity and noise cause distorted

data distribution, resulting in unreliable node representation.

Contrastive learning (CL), has shown usefulness to deal well

with data sparsity in recommender systems. To this end, graph

collaborative contrastive learning approaches [14] set up an

auxiliary self-supervised task from graph structure. While par-

tially alleviating the data sparsity problem, the new generated

graphs may bring unreliable nodes or edges destroying the

original graph structure. Second, the existing works on graph

collaborative contrastive learning recommendation [14], [15]

neglect the influence of high-order nodes. However, it has been

shown to be essentially useful in recommendation tasks [16],

[17], due to the over-smoothing problem [18], [19] caused by

deep graph convolutional networks. So how to construct more

effective graph collaborative contrastive learning for service

recommendation has become a research challenge to be solved.

To address the above two issues, we explore the way of

enriching first-order homogeneous neighbors of users/services

based on multi-view graph contrastive learning. We propose

a novel framework called MVGCL, which combines both

local and global graph information with contrastive learning.

Specifically, we design multi-view channels and CL targets,

where LightGCN [13] is implemented as the backbone of

graph channels. In multi-view channels, we initially utilize

the original user-service interactions to form the local view,
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and then construct the global view through graph diffusion

mechanism based on local view. In multi-level CL, we design

dual objectives to catch the correlations between a node and

its second-order neighbor ones (or first-order homogeneous

ones) at the intra-view level, and to capture the relationships

between local and global view at the inter-view level. The

main contributions of this paper are summarized as follows.

• We propose a novel multi-view channel model for service

recommendation to alleviate the over-smoothing problem,

where high-order information can be fully fused. The

local view channel focuses on low-order user/service

neighbors, while the newly generated global view channel

provisions high-order information based on graph diffu-

sion.

• We design dual contrastive learning objectives to mitigate

the influence of data sparsity and noise. One is between a

node and its first-order homogeneous user/service neigh-

bors within local or global views at the intra-view level,

and the other is between a node in the local view and its

corresponding node in the global view at the inter-view

level.

• Extensive experiments are conducted on three benchmark

datasets, demonstrating that our proposed approach re-

ceives superior performance for service recommendation

tasks over multiple state-of-the-art approaches.

The remainder of this paper is organized as follows. Sec-

tion II formulates the problem and preliminary. Section III

illustrates the overall framework of MVGCL and presents the

methodology. Section IV shows and analyzes the experimental

results. Section V reviews the related work. Finally, Section

VI concludes the paper and discusses the future work.

II. PROBLEM FORMULATION AND PRELIMINARY

In this section, we firstly formulates problem definition of

graph link prediction for downstream service recommendation

task, and then provides the preliminary of graph contrastive

learning (GCL).

A. Graph Link Prediction

We denote the user-service interaction matrix as R ∈
R

N×M , where N and M are the number of users and services,

respectively. Here, R in implicit feedback can be described as:

ru,s =

{
1 if observed;

0 otherwise.
(1)

where 1 indicates there is an interaction between user u
and service s; 0 indicates user u has no interaction with

service s. The goal is to seek a model that predicts a list

y = [y1, ..., yk, ..., ym] for each user. yk ∈ R
1 is a score. We

choose the top-K services from y for its corresponding user.

Based on the above user-service interaction matrix, let G =
(U, V,E) be an undirected bipartite network, where U and

V denote the set of users and services, and an edge e in E
denotes an observed interaction between a user u and a service

v. To facilitate the operation of user-service interaction matrix

[12], the symmetric adjacency matrix of the user-service graph

is represented as:

A =

(
0 R
RT 0

)
(2)

In such case, service recommendation task by graph link

prediction is to identify unobserved top-K links for each u
belonging to U , given observed link set E, user set U and

service set V .

B. Graph Contrastive Learning

The core of contrastive learning (CL) is to attract positive

pairs and pull away negative pairs. Graph Contrastive Learning

(GCL) tries to bring the same sample from different views

close to each other in the latent representation space and

maximize the distance between dissimilar samples. A typical

contrastive loss InfoNCE [20]:

LCL = −Ex[log
exp(d(xi, x

′
i)/τ)

exp(d(xi, x′i)/τ) +
∑

j �=i exp(d(xi, x′j)/τ)
]

(3)

where d(•) denotes distance metric function, such as Eu-

clidean distance, and τ is the temperature parameter that

adjusts the attention level to hard samples.

