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Abstract—With the overwhelming explosion of Web services,
how to effectively predict unknown QoS has become a key issue
of differentiating large-scale similar or functionally equivalent
Web services. However, current state-of-the-art QoS prediction
approaches based on deep learning still suffer from two deficiencies.
First, they mainly focus on predicting vacant QoS in a centralized
manner and scarcely take into account distributed QoS prediction,
which makes difficult to protect the privacy information of users
invoking Web services. Second, they have ignored the hierarchical
collaborative relationship to better extract latent features of users
and services, reducing the accuracy of QoS prediction. To address
these two issues, we propose a novel framework called Federated
Hierarchical Clustering for Distributed QoS Prediction (FHC-DQP).
It collaboratively performs distributed federated training on inde-
pendent users’ QoS invocations, and then the extracted federated
users’ private features are fed to clustering algorithm for partition-
ing them into a set of clusters. By iteratively federated hierarchical
clustering, users are fine-grained partitioned together and those
users within the same cluster have stronger collaborative rele-
vance for more effectively learning the latent features of users and
services leading to the performance improvement of distributed
QoS prediction, where contextual-aware deep neural network is
designed for personalized QoS prediction. Extensive experiments
are conducted based on a public real-world benchmarking dataset
called WS-DREAM with almost 2,000,000 user-service historical
QoS invocations. Compared with both centralized and federated
competing baselines, the results demonstrate FHC-DQP receives
superior performance for distributed QoS prediction, when it pro-
vides privacy-preserving of users’ QoS invocations.

Index Terms—Web service, distributed QoS prediction,
federated learning, hierarchical clustering, deep neural network.
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I. INTRODUCTION

W ITH the wide applicability of service-oriented archi-
tecture (SOA), Web services are deployed by service

vendors with exponential growth in the past few years. As one
of the crucial techniques of SOA, Web service has provisioned
as fundamental components for service reuse and functionality
extension in service-oriented downstream tasks, such as ser-
vice discovery, selection, composition, recommendation, and
mashup creation [1], [2], [3], [4]. Due to the rapidly increasing
number of Web services pushed on the Internet, it can easily trig-
ger the phenomenon that different service vendors may provide
a lot of similar or functionally equivalent Web services. That
becomes impractical or difficulty in choosing satisfactory Web
services for service consumers in real-world scenarios, such as
enterprise application integration and e-commerce. As a result,
how to effectively differentiate and recommend Web services is
of vital importance in service-oriented applications.

Quality of Service (QoS), which represents the non-functional
criterion of Web services, including response time (RT),
throughput (TP), availability, cost, etc, plays an important role
in selecting Web services with the same or similar function-
ality. Due to the dynamic network environment and different
geographical locations, users may observe different QoS values
when invoking the same Web service [5]. Furthermore, it is
extremely time-consuming for service requesters to invoke all
Web services and service vendors to monitor QoS values of
their provisioned Web services. It has become a hot research
issue to predict the missing QoS based on sparse user-service
QoS invocation records. Consequently, how to accurately pre-
dict the vacant QoS is a challenging and fundamental task for
service-oriented downstream application scenarios.

Collaborative filtering (CF) as the most important technique
has been widely applied to predict the vacant QoS, which has
received many research investigations. CF-based approaches
performs the prediction of missing QoS depending on recorded
user-service QoS interactive invocations. They can be divided
into memory-based and model-based approaches. Memory-
based QoS prediction approaches predict QoS values based on
the user-service invocation records by similar neighborhood
calculation [6], [7]. To alleviate the the sparsity problem of
memory-based approaches, model-based CF approaches such
as matrix factorization (MF) and its variants [8], [9] project
users and services into latent feature space independently, and
then combine them together to reveal their linear interactive
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relationship between users and services for boosting the accu-
racy of QoS prediction by using inner product operation. With
the considerable applicability of fully-connected deep neural
networks [10], correlative efforts based on deep learning tech-
niques [11], [12], [13] have been dedicated to further effectively
mining the implicitly complex nonlinear interaction relation-
ships from user-service historical QoS invocations, leading to
better extraction of latent feature representations and more sat-
isfactory QoS prediction accuracy.

Although existing model-based CF approaches can improve
QoS prediction performance, they still suffer from two deficien-
cies. First, most of conventional approaches mainly focus on
the problem of centralized QoS prediction, where user-service
historical QoS invocations are aggregated for model training
in a centralized manner, instead of distributed across multiple
service users. That is, they have not taken into account dis-
tributed QoS prediction, which makes difficult to protect the QoS
privacy information of users invoking Web services. Second,
even though partial model-based approaches adopt a variety
of advanced deep learning models for QoS prediction, they
have ignored the hierarchical collaborative relationship to learn
and represent latent features of users and services. However,
it is observed that the similarity relationship among users at
different levels significantly affects the feature extraction of
users and services, thereby reducing the accuracy of service QoS
prediction. Thus, current model-based approaches are incapable
of both considering the privacy-preserving QoS prediction and
more effectively learning the latent features of users and service
for better prediction performance.

To address the above two issues, we propose a novel federated
hierarchical clustering framework for distributed QoS prediction
called FHC-DQP, including three mutually correlative proce-
dures. Starting from the original set of users, we collaboratively
perform distributed federated training on independent users’
QoS invocations, by aggregating and optimizing the federated
parameters of centralized QoS prediction model until it reaches
the global convergence. Then, the extracted federated users’
private features are fed to clustering algorithm for partitioning
users into a set of clusters. Subsequently, we hierarchically
continue the process of distributed federated training and clus-
tering on each partitioned user cluster, and it terminates when
the number of each user cluster or partitioning depth satisfy its
upper bound constraints. By several iterative rounds of federated
hierarchical clustering, original set of users are fine-grained
partitioned together where those users within the same cluster
have stronger collaborative relevance for better embedding and
learning the latent features of users and services. Finally, we
apply the trained personalized QoS prediction model of each
user to predict unknown QoS in distributed way, where graph
diffusion strategy is taken to combine users and services location
information at different levels based on its relevance to QoS
prediction. Extensive experiments are conducted on a public
large-scale benchmarking dataset called WS-DREAM [14], in-
volving 5,825 real-world Web services from 74 regions and 339
service users from 31 regions. It records the total number of
1,974,675 user-service QoS invocations, which is distributed
and partitioned in terms of users. By comparing FHC-DQP with
a bunch of centralized as well as federated competing baselines,

the results demonstrate its effectiveness on multiple evaluation
metrics for distributed QoS prediction.

