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Abstract—How to accurately predict vacant QoS has become a fundamental issue for service-oriented downstream tasks. However,

most QoS prediction approaches based on model learning fail to discriminatively capture the latent feature representations of a user

and a service, since they either leverage the shallow neural network such as MLP or take advantage of insufficient location information.

Moreover, collaborative relationships of similar neighborhood have not been fully taken into account together with prediction model

learning. To address these issues, we propose a novel framework for adaptive QoS prediction named Neighborhood-based

Collaborative Residual Learning (NCRL). Location-aware two-tower deep residual network is designed to achieve neural QoS

prediction by extracting latent features of users and services, which are fed to generate similar neighborhood for collaborative

prediction based on historical QoS invocations. They are integrally combined to perform adaptive QoS prediction. Extensive

experiments are conducted based on a large-scale real-world QoS dataset called WS-DREAM with almost 2,000,000 historical QoS

invocations. The results indicate that NCRL can remarkably outperform state-of-the-art competing baselines.

Index Terms—Web service, QoS prediction, deep residual learning, collaborative filtering, adaptive QoS prediction
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1 INTRODUCTION

WITH the rapid development of Internet technology and
5G cellular network, Web services are ubiquitous in

today’s real world application scenarios and play a crucial
role in the era of big data, Internet of Things (IoT), cloud com-
puting, and edge computing [1]. In the past few years, more
and more Web services have been published on the largest
online RESTful service repository, ProgrammableWeb,1

which has registered more than 24,000 Web services as of
November 9, 2021. As the essential building components for
service discovery, selection, composition and recommenda-
tion, Web services prominently accelerate machine-to-
machine interactions and promote the advancement of
service-oriented software systems.

With the overwhelming explosion of Web services, many
of them share the same or similar functionality, making it dif-
ficult to select the most suitable services for service reques-
ters. The key factor to distinguish those functionally
equivalently services is their provision quality [2]. Thus,
Quality of Service (QoS) has been widely applied as a dis-
criminant to represent non-functional service characteristics
and recommend desired services with high quality in real-
world application scenarios. However, due to the enormous
number of users and services, it is impractical and time-con-
suming for service requesters to invoke all Web services and
service providers to monitor QoS information for each ser-
vice invocation. To satisfy the demands of downstream tasks,
it is crucial to accurately perform QoS prediction, which has
become a challenging research issue because of the remark-
able sparsity of historical user-service invocations.

Collaborative Filtering (CF) as the most important tech-
nique has been used to predict the unknown QoS, which
has received many attentions and there are a lot of correla-
tive investigations. CF-based QoS prediction can be classi-
fied into two categories, including memory-based and
model-based approaches [3]. Memory-based approaches
perform similarity computation, such as Pearson Correla-
tion Coefficient (PCC) [4] and Ratio-Based Similarity (RBS)
[5], to generate a set of similar users or services. They are
collaboratively aggregated to predict the unknown QoS in
conjunction with the historical QoS invocations [6], [7], [8],
[9], [10]. However, these kinds of approaches are highly
dependent on common invocations to calculate similar
neighborhood and thus are vulnerable to the sparsity of
user-service invocations, which may incur low accuracy of
QoS prediction. To alleviate the sparsity problem of mem-
ory-based approaches, different model learning techniques
have been leveraged to represent the features of users and
services for unknown QoS prediction, such as clustering
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algorithms, matrix factorization and machine learning [11],
[12], [13], [14], [15]. These kinds of approaches can learn a
QoS prediction model by parameter optimization to mine
linear or nonlinear invocation relationships among users
and services. Additionally, QoS prediction accuracy can be
further improved by introducing users’ or services’ contex-
tual information, such as geographical location information
and service invocation time, into learning paradigms [16],
[17], [18]. Especially, more recent investigations focus on
deep learning techniques that are applied to extract latent
feature representations for unknown QoS prediction [19],
[20], [21].

Although these conventional approaches can partially
facilitate QoS prediction, they still cannot reach the satisfac-
tory prediction performance for service-oriented application
scenarios. The primary reason is that it has become a funda-
mental but challenging issue on how to accurately learn
latent features of users and services, as it has distinct sparsity
of user-service invocations. More specifically, most QoS pre-
diction approaches based on model learning fail to discrimi-
natively capture the latent feature representations of a user
and a service, since they either leverage shallow neural net-
work such as MLP or take advantage of insufficient location
information. Furthermore, collaborative relationships of
similar neighborhood has not been fully integrated together
with model learning for QoS prediction. Thus, current
model-based approaches are incapable of effectively extract
the characteristics of user-service invocations from both con-
textual information and historical QoS records, which signif-
icantly reduces the performance of QoS prediction.

To address the above two issues, we propose a novel
framework for adaptive QoS prediction named Neighbor-
hood-based Collaborative Residual Learning (NCRL),
including three mutually correlative procedures. It first lev-
erages our designed location-aware two-tower deep resid-
ual network to separately extract users’ and services’ latent
features and perform neural QoS prediction. Then, the
extracted latent feature vectors are used to calculate a user’s
or service’s similar neighborhood to perform collaborative
prediction based on historical QoS invocations. Finally, pre-
dicting an unknown QoS for a target user who desires to
invoke a target service can be achieved by adaptively inte-
grating the neural predicted QoS and collaborative pre-
dicted QoS. To demonstrate the effectiveness of our
proposed NCRL, extensive experiments are conducted on a
public and large-scale real-world dataset called WS-
DREAM[8], involving 5,825 real-world Web services from
74 regions and 339 service users from 31 regions. By com-
paring NCRL with several state-of-the-art baselines, the
results validate its effectiveness on multiple evaluation met-
rics for QoS prediction.

The main contributions are summarized as follows:

� We propose a novel framework NCRL for effective
QoS prediction, which integrates context-aware
deep neural network and collaborative relationships
of similar neighborhood by historical QoS invoca-
tions, leading to better QoS prediction accuracy.

� We propose an adaptive QoS prediction approach,
where multiple location information are taken as heu-
ristics to our designed two-tower deep residual

network for more effective neural QoS prediction by
precisely mining the latent features of users and serv-
ices. It is beneficial to collaborative QoS prediction
based on historical QoS invocations, where similar
neighbors are calculated by the extracted latent feature
representations. They are combined together with
weight factors to adaptively predict an unknownQoS.

� Extensive experiments have been conducted on a
large number of real-world QoS dataset to evaluate
the performance. The results demonstrate that NCRL
can remarkably outperform state-of-the-art baseline
approaches on prediction accuracy, while achieving
superior prediction efficiency with lower computa-
tion cost.