III. METHODOLOGY

Fig. 1 illustrates the overall framework of MVGCL. It

consists of two crucial components: multi-view feature prop-

agation and layers & views combination. More specifically,

multi-view feature propagation is designed for incorporating

low and high order interaction information, including local

graph message passing, global graph construction and message

passing. Here, intra-CL is considered in the same view to

attract the embedding of first-order homogeneous neighbors.

Based on the layer embedding from multi-view feature propa-

gation, layers & views combination is conducted by combining

various layers and views embedding with inter-CL, which

maximizes the agreement between local and global views of

the same node. To achieve the goal of service recommendation,

we adopt multi-task training to make predictions by integrating

the losses of supervised BPR and self-supervised CL.

A. Local Graph Message Passing

We initially represent a user u and a service s with a ran-

domized feature vector e
(0)
u ∈ R

d and e
(0)
s ∈ R

d, respectively,

where d indicates the dimension of feature vector. Considering

that users’ direct interests are captured in the observed user-

service interactions, we adopt the observed local graph and

utilize GNN to model the interactive relationships between

users and services in MVGCL. In GNN feature propagation,

following LightGCN [13], we discard the nonlinear activation

and feature transformation in the message passing function as:

ė(k+1)
u =

∑
s∈Nu

1√|Nu|
√|Ns|

ė(k)s

ė(k+1)
s =

∑
u∈Ns

1√|Ns|
√|Nu|

ė(k)u

(4)
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Fig. 1: Overall framework of multi-view graph contrastive learning for service recommendation.

where |Nu| and |Ns| denote the number of adjacent vertices

that are directly connected to u and s in user-service observed

local graph. Here, e
(0)
u and e

(0)
s are fed as ė

(0)
u and ė

(0)
s in initial

layer-0, and multi-layer embeddings of users and services can

be obtained by Equation (4).

In user-service observed local graph, there is the most

correlation between a target user or service with the first-

order homogeneous neighbor nodes. In view of the common

interests that exist in the above nodes, we perform CL learning

function between layer-0 and layer-2 representations of users

and services. The local user CL loss is as follows:

LU
G(L) =

∑
u∈U

−log exp((ė
(0)
u · ė(2)u )/τ)∑

v∈U exp((ė
(0)
v · ė(2)u )/τ)

(5)

where ė
(0)
u and ė

(0)
v are normalized GNN layer-0 representa-

tions; ė
(2)
u is normalized GNN layer-2 representation; τ is the

temperature parameter. In the same way, the local service CL

loss is expressed as:

LS
G(L) =

∑
s∈S

−log exp((ė
(0)
s · ė(2)s )/τ)∑

t∈S exp((ė
(0)
t · ė(2)s )/τ)

(6)

By integrating the above two losses from users and services,

the local CL loss is summed together as below:

LG(L) = LU
G(L) + LS

G(L) (7)

B. Global Graph Construction and Message Passing

Given an observed user-service interaction A, message

passing function can be expressed in Laplacian matrix form:

L = D−
1
2AD−

1
2 (8)

where A is the observed user-service interaction, D is the

diagonal matrix with Dii =
∑

j Aij . Based on generalized

Laplacian matrix, the diffusion matrix can be generated and

expressed:

G =
∞∑
k=0

θkL
k (9)

where θk is the weighting coefficient for each layer in the

graph.

We use Personlizsed PageRank (PPR) as decay strategy:

θk = α(1−α)k. By approximating the diffusion matrix G by

Equation (9) based on the PPR [16], we can transmit it as a

numerical diffusion matrix:

G∗ = α(In − (1− α)L)−1 (10)

where α is the decay factor through each layer message

passing, and In is a diagonal matrix.

In numerical diffusion matrix G∗, a smaller value in row u
and column s indicates a lower possibility that u interacts with

s. We design two kinds of user-based and service-based global

interaction diffusion graphs that apply the above numerical

diffusion matrix G∗ to observed user-service interactive local

graph.
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• MVGCL-U (GU): For each row u in U , we firstly obtain

the degree |Nu| of u from observed local graph, and

then retain top-|Nu| service nodes as one-hop neighbor

set. By this way, user-based approach identifies the most

relevant services based on observed user-service locally

direct interactions. It can be formulated as:

GUu,: = I(argmax(G∗, deg(Au,:))) (11)

where I(x) is an indicator function: I(x) = 1 if x is true,

and 0 otherwise. And deg(Au,:) is the degree of user u
in adjacency matrix A.