In general, the main contributions of this paper are summa-
rized as follows:
� We propose a novel privacy-preserving collaborative fed-

erated framework for distributed QoS prediction, which
leverages federated learning to protect privacy information
of user-service QoS invocations in real service-oriented ap-
plication scenarios, compared to traditionally centralized
QoS prediction.

� To better improve the performance of distributed QoS
prediction, we propose a novel federated hierarchical clus-
tering algorithm that iteratively performs multi-stage feder-
ated collaboration learning and user clustering. It enhances
the ability of learning the latent features of users and
services by much stronger collaborative relevance within a
fine-grained cluster in personalized QoS prediction model,
where location contextual information is incorporated into
our designed deep neural network.

� We conduct extensive experiments on WS-DREAM. The
experimental results validate that FHC-DQP receives su-
perior QoS prediction performance over existing federated
baselines, and achieves a trade-off performance compared
to start-of-the-art centralized ones.

II. PROBLEM FORMULATION

Definition 1 (Web Service): A Web service is defined as a
five-tuple i =< n, f, d, q, ID, l >, where n, f and d repre-
sent service name, functionality description and domain tag,
respectively. q is the QoS criteria and l indicates the location
information of a Web service.

For QoS prediction problem, we mainly pay attention to the
non-functional features of a Web service including QoS criteria
q, identifier ID and location information l.

Definition 2 (Service User): A service user is defined as a
two-tuple u =< ID, l >, where ID is the identity of a user,
and l indicates the respond location information.

Generally, the location information includes the Region, Au-
tonomous System (AS), longitude and latitude.

Definition 3 (User-Service Invocation Record): A user-
service invocation record is defined as a three-tuple <
u, i, ru,i >, whereu ∈ U is a service user, i ∈ I is a Web service,
and ru,i is the QoS value when u invokes i.

By aggregating all the user-service invocation records, we
can obtain a user-service invocation matrix R, where one row
represents the QoS values of a user invoking Web services, and
one column represents the QoS values of a service invoked by
service users. Here, if a user u has invoked a service i, we have
< u, i, ru,i >∈ R, otherwise < u, i, ru,i > �∈ R.

Definition 4 (Centralized QoS Prediction Problem): Given a
user set U , a service set I and observed QoS invocation matrix
R, centralized prediction problem is defined as a five-tuple
CQP =< U, I,R, u, i >, where u is a target user, i is a target
service, and < u, i, ru,i > �∈ R.

Given a centralized QoS prediction problem CQP =<
U, I,R, u, i >, the goal of a centralized prediction model is to
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Fig. 1. Overall framework of FHC-DQP. It consists of three parts: Federated User Private Feature Extraction collaboratively trains a global QoS prediction model
and extracts users’ private embedding features; Federated Hierarchical Clustering recursively partitions users into a set of tree structure clusters in a gradually
narrowing range of users; Personalized QoS Prediction designs a location-aware deep neural network to perform QoS prediction in a personalized way.

calculate the missing QoS r̂u,i. Thus, a corresponding solution
to CQP can be denoted as < u, i, r̂u,i >.

Definition 5 (Distributed QoS Prediction Problem):
Given a set of user-service invocation submatrices R′ =
{R1, R2, . . ., Rn}, where n is the number of users, a
distributed QoS prediction problem is defined as a five tuple
DQP =< U, I,R′, u, i >, where u is a target user and i is a
target service. The solution to a DQP problem is < u, i, r̂u,i >
of the target user u invoking i.

Here, the significant difference between a CQP and DQP
problem is that centralized QoS prediction model can learn
the complex nonlinear invocation feature from the aggregated
invocation matrix R, while distributed QoS prediction models
can only collaborate by their independent submatrices R′ =
{R1, R2, . . ., Rn}.

III. APPROACH

A. Overview

Fig. 1 illustrates the overall framework of FHC-DQP. It
consists of three components: Federated User Private Feature
Extraction (FUPFE), Federated Hierarchical Clustering (FHC)
and Personalised QoS Prediction (PQP). The process of each
component in FHC-DQP is described as below.
� In the module of federated user private feature extraction,

all users preserve their private QoS data locally and col-
laborate with each other by transmitting their federated
parameters of QoS prediction model to cloud center, which
employs federated learning by aggregating all of the prop-
agated model parameters iteratively to train the central
model. After the global process satisfies the convergence
condition, we can extract the vector representation of user
private features.

� In the module of federated hierarchical clustering, it ini-
tially applies an effective clustering algorithm (such as
K-means++) to partition a set of users into several clusters

based on the extracted user private features. For each
partitioned user cluster, user hierarchical clustering sub-
sequently carry out the process of federated user private
feature extraction and K-means++ clustering recursively in
a gradually narrowing range of users, which finally shapes
the users like a tree structure as the hierarchical clustering
terminates.

� In the module of personalized QoS prediction, a location-
aware deep neural network is designed as unknown QoS
prediction model, where both the federated and private
parameters are trained by the previous process of federated
user private feature extraction and federated hierarchical
clustering. As a result, it can be leveraged to predict vacant
QoS values for a target user when invoking Web services
in personalised way.

B. Federated User Private Feature Extraction

Based on deep neural networks, a centralized QoS prediction
model is trained by historical QoS invocation records of all users.
It can be expressed

y = f(x;w), (1)

where w is the parameters of centralized neural network. In dis-
tributed QoS prediction,w can be optimally learned by federated
aggregation strategy after finishing each round local training
of each user, which is then propagated back to all selected
users’ QoS prediction models. Consequently, each user’s QoS
prediction model can also be expressed as (1) andw is equivalent
to all users’ model parameters. Nevertheless, different from
the applications in object detection [15] and NLP [16], the
parameters of personalised models in distributed QoS prediction
are divided into two parts, including federated parameters and
private parameters. Federated parameters participate in feder-
ated aggregation of centralized neural network model, while
private parameters jointly train with federated parameters for
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Fig. 2. Federated user collaboration of private feature extraction.

users’ personalised QoS prediction models, but they keep private
and independent with users. For a user k, the personalised QoS
prediction model can be expressed as

y = f(x; w̃, wk(k > 0)), (2)

where w̃ is federated parameters andwk is the private parameters
of the user k. Fig. 2 shows the division of private and federated
parameters, where centralized QoS prediction model is trained
by the collaboration of federated users. Their corresponding per-
sonalised QoS prediction models extract users’ private features
in black part.