The remainder of this paper is organized as follows. Sec-
tion 2 formulates QoS prediction problem. Section 3 illus-
trates the overall framework of NCRL. Section 4 presents the
approach in detail. Section 5 shows and analyzes the experi-
mental results. Section 6 reviews the related work. Finally,
Section 7 concludes the paper and discusses the futurework.

2 PROBLEM FORMULATION

Definition 1 (Service User). Service users mainly refer to
those who have invoked one or more Web services. Let U ¼
fu1; u2; . . . ; umg be a set of users. For each u 2 U , it can be
described as a five-tuple u ¼< ID;RG;AS;Lat; Lon > . ID
is the identifier of u and the rest can be collectively represented
as location information.

Here, a service user’s location information mainly includes
Region (RG), Autonomous System (AS), Latitude (Lat.) and
Longitude (Lon.), respectively.

Definition 2 (Web Service). For QoS prediction problem, we
mainly focus on the non-functional features of a Web service.
Let S ¼ fs1; s2; . . . ; sng be a set of Web services. For each s 2
S, it can be described as a five-tuple s ¼< ID;RG;AS;
Lat; Lon > . ID is the identifier of s and the rest can be collec-
tively represented as location information.

Definition 3 (User-Service Invocation Record). Given a
user set U and a service set S, a user-service invocation record
is defined as a three-tuple r ¼< u; s; ru;s > , where u 2 U is a
service user, s 2 S is a Web service, and ru;s is QoS value when
u invokes s.

A user-service invocation set R can be obtained by col-
lecting all of the invocation records among users and serv-
ices. If a user ui has invoked a service sj, we have
< ui; sj; rui;sj >2 R, otherwise < ui; sj; rui;sj > =2 R.

Definition 4 (QoS Prediction Problem). Given a set of
users U , a set of services S and all observed QoS invocation
records R, a QoS prediction problem can be defined as V ¼<
U; S;R; u; s > , where u 2 U is a target user, s 2 S is a target
service, and < u; s; ru;s > =2 R.

The solution to a QoS prediction problem V is <
u; s; r̂u;s > . It indicates the predicted QoS value when a tar-
get user invokes a target service, by exploiting the provided
information of invocation records among users and services.
Based on a set of prediction results, desired services with
highQoS can be recommended to service users.
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In a natural approach, QoS objectives might differ and
often conflict. We may consider choosing the most suitable
one among the candidate services with reference to different
QoS criteria such as response time, throughput and reliabil-
ity. In practical scenarios, it needs to evaluate the impor-
tance of various QoS objectives with different metrics and
scales, and makes a trade-off among diverse QoS objectives
to select a Web service that comprehensively satisfies users’
concerned QoS requirements instead of achieving the best
quality on one of the QoS criteria.

3 THE FRAMEWORK OF NCRL

Fig. 1 is the overall framework of NCRL for adaptive QoS
prediction. The goal of NCRL is to automatically predict an
unknown QoS value, when a target user aims at invoking a
target Web service. It consists of three crucial stages, includ-
ing location-aware neural QoS prediction, neighborhood-
based collaborative prediction, and adaptive QoS prediction.
The processes of the three stages are marked with different
arrow types and described as below.

� In the stage of location-aware neural QoS prediction,
the identifiers and location information of users and
services are transformed into dense vector represen-
tations. A two-tower deep residual network is
designed to learn latent and discriminative feature
representations of users and services, which are fur-
ther used to perform neural QoS prediction and also
fed into neighborhood-based collaborative predic-
tion for finding similar neighborhood of users and
services.

� In the stage of neighborhood-based collaborative
prediction, those vacant QoS are estimated by using
the historical QoS invocations of similar neighbor-
hood. To find a set of similar users or services for a
target user or service, similarity calculation is per-
formed based on the extracted latent feature vectors
in the previous stage.

� In the stage of adaptive QoS prediction, neural pre-
dicted QoS and collaborative predicted QoS are inte-
grated by weight coefficient to adaptively predict the
final unknown QoS.

4 APPROACH

4.1 Location-Aware Neural QoS Prediction

Fig. 2 illustrates the architecture of location-aware two-
tower deep residual network, which consists of two inde-
pendent sub-networks for users and services, respectively.
When performing the neural QoS prediction, it has four
layers including location input layer, location embedding
layer, latent feature extraction layer and neural QoS predic-
tion layer. Table 1 presents all the notations.

4.1.1 Latent Feature Extraction of Users and Services

Location Input Layer. The function of the layer is mainly to
generate an initial feature representations for a user and a
service. As shown in Fig. 2, each tower has its own location
input layer, which receives the identifiers and location
information of users or services and integrates them sepa-
rately. Each user or service has its own unique ID, which is
represented by a non-negative integer. In addition, the lon-
gitude and latitude of a user or a service is represented as
real numbers. To generate a user’s or a service’s initial fea-
ture vector, we make basic conversions on RG and AS. Spe-
cifically, since the number of regions and autonomous
systems is limited, and simultaneously each user or service
corresponds to only one region and one autonomous sys-
tem, we perform a mapping from all regions and autono-
mous systems to a corresponding non-negative integer set.

User-service invocations involve complex contextual envi-
ronments, such as network status, user device performance,
and service runtimeworkload. To a large extent, network sta-
tus of users and services can particularly affect non-functional
performance of Web services, such as response time and
throughput. Correlative investigations [20], [22], [23] have
demonstrated that location information is of great importance
and extremely determines the network status by geographical
distance between users and services, which leads to the differ-
entiation of QoS invocations. In such case, usersmay receive a
better QoS experience when they invoke those services that
are geographically closer to them. Therefore, we leverage
location information of both users and services as heuristics
to auxiliarily promote the effectiveness of QoS prediction
performance.

Fig. 1. Overall framework of neighborhood-based collaborative residual learning for adaptive QoS prediction.
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Specifically, the initial features of a user and service are
represented as two multi-dimensional vectors as follows:

Iu ¼ ðuID; uRG; uAS; uLat; uLonÞ (1)

Is ¼ ðsID; sRG; sAS; sLat; sLonÞ (2)

where Iu and Is are the initial feature vectors. Suppose that
there is a user302 from China, located in the AS of China
Education and Research Network Center, whose latitude
and longitude are (35.0, 105.0). Then we can obtain the
user’s initial feature vector, which is represented as:

Iu302 ¼ ð302; 29; 123; 0:6983; 0:7898Þ

where region and autonomous system aremapped into 29 and
123. For latitude and longitude, we use the transformation
tools from the scikit-learn2 to scale them into the range of ½0; 1�.

Location Embedding Layer. Given a user’s or a service’s ini-
tial feature vector Iu or Is, we apply embedding on each dis-
crete feature of the initial feature vector. That is, only those

Fig. 2. Location-aware neural QoS prediction by two-tower deep residual network.