• MVGCL-S (GS): For each column s in S, we firstly

obtain the degree |Ns| of s from observed local graph,

and then retain top-|Ns| user nodes as one-hop neighbor

set. By this way, service-based approach can find the

most relevant users based on observed user-service locally

direct interactions. It can be expressed as:

GS:,s = I(argmax(G∗, deg(A:,s))) (12)

where deg(A:,s) is the degree of service s in A.

To reveal the potential exposure of user and service nodes,

we set a graph diffusion convolution plus parameter k∗ to

enlarge the global neighborhood by proportion. Here, the

expansion degree for each user u in GU is expressed as:

Vu = |Nu| × (1.0 + k∗) (13)

Then, we use Vu as the degree of u to replace the |Nu| in

modeling user-oriented global diffusion graph GU. Similarly,

it can also be applied in modeling service-oriented global

diffusion graph GS.

After user-service global diffusion graph is constructed,

global GNN is leveraged to perform message passing as:

ë(k+1)
u =

∑
s∈Mu

1√|Mu|
√|Ms|

ë(k)s

ë(k+1)
s =

∑
u∈Ms

1√|Ms|
√|Mu|

ë(k)u

(14)

where e
(0)
u and e

(0)
s are used to represent the initialized vectors

of global graph as ë
(0)
u and ë

(0)
s ; |Mu| and |Ms| denote the

number of adjacent vertices that are directly connected to u
and s in user-service diffusion graph GU/S .

Similarly, following Equation (5) and (6) by global embed-

dings of users and services, we can obtain LG(G) by combining

LU
G(G) and LS

G(G):

LG(G) = LU
G(G) + LS

G(G) (15)

C. Multiple Layers & Views Combination

After propagating with multiple layers, we carry out the

combination of all layers representations by adopting the

weighted sum function for GNN readout in both local and

global views:

ėu =

∑H
h=0 ė

(h)
u

H + 1
, ės =

∑H
h=0 ė

(h)
s

H + 1
(16)

ëu =

∑H
h=0 ë

(h)
u

H + 1
, ës =

∑H
h=0 ë

(h)
s

H + 1
(17)

Here, H is the number of layers and empirically fixed to

three according to LightGCN [13]. The purpose is to capture

a user’s actual intent by multi-view way, which undermines

the noise effect from singleton view. Although the observed

user-service interactive relationships are close to the actual

data distribution, small amounts of noisy data still exist in

the observed interactions. Therefore, it possibly leads to the

phenomenon that the readout representations of the same node

from local and global views are analogous, which can be

enhanced by inter-CL:

LU
inter =

∑
u∈U

−log exp((ėu · ëu)/τ)∑
v∈U exp((ėv · ëu)/τ)

+
∑
u∈U

−log exp((ëu · ėu)/τ)∑
v∈U exp((ëv · ėu)/τ)

(18)

LS
inter =

∑
s∈S

−log exp((ės · ës)/τ)∑
v∈S exp((ėt · ës)/τ)

+
∑
s∈S

−log exp((ës · ės)/τ)∑
v∈S exp((ët · ės)/τ)

(19)

Linter = LU
inter + LS

inter (20)

Subsequently, we combine readout representations of local

and global views to obtain the final representations of a user

and service:

eu =
ėu + ëu

2
, es =

ės + ës
2

(21)

With the final representations, the inner product operation

is performed to predict the value of how likely a user may

interact with a service:

r̂u,s = eTu · es (22)

D. Multi-task Training

Bayesian Pairwise Ranking (BPR) loss is used as the

primary loss function, which takes information directly from

the interaction. Specifically, for each observed user-service

pair (u, s+), we randomly sample a service s− that has no

interaction with u to form a triplet (u, s+, s−):

LBPR =
∑

(u,s+,s−)∈O
−log σ(r̂u,s+ − r̂u,s−) (23)

where O = {(u, s+, s−)|(u, s+) ∈ O+, (u, s−) ∈ O−} is the

training data and σ is the sigmoid function.