To optimally learn the federated parameters w̃ and private
parameters wk of personalised QoS prediction models, they col-
laborate with centralized QoS prediction model by propagating
federated parameters. Their collaborative objective function is
expressed by

J = min
Lk,1≤k≤n,k∈Pt

G(L1 (w̃, w1) , . . . ,Lk (w̃, wk)), (3)

where n is the total number of users, Pt indicates a selected sub-
set of users, Lk(w̃, wk) is the personalised objective function of
user k, and G(•) is a global objective function that combines the
selected objectives. To further consider the importance of each
user, a weighted average of local losses, i.e.,

∑|Pt|
k=1 pkLk(w̃, wk)

and satisfy
∑|Pt|

k=1 pk = 1. By applying FedAvg aggregation
algorithm, the parameters of centralized QoS prediction model,
are updated with the weighted sum of parameters from all the
selected personalised QoS prediction models. It can be expressed
by

(w̃k
t+1, w

k
t+1)← BackPropagation(Wt, w

k
t ) (k ∈ |Pt|) (4)

Wt+1 =
∑
k∈Pt

nk

ns
w̃k

t+1, ns =
∑
k∈Pt

nk, (5)

where w̃k
t denotes the federated parameters of the user k in t

and Wt denotes federated parameters of centralized model; wk
t

and wk
t+1 indicate the private parameters of the user k in t and

Algorithm 1: Federated User Private Feature Extraction
(FUPFE).
Input:
Pt: one user cluster
Output:
FU : federated user private feature matrix
1: Initialize round t = 0
2: repeat
3: for each k ∈ Pt in parallel do
4: w̃k

t+1 ← PersonalisedFederatedUpdate(k,Wt)
5: end for
6: Wt+1 ←

∑
k∈Pt

nk

ns
w̃k

t+1

7: t← t+ 1
8: until J reaches convergence in (3)
9: for each u ∈ Pt in parallel do

10: fu obtains user u private feature vector
11: FU ← FU ∪ fu
12: end for
13: return FU

t+ 1; nk and ns denote the training number of the user k and
the total training number, respectively.

Based on the federating training between centralized and per-
sonalised QoS prediction models, federated user private feature
extraction (FUPFE) is described in Algorithm 1. Specifically, it
iteratively performs the federated training by mutually propagat-
ing federated parameters (Lines 2–8). At each iteration round,
the personalised federated parameters from each selected user
are initially updated by the user’s personalised QoS prediction
model and the latest shared parameters from centralized QoS
prediction model (Lines 3–5). Then, all of these updated feder-
ated parameters are aggregated together as the newly centralized
parameters at the next time (Lines 6–7), until it terminates when
the global objective functionJ reaches its convergence condition
in (3) (Line 8). Finally, we extract each user’s private feature
vector fu from the corresponding personalised QoS prediction
model and combine them into a feature matrix FU (Lines 9–13).
Note that we choose all users as selected user set Pt, which
means |Pt| is equivalent to n. Here, the federated user private
feature refers to ID embedding or an integrated embedding from
ID, Region, AS and location.

Since the common FL paradigm is applied within FHC-DQP,
each client user keeps their user-service QoS invocations locally
and does not share them with other users when performing
distributed model training of local QoS prediction. That is, the
distributed privacy safeguard can be partially achieved by up-
loading the trained model parameters to the server for federated
aggregation, instead of raw user-service QoS invocations. More-
over, advanced and efficient encryption algorithms are expected
to be adopted for further enhancing the privacy safeguards by
encrypting the shared model parameters for aggregation across
multiple client users.

C. Federated Hierarchical Clustering

1) User Private Feature Clustering: Due to the global updat-
ing of shared federated parameters and the local optimization
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Algorithm 2: User Private Feature Clustering (UPFC).
Input:
FU : federated user private feature matrix
k: the number of predefined clusters
Output:
Ufc: the partitioned k user clusters
Parameters:
ui: user i private feature embedding vector
1: Initialize k cluster centroids {c0, c1, . . ., ck−1}
2: Initialize n← the number of rows in matrix FU

3: repeat
4: for i = 1 to n do
5: ui← (i - 1)th row in FU

6: zi← argmink (dist(ui, ck) in (6))
7: end for
8: for j = 0 to k − 1 do
9: cj ←MEAN({ui, zi = j})

10: end for
11: until converged
12: for j = 0 to k − 1 do
13: U ′fc← U ′fc ∪ ({i, zi = j})
14: end for
15: Ufc(U0, U1, . . ., Uk−1)← construct virtual centralized

nodes for each user cluster of U ′fc(U
′
0, U

′
1, . . ..U

′
k−1)

16: return Ufc

of private parameters, the values of federated parameters in
each user model are similar after several rounds of federated
training, which can train a general global model. Intuitively,
the difference in QoS value of users maps into distinct private
feature vector in latent space, similar to word2vec [17] and
doc2vec [18]. In the latent space, users who have similar QoS
values tend to be closer with each other. After acquiring user
private features, it predefines a hyper-parameter k in K-means++
clustering algorithm to partition users into a set of clusters.

We use the euclidean distance to measure the feature vectors
between a user i and a centroid j

dist(ui, cj) =

√∑n

k=1
|uik − cjk|2. (6)

The process of user private feature clustering (UPFC) can be
shown in Algorithm 2. First, it exploits K-means++ algorithm
to divide a father cluster into k son clusters. In K-means++,
by applying the above distance calculation, we calculate the
distance between two user private features and allocate each
user to the corresponding subcluster. Then, k new virtual
nodes with federated center are constructed for subclusters,
and the central models in those nodes inherit initial param-
eters from their father cluster’s centralized model. For exam-
ple, given user set U = {u1, . . . , u10, . . .} and cluster number
k, we can obtain U1 = {u1, u4, . . .}, U2 = {u2, u5, u9, . . .},
U3 = {u3, u6, u7, u8, u10, . . .} by UPFC and satisfy following
conditions:

U1 ∩ . . . ∩ Uk = ∅ (7)

U1 ∪ . . . ∪ Uk = U. (8)

Algorithm 3: User Hierarchical Clustering (UHC).
Input:
Ufc: a set of user clusters
depth: maximum hierarchical tree depth
threshold: maximum number of users in one cluster
Output:
Ures: leaf-layer hierarchical clusters
Parameters:
Ucurrent: user cluster set of current layer
Unext: user cluster set of next layer
1: Initialize Ucurrent ← Ufc