TABLE 1
Notations

Notation Description

U a set of users
S a set of Web services
Iu initial feature vector of a user u
Is initial feature vector of a Web service s
xu embedded feature vector of a user u
xs embedded feature vector of a Web service s
Wj embedding weight matrix of the jth discrete

feature
bj bias term of the jth discrete feature
fa ReLU activation function of location embedding

layer
ga GELU activation function of latent feature

extraction layer
x0
u latent feature of a user u

x0
s latent feature of a service s

Xu;s invocation feature of a user u and a service s
r̂u;s neural predicted QoS

r̂0u;s collaborative predicted QoS
R̂u;s adaptive predicted QoS

2. https://scikit-learn.org/
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discrete features, such as ID, region and AS, are represented
as one-hot encoding and mapped into dense feature vectors
with location embedding layer, respectively. It can be
regarded as a fully-connected network, which embeds one-
hot encoding vectors of each discrete feature into high-
dimensional but dense representation space. The formula
[24] is expressed as follows:

Ej ¼ faðWjXj þ bjÞ (3)

where j indexes a certain discrete feature, Xj 2 Rnj repre-
sents one-hot encoding vector of the feature, Wj 2 Rmj�nj

represents the embedding weight matrix, bj 2 Rmj repre-
sents the bias term, fa represents the ReLU activation func-
tion of location embedding layer, and Ej 2 Rmj is the
embedded feature.

Taking the above embedding function in Eq. (3), we trans-
form the initial feature vectors of a user’s and service’s ID,
region and AS into their corresponding embedded feature
vectors: EuID;EuRG;EuAS ; EsID; EsRG;EsAS . Note that we set
mj < nj when taking discrete feature embedding, since it is
used to reduce the dimensionality of the transformed one-hot
encoding representations from the initial feature vectors. On
this basis, these independently embedded features are com-
bined together with the latitude and longitude features to
obtain a user’s and service’s embedded feature vectors xu and
xs , respectively. The concatenation is expressed as follows:

xu ¼ FðEuID;EuRG;EuAS ; uLat; uLonÞ ¼

EuID

EuRG

EuAS

uLat

uLon

26666664

37777775 (4)

xs ¼ FðEsID;EsRG;EsAS ; sLat; sLonÞ ¼

EsID

EsRG

EsAS

sLat

sLon

26666664

37777775 (5)

where F represents the concatenation operation, xu and xs
denote a user’s and service’s embedded feature vectors,
respectively. These embedded feature vectors are fed into
the latent feature extraction layer.

Latent Feature Extraction Layer. In this layer, we take the
embedded feature vectors as inputs and extract latent fea-
tures of users and services by Residual Net [25] that solves
the problem of neural network performance degradation
caused by the increase of network layers. Generally, the
Residual Net consists of a large number of convolutional
layers. In the model of Deep Crossing [24], an improved
Residual Unit has been used instead of convolutional ker-
nels, which extends and boosts the capability for many
application scenarios. Inspired by Deep Crossing, we apply
the improved Residual Units to further learn latent and dis-
criminative feature representations of users and services.

The latent feature extraction layer is constructed from a
set of Residual Units of users and services, respectively. As
illustrated in Fig. 3, a Residual Unit consists of two nonlin-
ear layers and an identity shortcut. The input feature vector
of a Residual Unit is added back after passing through two

nonlinear layers. Formally, the feature propagation and
aggregation of a user or service Residual Unit is as follows:

Y h ¼ Wh
0gaðBNðxhÞÞ þ bh

0 (6)

Zh ¼ Wh
1gaðBNðY hÞÞ þ bh

1 (7)

xhþ1 ¼ Zh þ xh (8)

where xh represents the input of the hth Residual Unit, BN
represents the Batch Normalization [26], ga represents the
GELU activation function, Wh

f0;1g and bh
f0;1g are the parame-

ters of the two layers in the hth Residual Unit, xhþ1 is the

output of the hth Residual Unit, and it is also the input of
the hþ 1th Residual Unit.

The used activation function is Gaussian Error Linear
Unit (GELU) [27], which introduces the idea of random reg-
ularization into activation. The GELU nonlinearity weights
inputs by their value, rather than gates inputs by their sign
as in ReLUs [27]. The formula [27] is expressed as follows:

GELUðxÞ ¼ xP ðX � xÞ ¼ xFðxÞ
¼ x � 1

2
½1þ erfðx=

ffiffiffi
2

p
Þ� (9)

where erf represents gauss error function.
Note that similar model architectures with deep layers,

such as MLP and CNN, can also learn a user’s and service’s
latent feature representations for QoS prediction. However,
it is observed that as the depth of these deep neural net-
works increases, the performance of unknown QoS predic-
tion gets saturated and then degrades rapidly. In other
words, the increasing network layers cause the instability of
these neural networks, but Residual Units applied in our
model can perform some kind of regularization that leads
to network stability [28] beneficial to latent feature extrac-
tion of users and services for better predicting vacant QoS.

Furthermore, Unlike the Residual Unit in [24], we lever-
age a “full pre-activation” structure as in [28]. In contrast to
the conventional wisdom of “post-activation”, the activation
functions (GELU and BN) are moved to the front of the
weight layers. Such adjustment can significantly improve
the performance of the transformation and propagation of a
user’s or service’s embedding feature. Meanwhile, moving
BN to the front of GELU in each tower of user and service
feature extraction has the same advantageous effect as regu-
larization, which reduces over-fitting issue of our model,
enhancing the performance of QoS prediction.

Fig. 3. Residual Unit of users and services in latent feature extraction
layer.
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Consequently, given a user’s embedded vector xu and a
service’s embedded vector xs, the latent features can be
extracted and expressed as follows:

x0
u ¼ RLH

u ðxuÞ (10)

x0
s ¼ RLH

s ðxsÞ (11)

where RLH
u and RLH

s represent the functions of residual
layers with H Residual Units in user-tower network and
service-tower network, respectively. x0

u and x0
s are the

extracted latent features of a user and a service.
In NCRL, user-tower network and service-tower network

are designed similarly with the same multi-layer architec-
ture for extracting latent features of users and services,
although they can be trained independently by specific net-
work hyperparameters optimization in parallel.

