
ST-EUA: Spatio-Temporal Edge User Allocation
With Task Decomposition

Guobing Zou , Ya Liu , Zhen Qin , Jin Chen , Zhiwei Xu , Yanglan Gan ,

Bofeng Zhang , and Qiang He

Abstract—Recently, edge user allocation (EUA) problem has received much attentions. It aims to appropriately allocate edge users to

their nearby edge servers. Existing EUA approaches suffer from a series of limitations. First, considering users’ service requests only

as a whole, they neglect the fact that in many cases a service request may be partitioned into multiple tasks to be performed by

different edge servers. Second, the impact of the spatial distance between edge users and servers on users’ quality of experience is not

properly considered. Third, the temporal dynamics of users’ service requests has not been fully considered. To overcome these

limitations systematically, this article focuses on the problem of spatio-temporal edge user allocation with task decomposition (ST-

EUA). We first formulate the ST-EUA problem. Then, we transform ST-EUA problem as an optimization problem with multiple

objectives and global constraints and prove itsNP-hardness. To tackle the ST-EUA problem effectively and efficiently, we propose a

novel genetic algorithm-based heuristic approach called GA-ST, aiming to maximize users’ overall QoE while minimizing the cost of

task migration in different time slots. Extensive experiments are conducted on two widely-used real-world datasets to evaluate the

performance of our approach. The results demonstrate that GA-STsignificantly outperforms state-of-the-art approaches in finding

approximate solutions in terms of the trade-off among multiple metrics.

Index Terms—Spatio-temporal EUA, task decomposition, quality of experience, migration cost, service request

Ç

1 INTRODUCTION

WITH the rapid development of Internet of Things (IoT)
and wireless communication technologies, the world

has witnessed a surge in the number of mobile and IoT
devices (referred to as end-devices hereafter), including
mobile phones, wearables, sensors and a wide range of IoT
devices. It is estimated that the internet will connect up to
32 billion end-devices by 2023 according to Ericsson’s
Mobility Report [1]. Due to the limited computing and stor-
age resources of end-devices, they often need to access vari-
ous services deployed on remote cloud centers, which
generates tremendous network traffic and contributes to
network congestion significantly. In the meantime, this
cloud computing paradigm is challenged by many services
demanding low latency, especially those that require real-
time interactions with users, such as autopilot, virtual real-
ity (VR) and augmented reality (AR).

To tackle this issue, edge computing has emerged as a
novel distributed computing paradigm as an extension of the
cloud computing paradigm. It allows different kinds of
resources, such as CPU, RAM, Storage, Bandwidth, etc., to be
provided by edge servers deployed at the network edge
within users’ close geographic proximity. In edge computing,
edge servers are deployed at cellular base stations and cover
different geographical areas. Adjacent edge servers’ coverages
usually intersect to avoid blank areas not covered by any edge
server. Under the coverage constraint [2], users can connect to
nearby edge servers - those that cover the users - via radio
access and submit service requests to them for processing. In
thisway, the central cloud is not required to process all the ser-
vice requests. This significantly reduces the service latency as
well as the network traffic over the backhaul network.

Although edge computing has emerged as a key 5G
enabling technology for realizing the IoT visions [3], it still
faces many new and critical challenges. Edge user allocation
problem (EUA) is as one of those challenges and has
received a lot of attentions in recent years [2], [4]. In the
edge computing environment, service vendors hire resources
on edge servers to provide edge users with different kinds of
services, such as IoT services, AI services and mobile serv-
ices. Under the capacity constraint [4], EUA aims to help ser-
vice vendors allocate their users to edge servers properly so
as to cost-effectively utilize the diverse resources hired on
edge servers. Existing EUA approaches try to achieve a spe-
cific optimization goal, e.g., to minimize the number of edge
servers needed [2], [5], to maximize the user satisfaction
measured by their Quality of Experience (QoE) [6], [7], or to
increase the overall ratio of allocated users [4], [6], [7], [8].

However, existing approaches suffer from a series of lim-
itations. First, most EUA approaches model the problem as

� Guobing Zou, Ya Liu, Zhen Qin, Jin Chen, Zhiwei Xu, and Bofeng
Zhang are with the School of Computer Engineering and Science, Shang-
hai University, Shanghai 200444, China. E-mail: {gbzou, ambersoul,
zhenqin, cj1125, zhiweixu, bfzhang}@shu.edu.cn.

� Yanglan Gan is with the School of Computer Science and Technology,
DonghuaUniversity, Shanghai 201620, China. E-mail: ylgan@dhu.edu.cn.

� Qiang He is with the Department of Computer Science and Software
Engineering, Swinburne University of Technology, Melbourne, VIC 3122,
Australia. E-mail: qhe@swin.edu.au.