2: Initialize deep← 2
3: repeat
4: for each Ui ⊆ Ucurrent in parallel do
5: if |Ui| ≥ threshold then
6: Fu ← FUPFE(Ui) % call Algorithm 1
7: Unext ← Unext ∪ UPFC(Fu) % call

Algorithm 2
8: else
9: Unext ← Unext ∪ Ui

10: end if
11: end for
12: Ucurrent ← Unext, Unext ← NULL
13: deep← deep+ 1
14: until deep > depth or ∀ Ui ⊆ Ucurrent, Ui s.t. (9)
15: Ures← Ucurrent

16: return Ures

UPFC clustering algorithm is beneficial to similar users’
collaborative signal that can improve QoS prediction accuracy
based on implicit collaborative filtering of user private feature
vectors. As a result, users partitioned in the same subcluster
have closer relationship to collaboratively learn a more effective
QoS prediction model than those neighborhoods in a different
subcluster.

2) User Hierarchical Clustering: Despite the UPFC algo-
rithm that partitions a father user cluster into a set of subclusters,
abundant number of users may still cause the training process
of QoS prediction model inadequately because it cannot utilize
correlation well among users in the same subcluster. Thus, we
set the hyper-parameter threshold where the number of each
subcluster should satisfy the following convergence condition:

|Ui| <= threshold. (9)

Based on the above constraint, a tree structure user hierarchi-
cal clustering (UHC) is proposed to further subdivide a subclus-
ter into a set of more fine-grained hierarchical clusters, leading
to better QoS prediction model training by deeper clustering
partition for more precise collaborative relationships. Here, root
node is the initially first-layer central node and leaves indicate
the final elements of hierarchical clusters. The intermediate tree
nodes between root and leaves are all constructed federated
virtual nodes for the division of the leaves further.

By invoking the above Algorithms 1 and 2, the process of
UHC is shown in Algorithm 3. It starts from a set of given
clusters generated by UPFC (Line 1). In subsequent rounds,
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Fig. 3. Location-aware personalised QoS prediction model based on deep neural network.

each of the user clusters Ui ⊆ Ucurrent is iteratively partitioned
into a set of subclusters in parallel at the same depth of hier-
archical clustering, when it satisfies the partitioning condition
|Ui| ≥ threshold (Line 5–7), and then the subclusters of next
layer continue Algorithms FUPFE and UPFC (Line 3–14).
Consequently, we finish hierarchical clustering and generate
a set of fine-grained clusters, where each has less than the
predefined upper bound number of users or reaches given depth
(Line 14). By the UHC algorithm, the hyper-parameters of each
personalized QoS prediction model are trained and optimized,
leading to a better performance of predicting vacant QoS of
user-service invocations.

D. Personalised QoS Prediction

Fig. 3 illustrates the personalised QoS prediction model based
on deep neural network, where a user’s or a service’s ID and
multiple location information are taken into account to predict
unknown QoS, including Region, AS, longitude & latitude. It
consists of three independent but correlative layers. In the layer
of User & Service Feature Embedding, it is observed that users
with similar network environment often perceive similar QoS
values on the same Web service [5]. These influence factors can
be expressed by

Iu = [U − ID,U − Region, U −AS,

U − Location (longitude & latitude)] (10)

Is = [S − ID, S − Region, S −AS,

S − Location (longitude & latitude)], (11)

we first generate a user’s one-hot embedding vector ieu, iru, iau, ilu,
which separately represent high-dimensional sparse vector on
diverse factors of user ID, Region, AS and Location. Similarly,
ies, irs, ias , ils represent a service’s one-hot embedding vectors
on diverse factors of service ID, Region, AS and Location,
respectively. Based on the above initial one-hot embedding
representations, a user’s and service’s embedding feature on
diverse factors can be expressed by

e1u = M1
ui

e
u, e

2
u = M2

ui
r
u, e

3
u = M3

ui
a
u, e

4
u = M4

ui
l
u (12)

e1s = M1
s i

e
s, e

2
s = M2

s i
r
s, e

3
s = M3

s i
a
s , e

4
s = M4

s i
l
s, (13)

where M1
u ∈ Rnu×du ,M2

u ∈ Rnr×du ,M3
u ∈ Rna×du ,M4

u ∈
Rnl×du denote the embedding matrices of users or side
information and nu, nr, na, nloc are the number of ID,
Regions, ASs, locations in recorded QoS data of users; M1

s ∈
Rms×ds ,M2

s ∈ Rmr×ds ,M3
s ∈ Rma×ds ,M4

s ∈ Rml×ds

denote the embedding matrices of services or side information
and ms,mr,ma,ml are the number of ID, Regions, ASs,
locations in services’ historical invocation records; du and ds
are dimensionality of user and embedding features, respectively.
By above (12) and (13), we have transformed one-hot encoding
vector of a user or service into dense and low-dimensional
embedding feature vector.

In the layer of User & Service Feature Extraction, to incor-
porate these side information, we adopt weighting coefficients
to integrate different kinds of the embeddings, which can be
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expressed by

pu =

m∑
k=1

wke
k
u (14)

qs =

m∑
k=1

wke
k
s , (15)

where m is the number of influence factors of integrated embed-
dings. We adopt m = 4 when the influential factors including
ID, Region, AS, longitude & latitude; eku and eks represents the
kth embedding feature of a user and a service on ID, Region,
AS, longitude & latitude, and wk is corresponding weights to
eku and eks , subject to

∑m
k=1 wk = 1 and w1 > w4, w3 > w2.

To effectively reflect the importance of different influence
factors and evaluate the weighting coefficients, we borrow the
propagation mechanism of graph diffusion network that more
relevant information for predicting unknown QoS has closer
distance/hop with the center node. Here, ID of a user or ser-
vice is viewd as 1-hop connectivity information, while AS and
longitude& latitude view as 2-hop connectivity information, and
Region as remote information is appointed as 3-hop connectivity
information. To represent impact of distance simply, we intro-
duce parameter decay strategy of the personalised PageRank
(PPR) graph diffusion [19], which is expressed by

θdk

PPR = α(1− α)dk , (16)

where the value range of decay factor is α ∈ (0, 1)[20], and dk
represents the distance/hop of the kth influence factor. Then we
normalize each of them by its proportion

wk =
θdk

PPR∑m
k=1 θ

dk

PPR

, (17)

where wi represents the weighting coefficient of each influence
factor, and α plays a crucial role in evaluating the weighting
coefficient and it needs to be determined in advance.