4.1.2 Neural QoS Prediction and Model Training

Given latent features x0
u and x0

s, a nonlinear transformation
is applied for neural QoS prediction. First, the latent fea-
tures of a user and service are concatenated into an invoca-
tion feature, which is denoted asXu;s and expressed by:

Xu;s ¼ Fðx0u; x0
sÞ ¼

x0
u

x0s

� �
(12)

where F represents the concatenation operation. Then, a
neural QoS prediction layer is applied by linear transforma-
tion, which is expressed as:

r̂u;s ¼ fiðWOXu;s þ bOÞ (13)

where WO and bO are the parameters to be learned by our
model, fi represents the identity function, and r̂u;s is the
result of neural QoS prediction when a target user u invokes
a target service s.

To effectively perform neural QoS prediction, our model
is trained by the loss function, which measures mean abso-
lute error for overall prediction performance, rather than
sensitive to those outliers[29]. The loss function of model
parameter optimization J is expressed as:

J ¼ 1

N

XN
k¼1

Fðxk;QÞ �Rxk

�� ��þ �QLregðQÞ (14)

whereN is the batch size, Q denotes all the parameters to be
learned, F denotes the function of our two-tower deep neu-
ral network which maps the input xk to the predicted QoS
value, and Rxk denotes the real QoS value. Additionally,
�QLregðQÞ is the regularization item, which prevents our
model from overfitting.

The goal of the training process is to minimize J . We use
Adam optimizer [30] to update all the parameters that need
to be optimized in NCRL for latent feature extraction of
users and services as expressed in (15):

Q� h
@J

@Q
! Q (15)

where h is the learning rate. Once themodel converges, latent
feature vectors of users and services are generated and
concatenated as invocation feature for neural QoS prediction.

4.2 Neighborhood-Based Collaborative Prediction

Although our designed two-tower deep residual network
can capture user-service invocations by their location infor-
mation, the historical invocations are not fully utilized for
QoS prediction. In particular, some implicit similarity rela-
tionships among users and services are not intuitively and
directly mined by deep neural network. To further improve
the QoS prediction accuracy, we perform neighborhood-
based collaborative prediction by similarity calculation.

Based on the extracted latent features, we generate similar
neighborhood of users and services, respectively. Given two
latent features of a target user x0

u and a candidate similar
user x0

uc
, we use (16) tomeasure the similarity of two users:

Simðx0
u; x

0
uc
Þ ¼ x0

ux
0>
uc

x0
u

�� �� x0uc
�� �� (16)

where x0
u and x0

uc
are latent feature vectors, and Simðx0

u; x
0
uc
Þ

is the cosine similarity.
Analogously, given two latent features of a target service

x0s and a candidate similar service x0
sc
, the similarity of two

services is calculated as:

Simðx0s; x0
sc
Þ ¼ x0

sx
0>
sc

x0
s

�� �� x0
sc

�� �� (17)

where x0
s and x0

sc
are latent feature vectors, and Simðx0s; x0

sc
Þ

is the cosine similarity.
Given a target user u, it corresponds to a set of services Su

that have been invoked by u. By applying service similarity
calculation in (17) with a threshold u, we generate a subset
of service neighborhood S0

u that have been invoked by u
and simultaneously share highly close similarity with a tar-
get service s. The generation of service neighborhood S0

u is
formally expressed as follows:

S0
u ¼ s0 2 Su jSimðx0

s; x
0
s0 Þ � u

� �
(18)

Likewise, given a target service s, we can obtain a set of
users Us that have invoked s. By applying user similarity
calculation in (16) with a threshold u, we can obtain a set of
user neighborhood U 0

s, where each user u0 2 Us has high
similarity with the target user u. It can be expressed by:

U 0
s ¼ u0 2 Us jSimðx0

u; x
0
u0 Þ � u

� �
(19)

After filtering out all of those dissimilar users and serv-
ices from Us and Su, the generated service neighborhood S0

u

of a target user and user neighborhood U 0
s of a target service

are used for collaborative prediction. Specifically, taking the
above similarity between two users or two services as
weight coefficients, we combine them together to predict
unknown QoS based on historical QoS invocations. For-
mally, given a target user u and a target service s, collabora-
tive predicted QoS r̂0u;s is calculated as follows:

r̂0u;s ¼
P

u02U 0
s
Simðx0

u; x
0
u0 Þ 	 ru0;s þ

P
s02S0u Simðx0s; x0

s0 Þ 	 ru;s0P
u02U 0

s
Simðx0

u; x
0
u0 Þ þ

P
s02S0u Simðx0s; x0

s0 Þ
(20)

where U 0
s and S0

u are user neighborhood of a target service s
and service neighborhood of a target user u, respectively.
ru0;s and ru;s0 represent the historical invocation QoS, when a
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user neighborhood u0 has invoked the target service s, or the
target user u has invoked a service neighborhood s0.

4.3 Adaptive QoS Prediction

Adaptive QoS prediction takes full advantage of neural QoS
prediction and neighborhood-based collaborative predic-
tion. Neural QoS prediction is based on two-tower deep
residual network that can effectively extract latent features
of users and services by location information, which is
applied for calculating similar neighborhood to collabora-
tively predict QoS by historical QoS invocations.

Based on the results of above neural QoS prediction and
neighborhood-based collaborative prediction, the finally
adaptive predicted QoS is calculated as follows:

bRu;s ¼ ar̂u;s þ br̂0u;s (21)

where r̂u;s is neural predicted QoS, r̂0u;s is neighborhood-

based collaborative predicted QoS, and bRu;s is finally adap-

tive predicted QoS. Here, a and b are the weight coefficients

with a;b 2 ½0; 1� and aþ b ¼ 1.

5 EXPERIMENTS

5.1 Experimental Setup and QoS Dataset

All the experiments are carried out on our workstation
equipped with two NVIDIA GTX 1080Ti GPUs, an Intel(R)
Xeon(R) Gold 6130 @2.60 GHz CPU and 192GB RAM. The
components of NCRL in the experiments are implemented
by Python 3.7.1 with Pytorch 1.4.0.

To validate the performance ofNCRL,we conduct extensive
experiments on a publicly available large-scale real-world QoS
dataset calledWS-DREAM [8], which has beenwidely used for
QoS prediction verification. It consists of two kinds of QoS cri-
teria, including response time (RT) and throughput (TP),which
totally has 1,974,675 historical QoS invocation records collected
from 339 users and 5,825 Web services. In addition, multi-
source location information of these users and services are pro-
vided in RT and TP, such as region, latitude and longitude.
More detailed statistics of theQoS dataset is shown in Table 2.

The QoS dataset of RT or TP can be represented as a user-
service QoSmatrix, where a row represents a set of QoS values
that a user invokes all of the services, and a column represents
a set of QoS values that a service is invoked by all of the users.
Considering the sparsity of user-service invocations in real
application scenarios, QoS dataset is set as four different low
densities formodel training on RT and TP, including 2.5%, 5%,
7.5% and 10%, respectively. For the comparisons of QoS pre-
diction accuracy, remaining QoS samples under each density
are used as testing data in the experiments.