We utilize a multi-task training strategy to jointly optimize

the parameters by adding self-supervised to further auxiliarily

perform BPR primary loss training:

L = LBPR+λ1LG(L)+λ2LG(G)+λ3Linter+λ4||θ||2 (24)

where λ1, λ2 are the hyper-parameters to control the local and

global intra-CL, and λ3 controls the strengths of inter-CL. λ4

controls the L2 regularization, and ||θ|| denotes the parameters

of GNN model.
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IV. EXPERIMENTS

A. Expermental Settings

Experimental Datasets. To verify the performance of

MVGCL, we conduct extensive experiments on three pub-

lic datasets: MovieLens-100K (ML-100K)1, MovieLens-1M

(ML-1M)2 and Yelp3. The ratings of the above three bench-

marking datasets are on an integer scale of 1 to 5. In each

dataset, we reset ratings less than 4 to 0, and otherwise 1.

For Yelp dataset, we filter users and services with fewer than

20 interactions to ensure the data quality in the experiments.

The statistics of the datasets are shown in Table I. We split

the datasets into training set, validation set and test set with a

ratio of 8:1:1.

Competing Methods. We compare our proposed MVGCL

with the following seven state-of-the-art competing baselines,

including three MF-based, two GNN-based and two GCL-

based methods. They are described as:

• MF-based CF methods:
- BPRMF [8]: It learns the latent representation with

matrix factorization model that is optimized by Bayesian

personalized ranking.

- NeuMF [10]: It models complex nonlinear interactions

for user-service interactive relationships by deep neural

network (DNN).

- ENMF [11]: It trains neural recommendation models

from the overall training data without negative sampling.

• GNN-based CF methods:
- NGCF [12]: It integrates user-service interactions into

the embedding process, and leverages GCN as the feature

propagation function.

- LightGCN [13]: It is the simplified version of the NGCF,

which is more concise and suitable for service recommen-

dation.

• GCL-based CF methods:
- SGL [14]: It performs contrastive learning based on mul-

tiple augmentation graphs, which include node dropout,

edge dropout and random walk.

- GDCL [21]: It performs contrastive learning based on

diffusion matrix, whose identical structure is considered

in all nodes.

To prevent the deviations, we run competing baselines three

times to calculate the average results for the guarantee of fair

comparisons in the experiments.

Implementation Details. All the experiments are carried on

our workstation equipped with two NVIDIA GTX 1080Ti

GPU, an Intel(R) Xeon(R) Gold 6132 CPU@2.60 GHz and

192GB RAM. The components of MVGCL are implemented

by Pytorch 1.7.1 with RecBole [22].

1https://grouplens.org/datasets/movielens/100k/
2https://grouplens.org/datasets/movielens/1m/
3https://www.yelp.com/dataset

TABLE I: Statistics of the experimental datasets.

Datasets Users Services Interactions Density

ML-100K 943 1,448 55,375 4.06%

ML-1M 6,039 3,934 575,281 2.42%

Yelp 17,523 13,114 765,807 0.33%

TABLE II: Parameter settings

Parameter Value
τ 0.05 for ML-100K, 0.04 for ML-1M, 0.03 for Yelp

λ1 1e-06 for ML-100K, 1e-06 for ML-1M, 1e-06 for Yelp

λ2 1e-08 for ML-100K, 1e-08 for ML-1M, 1e-06 for Yelp

λ3 1e-06 for ML-100K, 1e-06 for ML-1M, 1e-05 for Yelp

k∗ 0.04 for ML-100K, 0.02 for ML-1M, 0.00 for Yelp

For a fair comparison, we refer to the best hyper-parameter

settings reported in the original papers of the baselines and

then fine-tune all the hyper-parameters of the baselines. As the

general settings of all the baselines, the Xavier initialization

[23] is used on all the embeddings. The batch size is 2048.

The embedding size d is 64 and the model regularization

parameter λ4 is 1e-4. We use Adam with the learning

rate 0.001 to optimize all the models. We tune the hyper-

parameter temperature τ in {0.03, 0.04, 0.05, 0.075, 0.1},
SSL regularization λ1, λ2, λ3 in {1e-5, 1e-6, 1e-7, 1e-8}, and

k∗ in {0.00, 0.02, 0.04, 0.06, 0.08, 0.10}. As for MVGCL,

the parameters settings are shown in Table II.