In the layer of User-Service Feature Interaction, the inte-
grated feature embeddings of users and services are all dense
and low-dimensional vectors and they are fused as the input
into a deep neural network for interactive learning. Given two
integrated embedding features pu and qs of a user and a service,
the element-wise product operation is performed to obtain the
initial interaction feature

h0 = pu � qs, (18)

where � denotes the element-wise product of two feature vec-
tors. Subsequently, we feed h0 into a multi-layer perceptron
(MLP) network for learning user-service complex nonlinear in-
vocation relationship. The forwarding procedure in user-service
feature interaction layer is expressed as

h1 = ReLU(W1h0 + b1)

·
·

hK−1 = ReLU(WK−1hK−2 + bK−1)

r̂u,i = WK(hK−1 + h0) + bK , (19)

TABLE I
NOTATIONS OF OVERHEAD ANALYSIS

where K is the number of hidden layers, Wx and bx indicate
weight matrix and bias vector. ReLU is the activation function.
Here, MLP is implemented by the typical tower structure. The
output of the user-service feature interaction r̂u,i is the predicted
missing QoS. Especially, we insert shortcut connection [21] in
last layer to help training.

Considering the ability of fitting outliers, we use the minimum
absolute (L1) loss function, which is more suitable to learn
and optimize the parameters for QoS prediction problem in
the training procedure. Let ru,i and r̂u,i are the original and
predicted QoS values, the loss function of user u personalised
QoS prediction model is defined as

Lu =
1

N
∑
i

|ru,i − r̂u,i|. (20)

Stochasticity in the training process is introduced via
dropout [22] to avoid model overfitting. We adopt Adaptive
Moment Estimation (Adam) [23] as optimizer. To facilitate fed-
erated learning training procedure in terms of time and storage
expense, several training epochs are set up in each personalised
model during a round of the federal learning process.

E. Overhead Analysis

The overhead of FHC-DQP mainly includes computational
burden and communication expenses, which can be formally
analyzed and expressed by the notations as listed in Table I.

The computational burden of FHC-DQP is mainly determined
by two factors. i) Distributed client model training. In the
FHC-DQP client model, the training complexity of both forward
and backward propagation is determined by the product of the
number of neurons in adjacent layers, where the number of neu-
rons in each layer is the multiple of embedding size. Therefore,
the training complexity can be expressed as O(D2 ∗ E ∗ T ). ii)
K-means++ clustering. After federated training convergence, the
K-means++ algorithm is utilized to generate subclusters of user
latent vectors, the computational cost of which is O(|Pu| ∗D ∗
K ∗ I). Thus, the total computational burden is the sum of client
model training and the K-means++ clustering for H iterative
rounds of federated hierarchical clustering, which is expressed
as O((D2 ∗ E ∗ T + |Pu| ∗D ∗K ∗ I) ∗H). In real-world ap-
plication contexts, it generally satisfies thatT,D,E,K are much
smaller than |Pu| (i.e., |Pu| >> T,D,E,K). In such case, the
computational burden can be expressed as O(|Pu| ∗ I).
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TABLE II
STATISTICS OF QOS DATASET IN WS-DREAM

As for communication expenses, during the first round of
FL communication, the server distributes the initial global pa-
rameters M to all participating users Pu. At the end of the
round, it downloads the updates with the size of M client
parameters from each user and performs federated aggrega-
tion. The above processes are iterated for T communication
rounds. Thus, the total communication expenses are calculated
as O((2 ∗ |Pu| ∗M) ∗ T + |Pu| ∗M), which can be expressed
as O(|Pu| ∗M ∗ T ).

By the above analyses, the comprehensive overhead of FHC-
DQP is O(|Pu| ∗ I + |Pu| ∗M ∗ T ). When the number of par-
ticipating users is large enough in real-life service-oriented
application contexts, it can be expressed as O(|Pu|) that is
linear with the number of participating users, indicating the
practicability of employing FHC-DQP.

IV. EXPERIMENTS

A. Experimental Setup and Dataset

All the experiments are carried on our workstation equipped
with two NVIDIA GTX 1080TI GPU, an Intel(R) Xeon(R) Gold
6130 @2.60 GHz CPU and 192 GB RAM. The components of
FHC-DQP are implemented by Python 3.6 with Pytorch 1.6.0.

To verify the performance of FHC-DQP, we conduct extensive
experiments on WS-DREAM [14], which has been widely used
for validating the performance of vacant QoS prediction. It has
two kinds of user-service QoS invocations, including response
time (RT) and throughput (TP), which totally involves 1,974,675
historical QoS invocation records collected from 339 users and
5,825 Web services. For both RT and TP QoS records, they can
be formalized as a QoS matrix, where a row consists of a bunch
QoS entries indicating a corresponding user who invokes all of
the Web services, and a column has a bunch of QoS entries
indicating a corresponding Web service that is invoked by all of
the users. For the demands of learning and representing features
of users and services, location information in WS-DREAM, such
as region, latitude and longitude, is also used for the training
of personalized QoS prediction model. The statistics of WS-
DREAM is shown in Table II.

To simulate the sparsity of user-service invocations in real
application scenarios, we partition the QoS records into four
matrix densities (MD) in the experiments, including 5%, 10%,
15% and 20% by randomly removing large number of QoS

invocation records from WS-DREAM. For the comparisons
of QoS prediction accuracy among centralized and federated
competing baselines, we respectively choose 90% and 10% as
QoS invocations as training set, and 100,000 user-service QoS
records that do not belong to both the training and validation set
are selected as the testing set.

B. Competing Methods and Evaluation Metrics

To evaluate the performance of FHC-DQP, we compare it
with eleven widely-used competing baselines, including two
centralized memory-based approaches [6], [24], four central-
ized model-based approaches [8], [9], [25], [26], two hybrid
model [27], [28] and three federated approaches [29], [30], [31].
They are described as below.
� Centralized Methods:

– UIPCC [6]: It is the most representative memory-based
CF for hybrid QoS prediction, which combines UPCC
and IPCC together by weighting coefficient.

– LACF [24]: It is a typically memory-based CF for
QoS prediction, which takes advantage of users’ and
services’ location contextual information as heuristics
to more effectively calculate similar neighborhood.

– NMF [8]: It is a representative non-negative matrix
factorization approach, which decomposes user-service
QoS invocation matrix to two latent non-negative ma-
trices when original matrix elements are non-negative.