5.2 Evaluation Metrics

In the experiments, we compare the performance of QoS
prediction among NCRL and competing baselines by two
evaluation metrics, including Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE). They have been
widely used to measure the accuracy of QoS prediction.

Let ru;s and r̂u;s denote the original and predicted QoS of
a service s invoked by a user u, respectively. MAE and
RMSE are applied to quantify the deviation between pre-
dicted QoS and the original one, which are defined as:

MAE ¼
P

u;s jru;s � r̂u;sj
N

(22)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

u;sðru;s � r̂u;sÞ2
N

s
(23)

where N is the number of the predicted QoS values. Here, it
is observed that smaller deviations on MAE and RMSE indi-
cate better performance of vacant QoS prediction.

MAE evaluates the overall accuracy of QoS prediction by
calculating the averaged absolute deviations to the ground
truth QoS values, while RMSE is more sensitive to individ-
ual outliers.

5.3 Competing Methods

To evaluate the performance of NCRL, we compare it with
nine competing baselines, including three memory-based
conventional approaches [8], [9], two model-based matrix
factorization approaches [13], [31], and four model-based
deep neural network approaches [19], [20], [21], [32]. They
are described as below.

� UPCC [9]: It is a user-based QoS prediction method
that finds a set of similar users as the neighborhood
of a target user with PCC, and combines the average
QoS of the target user with the deviation migration
based on the found similar users.

� IPCC [8]: It is a service-based QoS prediction method
that finds a set of similar services as the neighbor-
hood of a target service with PCC, and combines the
average QoS of the target service with the deviation
migration based on the found similar services.

� UIPCC [8]: It is a hybrid CF method for QoS predic-
tion by the combination of UPCC and IPCC, which
applies a weighting coefficient to adjust the impor-
tance of UPCC and IPCC. It provides a fundamental
way of predicting missing QoS by simultaneously
integrating similar users and services.

� PMF [13]: It is a probabilistic matrix factorization
method which utilizes probability model to optimize
matrix factorization. It refers to a model-based repre-
sentative approach for QoS prediction by improving
the traditional matrix factorization.

� FM [31]: It is a factorization machine method which
combines the generality of feature engineering with
the superiority of factorization models. It is a model-
based approach and can be introduced to predict
unknown QoS.

TABLE 2
Statistics of QoS Dataset

Item Name Value

Users 339
Services 5825
Service Invocations 1,974,675
Users’ Regions 31
Users’ AS 137
Services’ Regions 74
Services’ AS 992
Services’ Providers 2699
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� NCF [32]: It is a deep neural network based collabo-
rative filtering method which solves the disadvan-
tage on feature interaction of matrix factorization by
inner product. It is a model-based approach based
on MLP that can be applied for QoS prediction by
learning complex nonlinear interaction relationships
among users and services.

� DNM [19]: It is model-based deep neural network
approach for multi-attributes QoS prediction, which
maps contextual features into a shared latent space
and captures their high-order interactions through
the interaction layer and the perception layers.

� NDMF [21]: It is our previously proposed model-
based deep neural network approach for QoS predic-
tion. By taking advantage of both the historical QoS
records and users’ geographical information, it gen-
erates similar users as neighborhood, which is
loosely integrated into a deep neural network model
via multi-layer perceptron.

� LDCF [20]: It is a model-based deep neural network
method for QoS prediction. It integrates MLP with a
similarity adaptive corrector, which has good adapt-
ability in exploiting contextual information such as
locations of users and services.

5.4 Experiment Results and Analyses

To validate the effectiveness of our proposed NCRL, we
tune the model parameters of competing methods directly
as they are suggested with the best performance in the
experiments of the references. As for NCRL, the parameters
settings are shown in Table 3. In the experiments, historical
QoS records from response time (RT) and throughput (TP)

are partitioned into four different densities, including 2.5%,
5%, 7.5% and 10%, respectively. All the competing methods
are run on both RT and TP training sets, and QoS prediction
performance is evaluated on the test sets by calculating
MAE and RMSE. To avoid the deviations, we run NCRL
and competing methods several times to report the average
results for the guarantee of fair performance comparisons.

The experimental results of QoS prediction among compet-
ing methods on RT and TP are shown in Tables 4 and 5,
respectively. Here, the best results aremarked in bold and the
second-best results are highlighted in the gray background.
We also calculate the performance gains on them. As can be
seen from the results on MAE and RMSE, NCRL consistently
and remarkably outperforms all competing methods by up to
11.0% in terms ofMAE, and 8.7% in terms of RMSE.More spe-
cifically, as the increasing QoS density from 2.5% to 10% on
RT and TP, it is observed that MAE and RMSE of all the com-
petingmethods become smaller and smaller, indicating better
QoS prediction accuracy. It can be reasonably explained that
more historical QoS training data can be provided for finding
similar neighborhood and learning a better prediction model,
as the QoS density continues to rise. As expected of our
NCRL, it becomes gradually better and always receives supe-
rior QoS prediction performance across multiple QoS densi-
ties comparedwith the competing baselines.

UPCC, IPCC and UIPCC as basic CF methods perform
poorly in QoS prediction because they mainly rely on histor-
ical QoS invocations to find similar users and services for
QoS prediction, which is significantly vulnerable to the
sparsity of user-service QoS invocations. As the basic matrix
factorization method, PMF introduces a probability model
to perform matrix decomposition, which can be used to par-
tially solve the sparsity of QoS density [13] and applied for
better missing QoS prediction than conventional CF meth-
ods. Moreover, FM pays more attention to linear feature
interaction learning, which can generate better QoS predic-
tion performance than basic MF methods.