Evaluation Metrics. Given a user u in U , R̂(u) indicates a

ranked list of top-K services predicted by our model. R(u)
represents a ground-truth set of services that u has interacted

with. We adopt widely-used top-K evaluations metrics, in-

cluding Recall@K and NDCG@K (Normalized Discounted

Cumulative Gain), where K is set to 20. Recall is defined as

follows:

Recall@K =
1

|U |
∑
u∈U

|R̂(u) ∩R(u)|
|R(u)| (25)

Recall evaluates whether the predicted services appear in the

set R(u), which does not reflect the ranking quality. NDCG

takes into account the position of the predicted services by

assigning higher scores to the top-ranked hits:

NDCG@K =
1

|U |
∑
u∈U

N(u)K

K∑
i=1

2I(R̂i(u)∈R(u)) − 1

log(i+ 1)
(26)

where N(u)K =
∑min(K,|R(u)|)

i=1
1

log(i+1) is a normalizer to

ensure that the perfect ranking has a value of 1; I(x) is an

indicator function: I(x) = 1 if x is true, and 0 otherwise.

B. Experiment Results and Analyses

To validate the effectiveness of MVGCL, we conduct ex-

tensive experiments on three datasets with different sizes

and densities. Table III shows the comparison results of

service recommendation among MVGCL and seven competing
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TABLE III: Comparison results among MVGCL and seven competing baselines.

ML-100K ML-1M Yelp
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

BPRMF 0.3334 0.2207 0.2970 0.1716 0.1172 0.0718
NeuMF 0.3365 0.2169 0.2494 0.1926 0.0890 0.0516
ENMF 0.3531 0.2367 0.2970 0.2355 0.1226 0.0760
NGCF 0.3388 0.2212 0.2781 0.2163 0.1129 0.0673
LightGCN 0.3097 0.1929 0.2939 0.2288 0.1309 0.0791
SGL 0.3546 0.2371 0.2981 0.2342 0.1423 0.0914
GDCL 0.3552 0.2312 0.2976 0.2326 0.1418 0.0917
MVGCL 0.3729 0.2434 0.3100 0.2436 0.1494 0.0956

TABLE IV: Results of ablation experiments among MVGCL and its four different variants.

ML-100K ML-1M Yelp
Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

L w/o LCL 0.3097 0.1929 0.2939 0.2288 0.1309 0.0791
G w/o LCL 0.3330 0.2228 0.2937 0.2290 0.1336 0.0821

L & G w/o Lintra 0.3572 0.2322 0.2976 0.2336 0.1438 0.0925
L & G w/o Linter 0.3633 0.2373 0.3031 0.2397 0.1480 0.0952

MVGCL 0.3729 0.2434 0.3100 0.2436 0.1494 0.0956

baselines. Here, higher Recall and NDCG indicate better

performance of top-K service recommendation. The best and

second-best results of each column are marked in dark and

underline, respectively. It is observed that recommendation

metrics achieve better performance on the whole with the

increasing density of experimental datasets.

MF-based competing baselines perform poorly on both

Recall and NDCG, as it depends primarily on direct user-

service interactions. Specifically, NeuMF models user-service

interaction through nonlinear and multiple neural networks

directly while representing features based on a single col-

laborative signal layer, which results in an overfitting model.

Conversely, ENMF achieves better performance by inheriting

the simplified BPRMF architecture and further optimizing the

negative sample strategy. Although complex combinations are

adopted downstream in this kind of baselines, encoding shal-

low relationships significantly constraints model effectiveness

for service recommendation.

Compared to MF-based competing baselines, GNN-based

methods have advantage that they encode high-order infor-

mation is encoded into feature representations. Exceptionally,

MF-based models are superior to GNN-based methods on ML-

100K dataset, since it is sufficient to encode and integrate

information from user-service direct collaborative interactions

on a relatively dense dataset. Among all GNN-based meth-

ods, LightGCN achieves the best performance in most cases

with the fastest efficiency of model training. The reason for

the improvement in LightGCN is the elimination of feature

transformation and nonlinear activation modules, which have

a negative impact in the NGCF model. However, the perfor-

mance of this kind of competing baselines relies heavily on the

density of user-service interactions in experimental datasets.