– PMF [9]: It is a model-based representative approach
for predicting vacant QoS by probabilistic matrix fac-
torization, which leverages Gaussian distribution to op-
timize probability model.

– NCF [25]: It is an advanced neural collaborative filter-
ing approach that combines multi-layer perceptron and
generalized matrix factorization for recommendation.

– LRMF [26]: It is a location and reputation model-based
baseline, which combines both the user’s reputation and
location information into matrix factorization.

– PSO-USRec [27]: It is a global search optimization
model for QoS prediction. It customizes particle swarm
optimization and smoothes outlier particles to enhance
the performance of QoS prediction.

– HAP [28]: It is a case-based reasoning hybrid model for
QoS prediction. It establishes an hybrid model by taking
advantage of enhanced PCC to calculate similarity and
global case-based reasoning to seek a global prediction.

� Federated Methods:
– FedMF [29], [30]: It is the recently representative

federated collaborative filtering approach that inte-
grates federated learning and matrix factorization to
protect user privacy and improve prediction accuracy.

– NCSF-GMF [31]: It is a privacy-preserving federated
GMF approach where users collaboratively upload
perturbed updates during server aggregation without
affecting the global model.

– FedGMF: It is a self-developed variant as a complet-
ing baseline for distributed QoS prediction based on
generalized matrix factorization [25] in federated en-
vironment, which performs QoS prediction without
the consideration of federated hierarchical clustering.
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TABLE III
RESULTS OF PERFORMANCE COMPARISONS OF QOS PREDICTION ON RESPONSE TIME

Mean absolute error function (MAE) and root mean squared
error (RMSE) are used as our two evaluation metrics to compare
the performance of QoS prediction in the experiments. MAE and
RMSE are defined as follows:

MAE =

∑
i,j |ri,j − r̂i,j |

N
(21)

RMSE =

√∑
i,j (ri,j − r̂i,j)

2

N
, (22)

where ri,j is the ground-truth QoS value of a user invoking a
service and r̂i,j is the predicted QoS; N is the number of test
samples of predicted QoS values.

C. Experiment Results and Analyses

To validate the effectiveness and reduce the overhead of our
proposed FHC-DQP, we adopt 10 epochs to user’s personalized
QoS prediction model for one round of federated user collabora-
tion. The user-service interaction layer of deep neural network
is set as [32, 32, 8] and the dropout rate in personalized QoS
prediction model is set as 0.1. In model training of FHC-DQP,
Adam learning rate is equal to 0.001 and batch size is equal to 64.

In the experiments, we tune the model parameters of com-
peting methods directly as they are suggested with the best per-
formance in the experiments of the references. Furthermore, we
implement all of centralized and federated competing baselines
by: 1) For UIPCC, we use Pearson Correlation Coefficient to
calculate the similarity between users and services; 2) For LACF,
NMF, PMF, and LRMF, L2 is applied as the loss function in
model training; 3) NCF and FedMF are implemented based on
the released code;12 4) The results reported in the PSO-USRec
are used directly; 5) HAP and NCSF-GMF are implemented
by the description of [28], [31]; 6) As the first layer result of
FHC-DQP, we implement FedGMF with the same parameters
setting of FHC-DQP. All the competing baselines are run on
both RT and TP training sets, and QoS prediction performance
is evaluated on the test sets by calculating MAE and RMSE.
To prevent the deviations, we run FHC-DQP and competing
baselines a set of times to calculate the average results for the
guarantee of fair comparisons of QoS prediction.

Tables III and IV show the experimental results of QoS
prediction on RT and TP among both centralized and federated
competing baselines. Here, lower MAE and RMSE indicate
better performance of QoS prediction. The best and second-best
results of each column are marked in dark and light grey,
respectively. As matrix density varies from 5% to 20% with
an interval of 5% on RT and TP, it is observed that all of
the competing baselines have a continuing upward tendency
of QoS prediction accuracy, since higher matrix density can
provide more sufficient user-service QoS invocations for more
effective model training and parameter optimization, which is
beneficial to improve the QoS prediction performance across
multiple competing baselines.

Specifically, as expected of our FHC-DQP, it becomes gradu-
ally better and overall receives superior QoS prediction perfor-
mance across diverse QoS matrix densities compared with both
centralized and federated competing baselines. With regard to
the results of centralized QoS prediction, UIPCC as the tradi-
tionally representative CF approach performs poorly on both
MAE and RMSE, because it mainly depends on limited user-
service QoS invocations to find similar neighborhood. Thus, it
is extremely sensitive to the sparsity of QoS matrix density.
Compared with UIPCC, it takes advantage of geographical
context as heuristics information for neighborhood selection,
LACF obtains better QoS prediction accuracy than UIPCC. To
alleviate the influence of sparsity of QoS density, NMF and PMF
as two variants of matrix factorization achieve significant per-
formance improvement compared to memory-based approaches.
The primary reason is that they learn a QoS prediction model
by user-service linear invocation relationship. LRMF mines
latent user reputation and incorporates location context in model
training, leading to better performance at high QoS densities
compared with other MF-based QoS prediction approaches. To
further improve the QoS prediction accuracy, NCF leverages
multi-layer perceptron (MLP) that mines nonlinear interaction
relationships from the embedded feature vectors of users and
services. PSO-USRec adopts a swarm intelligence search for
all unknown QoS records among users with outlier values

1[Online]. Available: https://github.com/hexiangnan/neural_collaborative_filtering
2[Online]. Available: https://github.com/Di-Chai/FedMF
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TABLE IV
RESULTS OF PERFORMANCE COMPARISONS OF QOS PREDICTION ON THROUGHOUT

correction, which is more effective than the other CF-based
QoS prediction algorithms. HAP makes full use of both user
and service information based on the case-based reasoning, and
yields better prediction results at low QoS densities among the
centralized baselines.