To further improve the QoS prediction accuracy, NCF
leverages multi-layer perceptron (MLP) that mines nonlin-
ear interaction relationships from the embedded feature
vectors of users and services. Although it can outperform
MF competing methods, QoS prediction accuracy is still
worse than DNM, NDMF and LDCF, since it has ignored
the contextual information when extracting latent features
of users and services. DNM and LDCF take full advantage

TABLE 3
Parameter Settings

Parameter Value

batch size 128
epoch 200
d (dimensionality) 16
H (hidden neurons) <64, 128, 64, 64, 32, 32>
h (learning rate) 0.0005
u (similarity threshold) 0.5
a (weight coefficient) 0.8 for RT, 0.7 for TP

TABLE 4
Performance Comparisons of QoS Prediction Among Competing Methods on Response Time

Methods Density = 2.5% Density = 5% Density = 7.5% Density = 10%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 0.7679 1.7888 0.6166 1.5287 0.5724 1.4197 0.5550 1.3807
IPCC 0.7380 1.7769 0.6727 1.6981 0.6471 1.6728 0.6261 1.6367
UIPCC 0.7515 1.7549 0.6078 1.5023 0.5670 1.4064 0.5502 1.3684
PMF 0.6492 1.6149 0.5753 1.4422 0.5252 1.3370 0.4954 1.2778
FM 0.6876 1.5321 0.6203 1.4406 0.5592 1.3281 0.5392 1.3052
NCF 0.5444 1.5472 0.4652 1.3904 0.4159 1.3583 0.3783 1.3040
DNM 0.4777 1.4829 0.4147 1.4274 0.3843 1.3745 0.3628 1.3567
NDMF 0.5393 1.4036 0.4880 1.3495 0.4416 1.2793 0.4304 1.2349
LDCF 0.4525 1.3773 0.4031 1.3102 0.3799 1.2875 0.3642 1.2358
NCRL 0.4098 1.3316 0.3589 1.2694 0.3420 1.2401 0.3385 1.2252
Gains 9.4% 3.3% 11.0% 3.1% 10.0% 3.1% 6.7% 0.8%

ZOU ETAL.: NCRL: NEIGHBORHOOD-BASED COLLABORATIVE RESIDUAL LEARNING FOR ADAPTIVE QOS PREDICTION 2037

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on June 14,2023 at 14:56:25 UTC from IEEE Xplore.  Restrictions apply. 



of contextual information when encoding the initial fea-
tures, which are integrated into a multi-layer perceptron
network for better learning the implicitly complex nonlinear
interaction relationships. Thus, they are superior to NCF in
terms of MAE across multiple QoS densities, even though
in some cases DNM cannot perform well on RMSE. Com-
pared to DNM and LDCF, NDMF considers both historical
QoS records and users’ geographical information for find-
ing similar users as neighborhood, which is collaborated
with MLP for training QoS prediction model, leading to bet-
ter performance on RMSE at specified QoS densities.

Inspired by the competing baselines, NCRL effectively
performs adaptive QoS prediction, where location-aware
two-tower deep residual network is designed to more pre-
cisely extract latent features for neural QoS prediction that
is positively upgraded by collaborative QoS prediction
based on historical QoS invocations. Consequently, we con-
clude that the proposed NCRL obtains the best QoS predic-
tion accuracy on MAE and RMSE among all the competing
methods across multiple QoS densities.

Asmentioned above, geographical distance between users
and services has a great impact on QoS experience, so we use
location-aware features to predict QoS values. Other compet-
ing methods based on neural networks like [19], [20], [21],
[32] apply fully-connected layers to extract latent features,
which are prone to overfitting when neural networks are
complex and have multiple layers. As for NCRL, it can fully
leverage the benefits of residual learning, which solves the
problem of network degradation occurred in the fully-con-
nected layer. Thus, despite the complex structure of NCRL, it
still maintains the effectiveness of latent feature extraction.

The time consumption of NCRL is mainly from the two-
tower deep residual network. Specifically, let Nu and Ns

denote the dimensionality of location feature of a user or a
service, Eu and Es denote the dimensionality of embedded
feature of a user or a service. By calculating in Eq. (3), the
computational complexity of the fully-connected layer for
location feature embedding is OðNuEu þNsEsÞ. Let d
denote the dimensionality of hidden feature in Residual
Units, h denote the number of Residual Units. By calculat-
ing in Eqs. (10) and (11), computational complexity of resid-
ual layer is OðhdE2

u þ hdE2
s Þ. By calculating in Eq. (13),

computational complexity of prediction layer is OðEu þ EsÞ.

From the above analyses, it is observed that the computa-
tional complexity of NCRL is OðhdðE2

u þ E2
s Þ þNuEu þ

NsEs þ Eu þEsÞ. Compared with conventional competing
baselines, the network architecture of NCRL is more com-
plex, resulting in additional time consumption when per-
forming model training and parameter optimization in an
offline way. However, neural QoS prediction layer only
needs to receive latent feature vectors of users and services
to perform the task of unknown QoS prediction with the
computational complexity of OðEu þEsÞ in an online way,
which can be efficiently deployed for real-time response in
service-oriented application scenarios.

In addition, we also observe that although the competing
approaches have higher training accuracy of unknown QoS
prediction than the proposed NCRL due to the overfitting
problem of their latent feature learning and representation,
while our designed two-tower deep residual learning-based
unknown QoS prediction model has advantageous proper-
ties, such as high generalization learning capability with
better test prediction accuracy. Therefore, NCRL can more
effectively satisfy the demands of QoS prediction in real ser-
vice-oriented application scenarios.

However, the performance of NCRL is highly influenced
by the tuning and optimization of hyperparameters. Cur-
rently, there is not an effective theoretical methodology to
guide the setting of hyperparameters. Therefore, we need to
conduct further experiments to determine the best settings
of model hyperparameters of NCRL, considering multiple
factors such as application preference, density and distribu-
tion of user-service QoS invocations. Moreover, one main
disadvantage of cosine similarity used in NCRL is that the
magnitude of feature vectors is ignored and only their direc-
tion is taken into account, which reduces the performance of
QoS prediction. It is expected that more sophisticated simi-
larity measurements can be applied to calculate user and
service neighborhood for better collaborative QoS predic-
tion, such as euclidean distance, Pearson Correlation Coeffi-
cient, and Ratio-Based Similarity [5].

5.5 Performance Impact of Parameters

In the experiments, three main hyperparameters signifi-
cantly impact the performance of our proposed approach
NCRL, including the dimensionality of latent features of
users and services, the number of Residual Units, and the
weight coefficient of neural QoS prediction.

5.5.1 Impact of Dimensionality

The dimensionality d determines the dimension of embed-
ding vectors in the location embedding layer. Due to the
identity shortcut, feature vectors of users and services
extracted in the latent feature extraction layer, have the
same dimensionality as the embedding vectors. Thus, the
dimensionality also impacts how much useful information
is utilized to represent the latent features.