Thus, when applying in the scenarios with sparse interactions,

they may produce non-uniform representations of users and

services.

By performing contrastive learning in GNN, it is observed

that SGL and GDCL consistently outperform other supervised

competing baselines on three datasets. It indicates that con-

trastive learning plays an important role and brings the obvious

improvement in top-K service recommendation. Nevertheless,

SGL generates views by random node/edge dropouts and

GDCL sets fixed degree for each node in user-service diffusion

matrix, which extremely destroys the structure of user-service

bipartite graph. Compared to GCL-based competing baselines,

MVGCL performs intra-CL within local and global views

and inter-CL between dual views, which can more effec-

tively reflect the direct and indirect user-service interactive

relationships. It is beneficial to message passing and feature

propagation for better prediction accuracy.

Consequently, our proposed MVGCL receives the best per-

formance among all competing baselines on Recall and NGCG

across multiple datasets by a large margin, which demonstrates

the effectiveness of considering multi-level contrastive learn-

ing in top-K service recommendation tasks.

C. Ablation Study

To validate the effectiveness of MVGCL, ablation studies

are conducted to analyze the performance impact of each

component in MVGCL. Table IV reports the results of ablation

experiments among MVGCL and its four different variants.

In the experiments, “L w/o LCL” (LightGCN) represents the

single local view backbone of MVGCL without CL loss; “G

w/o LCL” indicates that message passing is performed only

via a single global graph to replace local graph without CL

loss; “L & G w/o Lintra” and “L & G w/o Linter” are multi-
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Fig. 2: Performance impact of different τ on MVGCL under ML-100K and ML-1M.

(a) Recall of ML-100K (b) NDCG of ML-100K (c) Recall of ML-1M (d) NDCG of ML-1M

Fig. 3: Performance impact of different k∗ on MVGCL under ML-100K and ML-1M.

Fig. 4: Embedding distributions on ML-100K, ML-1M and Yelp visualized with t-SNE.

view propagation variants by removing intra-CL and inter-CL,

respectively. We conclude from the experimental results that

are twofold as below.

• A competitive recommendation performance can be main-

tained or even improved by replacing the locally observed

adjacency matrix with the globally graph diffusion matrix. It

shows that user-service graph diffusion matrix has the ability

to eliminate noise and generate a realistic data distribution

consistent with the observed data distribution.

• With the consideration of inter-CL or intra-CL, a better

performance can be obtained than baseline LightGCN. Es-

pecially, intra-CL provides more significant performance
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increment of service recommendation. It shows that a more

uniform representation can be obtained than relying solely

on label data in training phases, when applying contrastive

learning to feature representation of users and services.

D. Performance Impact of Hyper-Parameters
1) Impact of Temperature: τ plays a key role in hard

negative sample mining in contrastive learning. To analyze

the performance impact of τ on MVGCL, we vary τ in

{0.03, 0.04, 0.05, 0.075, 0.1}, and Fig. 2 shows the fluctu-

ations on recommendation performance along with the varia-

tions of τ . It can be seen that a larger value of τ causes poor

performance. The primary reason is that larger temperature

values have difficulty in reasonably identifying hard and easy

negative samples. From the above experiments, τ in [0.03,

0.05] leads to a good recommendation performance.
2) Impact of Graph Diffusion Convolution Plus: To test the

performance impact of graph diffusion convolution plus k∗, we

set it to the scope of {0.00, 0.02, 0.04, 0.06, 0.08, 0.10} in

the experiments. The fluctuations on recommendation perfor-

mance along with the variations of k∗ is shown in Fig. 3.

It can be observed that both Recall and NDCG arise as k∗

increases initially, and then decline with the increasing k∗.
This phenomenon can be explained that sparse user-service

interactions still undermine performance with overfitting train-

ing, when k∗ is set too small. In another extreme case, when

k∗ is set to be a large value, abundant noisy user-service

interactions possibly hurt the model learning since those newly

generated interactions are not constantly reliable. Based on the

above analyses, when k∗ in MVGCL is set in the range of

[0.02, 0.08] in our experiments, it achieves the best service

recommendation performance.