As for the results of distributed QoS prediction, FedMF is
a leading federated regression approach and applies matrix
factorization to learn a linear QoS prediction model, which is
worse than centralized MF baselines. This phenomenon can be
explained by the extensive investigations [32], [33] that have
drawn a conclusion that centralized approaches show better
performance than corresponding federated ones for prediction
and recommendation tasks. Unlike first-order feature interaction
by linearly combining latent features of users and services in
FedMF, our self-developed federated variant FedGMF exploits
high-order cross features to deeply learn complex nonlinear
invocation relationship between users and services, leading to
better distributed QoS prediction performance. NCSF-GMF
achieves stronger privacy protection by uploading perturbed
updates, resulting in a reduction of QoS prediction accuracy.
Furthermore, our proposed FHC-DQP not only considers hier-
archical user clusters for stronger collaborative relationships,
but also leverages context-aware deep neural network to more
effectively extracting latent features of users and services. As a
result, it can outperform FedMF and FedGMF on MAE across
two QoS datasets, where it is larger than approximately 10%
when MD is set as 15% and 20%, respectively. As for RMSE,
it also gains superior performance on RT and TP, although it is
slightly worse in some cases, such as MD equal to 10%, 15%
and 20% on RT, and 20% on TP. The possibility from [33]
is that centralized competing baselines can capture stronger
collaborative relationship in higher data density, while federated
ones may incline to fall into unpredicted suboptimal points with
facing the large data scale.

By systematically comparing multiple advanced distributed
and centralized QoS prediction approaches, it is observed that
our proposed FHC-DQP achieves the best performance in terms
of both MAE and RMSE, demonstrating its advantages for
potential applicability in real-world situations. However, it is
expected for the improvement of QoS prediction accuracy from
the two aspects. First, it is limited by the effectiveness of the
personalized QoS prediction model and promises to further

boost the QoS prediction accuracy by designing new or plugging
in the existing more sophisticated QoS prediction model in our
overall framework, while achieving the goal of privacy safe-
guards of user-service QoS invocations. Second, more advanced
deep or heuristic clustering algorithms can be utilized to replace
K-means++ in federated hierarchical clustering to find more
relevant user subclusters based on their latent representations.

D. Performance Impact of Parameters

1) Impact of Cluster Number: Cluster number k is an im-
portant parameter in federated user private feature clustering,
which determines the cluster number divided for each set of
users during federated hierarchical clustering.

To observe the results of partitioned user clusters, we project
each user into 2D-space based on their longitude&amp; latitude.
The 2D visualized user clusters are shown in Fig. 4, where the
parameter of cluster number is set to 3 and diverse colors rep-
resent three different user clusters. The horizontal and vertical
coordinates of the point correspond to the longitude and latitude
of a user, respectively. From the results, it is observed that the
segmented clusters are more cohesive with closer distance as the
QoS densities arise from 0.05 to 0.2, since federated user private
features can be better extracted for clustering from higher QoS
matrix density.

To further test the performance impact of cluster number on
distributed QoS prediction, we set it by {1, 2, 3, 4, 5, 6, 7, 8}
in the experiments. The results with the changes of cluster
number are illustrated in Fig. 5. It can be observed that both
MAE and RMSE decrease as the number of partitioned clusters
increase initially, and then decline with the increasing cluster
number. This phenomenon is reasonably explained that when
the cluster number is set too small, those federated users with
faint collaborative relationships may incur noisy information
to extract unfavorable latent features of users and services,
which significantly lowers QoS prediction accuracy. In another
extreme case, if the cluster number is set to be a large value,
very few of federated users within the same cluster and low
density of invocation records both aggravate the situation that
fails to effectively take advantage of collaborative relationship
for better mining the complex nonlinear interactive invocations,
leading to unsatisfactory QoS prediction performance. Based
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Fig. 4. 2D visualized segmented clusters with the changes of diverse QoS densities.

Fig. 5. Performance impact of distributed QoS prediction with the changes of cluster number.

Fig. 6. Performance impact of distributed QoS prediction with the changes of dimensionality and matrix density.

on the above analyses, when the cluster number of federated
learning in FHC-DQP is set to 3 or 4 in our experiments, fed-
erated hierarchical clustering achieves the best QoS prediction
accuracy under different QoS densities.

2) Impact of Feature Dimensionality: The dimensionality
size d means the dimension of embedding vectors that is uti-
lized to characterize the features of user, service and location
information. To test the performance impact of dimensionality
on QoS prediction, we vary its value d by {2, 4, 8, 16, 32} and set
matrix density (MD) as {0.05, 0.10, 0.15, 0.20}, respectively.

Fig. 6 shows the three-dimensional graph of QoS predic-
tion accuracy with different combinations of d and MD. It is
observed that both MAE and RMSE show a decreasing trend
with the increasing number of matrix density on both RT and
TP. Specifically, the QoS prediction accuracy is dramatically
improved when the matrix density ranges from 5% to 10% and
the dimensionality ranges from 2 to 8. It achieves the best QoS
prediction performance when the dimensionality size d is set by
8 or 16 across different matrix densities. However, the accuracy
of predicting unknown QoS begins to decline with the increasing
dimensionality from 16 to 32. The reason for this phenomena is
that, when projecting the feature vectors in a low-dimensional
vector space, it may result in partial hidden information lost from
feature latent vectors, which affects feature representation ability
and reduces QoS prediction accuracy. Conversely, when the d

TABLE V
PERFORMANCE IMPACT OF DECAY FACTOR ON TP

is too large, the embedding dimension of feature representation
may lead to the risk of over-fitting due to the small number of
training samples of per user. It turns out that dimensionality size
d can be set between the range from 8 and 16 to receive the su-
perior prediction results under multiple different QoS densities.

3) Impact of Decay Factor: The value of decay factor reflects
the importance of different influence factors of users and services
when extracting their implicit features by integrating the em-
beddings of ID and multi-granularity geographical information.
To investigate reasonable value of decay factor, we set α as
{0.1, 0.4, 0.7, 1}, respectively.

Table V summarizes the performance impact of decay factor
on TP. We can find from the results that when it is set as α = 1,
FHC-DQP receives the worst performance on MAE and RMSE
across most of QoS densities. The reason is that it indicates
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an extreme special case where only ID information of users
and services is considered, while other influence factors are
omitted for implicit feature extraction. On the other hand, if
the decay factor is set as a small value, FHC-DQP cannot
effectively reflect the importance of key influence factor, leading
to better representing implicit features. Thus, a medium value
of decay factor is generally beneficial to receive the lowest
MAE and RMSE for QoS prediction accuracy, which regulates
the situations of combining all influence factors together by
balancing these influence factors of users and services. As a
result, when decay factor α is set to 0.4 in our experiments,
FHC-DQP achieves the best distributed QoS prediction accuracy
under most different QoS densities.