To test the performance impact of d, we vary its value by 2,
4, 8, 16, 32, 64 and set QoS matrix density as 0.025, 0.05, 0.075
and 0.1, respectively. The results are illustrated in Fig. 4. It
can be seen from the three-dimensional graph of the experi-
mental results that the MAE and RMSE show a decreasing
trend with the increasing number of dimensionality. More

TABLE 5
Performance Comparisons of QoS Prediction Among Compet-

ing Methods on Throughput

Methods Density =
2.5%

Density =
5%

Density =
7.5%

Density =
10%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

UPCC 37.84 93.33 25.42 65.68 22.96 58.83 21.25 57.24
IPCC 37.25 97.50 32.96 89.85 31.02 87.56 29.76 84.90
UIPCC 36.87 91.85 25.18 65.37 22.93 59.17 22.43 57.56
PMF 30.18 74.67 24.20 56.03 22.52 55.97 20.40 51.75
FM 28.57 72.30 21.59 57.60 19.47 50.51 17.69 48.62
NCF 24.21 64.15 18.68 54.65 15.88 48.38 14.40 46.22
DNM 18.29 65.65 14.85 59.33 13.82 56.55 12.92 54.50
NDMF 20.31 58.17 16.38 50.96 15.28 47.60 13.93 43.91
LDCF 16.47 59.02 14.24 48.46 13.52 47.70 12.42 43.79
NCRL 16.05 53.09 13.49 46.25 12.63 43.72 11.84 41.45
Gains 2.6% 8.7% 5.3% 4.6% 6.6% 8.2% 4.7% 5.3%
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specifically, when the dimensionality varies from 2 to 16, it
reaches the largest decreasing changes, and then it becomes
smaller or even increases within the variations from 16 to 64.
The primary reason is that, when the dimensionality of the
latent features of users and services is too small, it may result
in partial hidden information lost from feature vectors,which
affects feature representation ability and reduces QoS predic-
tion accuracy. Conversely, when the dimensionality of the
feature vectors tunes to be too large, it may potentially cause
the issue of feature sparseness. It is not conducive to two-
tower deep residual network in NCRL to mine the implicitly
complex nonlinear interaction relationships among users
and services. Therefore, choosing an appropriate dimension-
ality has an important impact on feature interaction learning
and QoS prediction. Considering the variation trends of
MAE and RMSE under different QoS densities among
response time and throughput, the dimensionality is set as 16
to achieve the best performance of QoS prediction.

5.5.2 Impact of the Number of Residual Units

The number of Residual Units affects the depth of the latent
feature extraction layer. Generally, the deeper the residual
network is, the more nonlinear interactions among users and
services it can learn for better QoS prediction performance.
In NCRL, since each Residual Unit contains two nonlinear
layers, the depth of the latent feature extraction layer is twice
the number of Residual Units. In the experiments, we vary

the number of Residual Units from 1 to 6, and correspond-
ingly set the number of hidden neurons as 64, 128, 64, 64, 32
and 32, respectively.

Fig. 5 illustrates the performance impact of the number of
Residual Units. It can be observed that both MAE and
RMSE sharply decrease as the number of Residual Units
varies from 1 to 2, and then slowly decline until the number
of Residual Units arrives at 4. However, MAE and RMSE
begin to fluctuate with slightly ascending trend after the
number of Residual Units constantly increases from 4 to 6.
It can be reasonably explained that when the number of
Residual Units is too small, our designed two-tower deep
residual network cannot reach a powerful learning capacity
to effectively learn the implicitly complex nonlinear interac-
tion among users and services, which significantly lowers
QoS prediction accuracy. In another extreme case, if the
number of Residual Units is set to be a large value, it is
prone to the phenomenon of model training overfitting that
may also incur the performance reduction of QoS predic-
tion. Based on the above analyses, when the number of
Residual Units is set to 4 in our experiments, two-tower
deep residual network achieves the best QoS prediction
accuracy under different QoS densities.

5.5.3 Impact of Weight Coefficient

NCRL adaptively predicts an known QoS by integrating the
neural and collaborative predicted values with two weight

Fig. 4. Performance impact of dimensionality d on NCRL under different QoS densities.
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coefficients, which impacts the MAE and RMSE of QoS pre-
diction. The parameters a and b in (21) adjust the adaptive
correction of r̂u;s and r̂0u;s. Due to the constraint between a

and b (i.e., aþ b ¼ 1), we only analyze the performance
impact of a. It varies from 0 to 1 with a step size of 0.1, and
QoS density is set from 0.025 to 0.1.

Fig. 6 illustrates the performance impact of weight coeffi-
cient. Apparently, when a is set to 1, NCRL completely
degenerates into neural QoS prediction; when a is set to 0, it
turns to be neighborhood-based collaborative QoS predic-
tion. We can observe from Fig. 6 that NCRL can receive the
lowest MAE and RMSE for the best QoS prediction accuracy,
when a is set at a certain value between 0 and 1. It indicates
that both neural QoS prediction and neighborhood-based
collaborative prediction are beneficial to boosting the perfor-
mance QoS prediction. However, it is still difficult to find an
ubiquitous value of a that makes NCRL perform optimally
across multiple QoS densities on both MAE and RMSE. For
example, when QoS density is set to 5% for response time,
NCRL performs optimally on MAE and RMSE with the set-
tings of a = 0.9 and 0.5, respectively. Considering the perfor-
mance of a onMAE andRMSE comprehensively, it relatively
achieves superior QoS prediction accuracy, when a is set to
0.8 on RT and 0.7 on TP.

5.6 Prediction Efficiency

To verify the efficiency of our proposed NCRL, we conduct
experiments to compare QoS prediction time with compet-
ing methods. PMF, NCF, LDCF and NDMF are chosen to
compare with NCRL in the experiments. To guarantee the
comparison fairness, all the competing methods are trained
and equipped by the same hardware and software environ-
ments. In the experiments, 10,000 QoS samples are selected
as test data and fed into five competing methods. They are
run repeatedly for 20 rounds, and the duration of each
round is recorded to QoS prediction.

Fig. 7 illustrates the prediction efficiency among compet-
ing methods. From the results, PMF achieves the best effi-
ciency because it has the least parameters and makes QoS
prediction by the dot product between feature vectors of a
user and service. Subsequently, NCRL dominates other
competing methods based on deep neural networks, while
NDMF consumes the most time for QoS prediction. The rea-
son is that NCRL stores the extracted latent features of users
and services by offline learning at the training stage, which
are used to both perform neural QoS prediction based on a
shallow network and calculate similar users and services
for neighborhood-based collaborative prediction. At the
prediction stage, corresponding feature vectors can be effi-
ciently retrieved for adaptive QoS prediction. Therefore,
NCRL can obtain higher efficiency compared to state-of-
the-art baselines based on deep neural networks.

6 RELATED WORK

6.1 Memory-Based Approaches

This kind of QoS prediction approaches first performs simi-
larity calculation to find a set of similar users or services,
and then predicts the unknown QoS values by combining
the average QoS and deviation migration based on histori-
cal QoS invocations. Shao et al. [9] proposed a user-based
CF approach to predict QoS values by finding similar users
with Pearson Correlation Coefficient. Chen et al. [33] pro-
posed a service-based CF approach where similarity is cal-
culated between services and their combination with the
location of service provider to predict QoS values. Zheng
et al. [7] proposed a hybrid CF approach called WSRec to
predict QoS values, which combines the predicted QoS val-
ues by user-based CF and service-based CF with a weight
coefficient. It achieves better prediction accuracy than previ-
ous memory-based approaches, since both the similarity of
users and services are taken into account for predicting

Fig. 5. Performance impact of the number of Residual Units on NCRL under different QoS densities.