E. Visualizing the Embedding Distributions
To better understand the benefits of MVGCL, we ran-

domly sample the BPRMF, LightGCN, MVGCL embeddings

of 1,000 service nodes from ML-100K, ML-1M, and Yelp

datasets, and then project them into 2-D space with t-SNE

[24]. As can be seen from Fig. 4, the embedding vectors

learned by the BPRMF in low density datasets easily fall

into several isolated clusters, and conversely, LightGCN fails

to obtain uniform representation vectors at high densities. As

shown in previous literature [25], there is a strong relationship

between contrastive learning and uniformity of representations.

Since non-CL methods cannot receive self-supervised signals,

they have difficulty in balancing collaborative relationship and

latent representation uniformity among service nodes, resulting

in representation vectors easily falling into local optimum.

Notably, MVGCL achieves uniform representation and opti-

mally identifies the community structures as well in the latent

representation space, boosting the service recommendation

performance.

V. RELATED WORK

In this section, we review the existing graph-based and

graph contrastive learning (GCL-based) methods that are re-

lated to our MVGCL, respectively.

A. Graph-based Methods

Studies on graph-based methods can be classified into

two categories: graph embedding and graph neural networks

(GNNs). Graph embedding methods aim to learn the embed-

ding features of nodes. DeepWalk [26] performs truncated

random walks on the network to obtain a sequence of sampled

nodes, and then leverages serial correlation to infer node

representations. To ensure the quality of random sequence

sampling, many efforts [27], [28] have been dedicated to

incorporating graph element information such as edge weight

and graph structure. For example, Line [27] utilizes first-

order and second-order similarity based on edge weights,

and node2vec [28] adopts Breadth-First Sampling (BFS) and

Depth-First Sampling (DFS) through graph structure to guide

the random wandering process. However, graph embedding

methods lack generalization capabilities, which means they

cannot handle dynamic graphs. In GNNs, considering the

potential concerns of over-smoothing limitations [18], [19],

GCN [29], a prevalent GNN model, uses first-order neighbors

as receptive fields to aggregate features from neighborhood,

forming an end-to-end learning paradigm. To enhance node

representation power, GDC [16] introduces the network dif-

fusion mechanism to expand the domain of the first-order

receptive field in view of the sparsity of real networks. In

the recommendation graph model, NGCF [12] and LightGCN

[13] exploit graph structure to encode node embedding vectors

to overcome the deficiencies of missing graph collaborative

signals caused by direct encoding. Besides, side information

such as user and service relations [30], service content [31],

[32], and external knowledge graph [33], [34] has also been

incorporated to improve embedding representation. However,

the above GNN models rely solely on supervised signal in the

model training, but fail in auto-correlation between similar

node pairs or view pairs.

B. GCL-based Methods

Contrastive learning, a way of self-supervised learning,

has achieved wide applications in CV, NLP and graph data

mining [35]–[37]. You et al. [37] design four types of graph

augmentations - node dropping, edge perturbation, attribute

masking and subgraph. To our best knowledge, the existing

works of recommendation are very limited based on graph

contrastive learning. SGL [14] develops contrastive learning

between augmented graphs by randomly sampling views,

which causes uncertainty in augmented views and does not

fully consider the graph structure relationship between users

and services. NCL [15] performs contrastive learning between

different node pairs in the graph, while ignoring high-order

correlations among nodes. By analyzing the deficiencies of the

above investigations, we expand the receptive field of nodes

by adding a fixed global view and study the commons between

multiple views through contrastive learning.

VI. CONCLUSION

In this paper, we propose a novel GCL-based service

recommendation model, named Multi-View Graph Contrastive
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Learning (MVGCL), which integrates multi-view (local and

global view) with dual CL (intra-CL and inter-CL). First,

we apply graph diffusion mechanism to construct a global

view based on the user-service observed local view, and then

combine newly generated embeddings from multiple layers

and views with graph message passing. Second, we design

intra-CL between each node and its first-order homogeneous

neighbors, and inter-CL to attract embeddings from different

views of the same node to uniformize the feature embedding

space, leading to sparsity alleviation and noise denoise for

improving latent feature representations of user and service

nodes. Extensive experiments are conducted on three bench-

mark datasets and the results indicate that our proposed

MVGCL model can achieve better service recommendation

performance comparing with multiple state-of-the-art compet-

ing approaches.

In the future, we plan to further explore the novel strategy

to generate global diffusion graph, and extend the framework

to address more complex service recommendation tasks, such

as sequential and POI recommendation.
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