V. RELATED WORK

A. Centralized QoS Prediction

1) Memory-Based QoS Prediction: This kind of approaches
has been widely investigated to predict unknown QoS by first
performing users or services similarity calculation to obtain the
neighbors of users or services, and then predicting unknown
QoS through user-service historical invocation records based on
average QoS and deviation migration calculation. Depending
on the objective for calculating similarity, it can be categorized
as user-based, service-based approaches, and their combination.
Zheng et al. [6] propose a combination strategy that employs
a adjusting parameter to coordinate the weighting of user-based
and service-based predicted QoS for better prediction perfor-
mance than each of them. Tang et al. [24] propose a novel
approach called LACF, which takes location context into account
when calculating similar users and services. To further improve
the effectiveness of similarity calculation for QoS prediction,
Sun et al. [34] propose a new similarity calculation method
named normal recovery (NR), which normalizes the QoS values
of users invoking services to the same range and then unifies the
similarity of the scaled user/service vectors in different multi-
dimensional vector spaces. Wu et al. [35] propose a ratio-based
approach to calculate the similarity between users or services.
Compared with cosine similarity and NR, it is more precise for
predicting unknown QoS. Based on the ratio-based similarity
calculation, Zou et al. [7] reduce partial of invoked services
(or users) dissimilar with target service (or target user) when
calculating average QoS and deviation migration for significant
improvement on QoS prediction.

However, memory-based approaches are extremely vulnera-
ble to the sparsity of user-service historical QoS invocations,
which significantly affects the QoS prediction performance in
real-world application scenarios.

2) Model-Based QoS Prediction: Matrix factorization (MF)
and its variants, as the basic model-based method, directly em-
bed user/service ID as a vector and model their linear interactions
with inner product. Zhang et al. [8] design a non-negative matrix
factorization (NMF) model, where non-negativity constraint is
enforced in the linear model and can be applied for predict-
ing vacant QoS values. Mnih et al. [9] propose probabilistic
matrix factorization (PMF) that introduces probability model
to optimize matrix factorization model, beneficial to improv-
ing QoS prediction performance compared to the traditional

MF. By the combination of similar users and services, Zheng
et al. [36] propose a hybrid model called NIMF, which in-
tegrates the neighborhood by similarity calculation based on
user-service historical QoS invocations into matrix factorization
model to achieve superior QoS prediction accuracy. To rein-
force the feature representation from more heuristics of users
and services, LRMF [26] combines both users’ reputation and
location information into matrix factorization for QoS pre-
diction, which calculates the reputation of all users and then
identifies the neighborhood based on user’s reputation and
geographical information. Compared to memory-based ap-
proaches, MF and its variants can relatively well predict vacant
QoS by learning linear interaction relationships between latent
features of users and services, which to some extent improves the
QoS prediction performance. However, they cannot effectively
mine the implicitly complex nonlinear interaction relationships
from user-service historical QoS invocations, which still easily
results in unsatisfactory accuracy of QoS prediction.

To model complicated nonlinear interactions, He et al. [25]
propose neural collaborative filtering (NCF), which lever-
ages a multi-layer perceptron (MLP) to learn the interactive
function of nonlinear relationships. Based on NCF model,
Zou et al. [11] propose neighborhood-integrated deep matrix
factorization (NDMF), which fuses neighborhood selection loss
term to L2 function, leading to better QoS prediction accuracy
on both MAE and RMSE. Wu et al. [12] propose a deep neural
model (DNM) to consider multiple attributes information of
users and services for QoS prediction, where contextual features
are mapped into latent space and their high-order interactions are
captured through multi-layer perceptron network. Xia et al. [13]
introduce implict and explict features into initial dense vector
representation and utilize convolutional neural network (CNN)
compress and optimize the procedure of feature extraction for
QoS prediction. Li at el. [37] propose topology-aware neural
(TAN) model, which introduces introduce network topology
structure to assist in solving QoS prediction problem. Although
multiple deep learning models have been well investigated to
improve the performance of QoS prediction, they mainly focus
on the designing of a centralized QoS prediction model that
has ignored the importance of privacy protection information of
user-service QoS invocations.

B. Distributed Recommendation

Federated learning (FL) as a new computing paradigm has
been recently introduced into the realm of distributed recom-
mendation. Ammad-ud din et al. [38] first introduce collab-
orative filtering into FL called federated collaborative filtering
(FCF) and demonstrate its applicability. Based on FCF, Muham-
mad et al. [33] further employ clustering algorithm to initial-
ize user group and sample from a diverse set of participating
clients for faster training of federated recommender systems.
Lin et al. [39] introduce a novel federated matrix factorization
approach to reduce the model scale for rating prediction in rec-
ommender systems. Zhang et al. [30] apply matrix factorization
as the approach of FCF, which maintains user latent vector
locally and upload gradients of MF to cloud center. To further
enhance the reliability, Zhang et al. [40] propose differential
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privacy and reputation mechanism for more secure prediction
of vacant QoS in federated learning computing paradigm, when
propagating local private information to remote cloud for col-
laborative aggregation. By applying deep learning to FCF, Bui
et al. [41] propose federated user representation learning ap-
proach, which divides neural model parameters into federated
and private parameters for personalised recommendation tasks.

Even though some of existing FL-based novel approaches
have been initialized investigated for distributed recommenda-
tion, they still suffer from difficulty in effectively yielding em-
beddings for federated collaborative filtering, since the federated
group exists dissimilar or low-relevant users.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework of distributed
QoS prediction based on federated hierarchical clustering,
named FHC-DQP. First, we collaboratively perform distributed
federated training on independent users’ QoS invocations until
global convergence, to optimize the federated parameters of
centralized QoS prediction model. Then, user private feature
clustering algorithm is designed to divide users into a set of clus-
ters. Subsequently, user hierarchical clustering that consists of
distributed federated training and user private feature clustering
is iteratively performed on each partitioned user cluster, leading
to fine-grained user collaborative relevance. Finally, predicting
an unknown QoS for a distributed target user can be achieved by
the trained personalized QoS prediction model. Extensive exper-
iments are conducted on a large-scale real QoS dataset and the
results demonstrate the effectiveness of the proposed FHC-DQP.

In the future work, we plan to introduce a pre-tailoring
user clustering stage integrated into FHC-DQP before federated
training based on user preferences and behaviors, leading to
tailoring QoS predictions. Furthermore, it is feasible to design
a personalized user-service deep interaction hypernetwork for
server parameter aggregation, where it can learn and propagate
personalized shared parameters for each user and promotes the
performance of tailoring QoS predictions.
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