Fig. 6. Performance impact of a on NCRL under different QoS densities.
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unknown QoS. To further improve the effectiveness of simi-
larity, Sun et al. [34] proposed a new similarity measure for
collaboratively predict QoS values, called normal recovery
collaborative filtering. Wu et al. [5] proposed a ratio-based
similarity approach to select neighborhoods of users and
services, leading to better QoS prediction. IoTPredict [35] is
a novel neighborhood-based QoS prediction approach for
the IoT, which uses an alternative similarity calculation
mechanism and achieves higher QoS prediction accuracy.
Zou et al. [10] proposed a reinforced collaborative filtering
approach, where noisy users or services are filtered out for
average QoS and deviation migration, significantly improv-
ing the accuracy of QoS prediction.

Although many efforts of this kind of approaches have
been made for QoS prediction, the performance is still
unsatisfactory for predicting unknown QoS, because they
are significantly influenced by the sparsity of historical
user-service QoS invocations.

6.2 Model-Based Approaches

This kind of approaches tries to learn a model from histor-
ical user-service QoS invocations to predict QoS values.
Matrix Factorization (MF) as the fundamentally applied
techniques have been widely investigated for model-
based QoS prediction. It can partially solve the issue of
data sparsity and scalability when predicting vacant QoS
values. Probabilistic Matrix Factorization (PMF) [13] as
the basic approach utilizes probability model to optimize
matrix factorization and improve the prediction accuracy.
Based on PMF, Xu et al. [17] proposed a location-aware
QoS prediction approach that integrates feature vectors of
neighbors into probabilistic matrix factorization of latent
user feature vectors based on their longitudes and lati-
tudes. Zheng et al. [14] proposed an MF-based QoS pre-
diction approach called NIMF that calculates users’
neighborhood by PCC and integrate similar users into the
matrix factorization, which effectively improves QoS pre-
diction performance.

Yin et al. [36] demonstrated that QoS values such as
response time and throughput are highly dependent on the
performance of networks, where users located in the same
location have similar invoked QoS values for the same ser-
vice and the services located in the same location generally
share the similar QoS values when invoked by the same

user. Inspired by the above observation, they [16] proposed
LoNMF, which first identifies a set of highly relevant local
neighbors by a two-level selection mechanism and then inte-
grates geographical information to build up an extended
matrix factorization approach for personalized QoS predic-
tion. Tang et al. [37] proposed a network-aware QoS predic-
tion called NAMF that also integrates users’ neighborhood
information intomatrix factorization to learn a linear interac-
tion relationship. However, it measures the network distan-
ces between users with network map to calculate a user’s
similar neighborhood rather than historical user-service QoS
invocations. In addition, Xu et al. [38] proposed a highly
credible approach for predicting unknownQoS values called
reputation-based matrix factorization (RMF), which quanti-
fies the credibility of users based on their contributed QoS,
and then integrates users’ reputation into matrix factoriza-
tion for achievingmore accurate QoS prediction accuracy.

Recently, deep learning techniques have been widely
applied to improve the recommendation quality and solve
QoS prediction problems. NCF [32] as a neural collaborative
filtering approach based on deep neural network leverages
multi-layer perceptron to learn nonlinear interaction relation-
ships, which can be applied for effective QoS prediction. Wu
et al. [19] proposed a deep neural model (DNM) for making
multiple attributes QoS prediction, where contextual features
are mapped into a shared latent space and their high-order
interactions are captured throughmulti-layer perceptron net-
work. Zhang et al. [20] proposed a location-aware deep col-
laborative filtering (LDCF) approach by integrating MLP
with a similarity adaptive corrector, extending the adaptabil-
ity for QoS prediction. Zou et al. [21] proposed a novel
approach for QoS prediction called neighborhood-integrated
deep matrix factorization (NDMF), which firsts exploits both
historical user-service QoS invocations and users’ geographi-
cal information to find a target user’s neighborhood, and
then loosely integrates it into MLP for learning nonlinear
interaction relationships among users and services. Wang
et al. [23] proposed a novel location-aware feature interaction
learning (LAFIL) approach for predicting QoS values, which
can effectively solve the issues on data sparsity and cold-start
by leveraging location features of both users and services. Xia
et al. [39] proposed a QoS prediction approach called
JDNMFL that buildsCNN-based joint deep networks to learn
multi-source feature interaction. Compared to matrix factori-
zation based QoS prediction approaches, it has obvious
advantage that these approaches based on deep neural net-
works can more effectively learn the implicitly complex non-
linear interactive relationships among users and services.
Wang et al. [40] proposed a hidden-state aware network
named HSA-Net that is mainly based on the idea of initializ-
ing hidden-state information of users and services. It can
overcome the challenge of independent features and enhance
the compatibility to different datasets.

Most of the existing approaches have exploited shallow
deep neural network such as MLP, where collaborative rela-
tionships of similar neighborhood have not been fully taken
into account. In contrast to these approaches, NCRL addresses
the problem by combining the advantages of neural prediction
and collaborative prediction together to perform adaptive QoS
prediction. We leverages a designed two-tower deep residual
network to separately extract users’ and services’ latent

Fig. 7. Prediction efficiency among competing methods.
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features, which are used to make neural prediction and calcu-
late similar neighborhoods to perform collaborative predic-
tion. Therefore, our proposedNCRL can significantly improve
the performance of QoS prediction.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel framework called NCRL,
which aims at improving the performance of QoS prediction
in an adaptive way. First, we proposed a location-aware
two-tower deep neural network to learn the implicitly com-
plex user-service nonlinear interactive relationships for
neural QoS prediction, where multi-source location infor-
mation are taken into account to extract the latent features
of users and services. Then, we detect similar users and
services based on the extracted latent feature vectors for
neighborhood-based collaborative prediction, where user-
service historical QoS invocations are taken to calculate the
missing QoS. Finally, we adaptively perform QoS prediction
by combining neural and collaborative predicted QoS with
weight coefficients. Extensive experiments are conducted
and the results demonstrate that NCRL achieves the best per-
formance in terms of effectiveness and efficiency compared
with state-of-the-art competing baselines. In the future, we
plan to further explore advanced neural networks to
improve the QoS prediction accuracy with the consideration
of temporal characteristics on user-service invocations in
edge computing paradigm.
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