Manuscript received 11 March 2021; revised 17 October 2021; accepted 16 Janu-
ary 2022. Date of publication 21 January 2022; date of current version 6 February
2023.
This work was supported in part by the National Natural Science Foundation
of China under Grants 61772128 and 62172088, and in part by Shanghai Nat-
ural Science Foundation under Grant 21ZR1400400.
(Corresponding authors: Yanglan Gan and Qiang He.)
Digital Object Identifier no. 10.1109/TSC.2022.3144441

628 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

1939-1374 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0002-7865-8158
https://orcid.org/0000-0003-2679-2598
https://orcid.org/0000-0003-2679-2598
https://orcid.org/0000-0003-2679-2598
https://orcid.org/0000-0003-2679-2598
https://orcid.org/0000-0003-2679-2598
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1756-6102
https://orcid.org/0000-0002-1660-5034
https://orcid.org/0000-0002-1660-5034
https://orcid.org/0000-0002-1660-5034
https://orcid.org/0000-0002-1660-5034
https://orcid.org/0000-0002-1660-5034
https://orcid.org/0000-0003-4430-3727
https://orcid.org/0000-0003-4430-3727
https://orcid.org/0000-0003-4430-3727
https://orcid.org/0000-0003-4430-3727
https://orcid.org/0000-0003-4430-3727
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0001-5931-9006
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-5001-1096
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-2607-4556
https://orcid.org/0000-0002-2607-4556
mailto:gbzou@shu.edu.cn
mailto:ambersoul@shu.edu.cn
mailto:zhenqin@shu.edu.cn
mailto:cj1125@shu.edu.cn
mailto:zhiweixu@shu.edu.cn
mailto:bfzhang@shu.edu.cn
mailto:ylgan@dhu.edu.cn
mailto:qhe@swin.edu.au

a static global optimization problem. However, the real-
world edge computing environment features temporal
dynamics, in particular the variations in the distributions of
users and their requests over time. Second, existing EUA
approaches neglect the spatial feature of the EUA problem.
They do not consider the distance between edge servers
and users which impacts the wireless signal transmission
between them and consequently users’ data rates [9]. Third,
existing approaches always treat a user request as a whole
and fail to accommodate scenarios where user requests may
be partitioned for processing by different edge servers [10].

In real-world scenarios, from the service provider’s per-
spective, cost-effective EUA aims to maximize its users’
overall QoE, taking the above issues into consideration.
This problem is referred to as the Spatio-Temporal user
Allocation (ST-EUA) problem. Expanding beyond our pre-
vious work [9], [10], we take into account the temporal
dynamics into account and try to address the above issues
systematically. To solve the NP-hard ST-EUA problem
effectively and efficiently, this paper proposes a novel
genetic algorithm (GA) based approach named GA-ST, with
the aim to find an approximate solution efficiently. Specifi-
cally, when allocating users to their nearby edge servers
with task decomposition, GA-ST considers the spatial dis-
tance between edge servers and users, the temporal varia-
tions in the distribution of users and their requests, and the
unique constraints in the edge computing environment,
including the coverage and capacity constraint. To our best
knowledge, this paper is the first attempt to tackle the spa-
tio-temporal EUA problem with task decomposition. The
main contributions of this paper are summarized as follows.

� We formally formulate the ST-EUA problem, model
it as a constrained optimization problem, and prove
itsNP-hardness.

� To solve the ST-EUA problem effectively and effi-
ciently, we propose a novel GA-based heuristic
approach namedGA-ST to find sub-optimal solutions.

� Extensive experiments are conducted on two widely-
used real-world datasets to evaluate the performance
of GA-ST. The effectiveness and efficiency of GA-ST
are demonstrated with a comparison against four
baselines, four state-of-the-art approaches and four
representative GA-based approaches. The experi-
ment results show that GA-ST significantly outper-
forms all these competing approaches.

2 MOTIVATING EXAMPLE

Fig. 1 presents an example spatio-temporal EUA scenario.
There are five users, denoted by u1; u2; u3; u4; u5f g, three
edge servers, denoted by s1; s2; s3f g, and nine tasks, denoted
by a1; a2; . . . ; a9f g. These tasks submitted by users can be
processed by services deployed on the edge servers cover-
ing them. Please note that the computing resources and
storage resources on edge server are limited. Each user has
a list of tasks and each task may require different amounts
of computing resources.

Task Decomposition. Existing studies of EUA [2], [6], [9],
[11] simply assume that a user’s computing resource
demand can either be fully fulfilled by a single edge server
or cannot be fulfilled at all. However, in real-world scenar-
ios, a user request may be be partitioned into multiple tasks

that can be performed by different edge servers. Let us
assume that u1 and u2 are fully satisfied by edge server s1,
while u3 and u5’s tasks are assigned to edge server s2, where
the resources demanded by each task is 1; 1; 1; 1h i. As a
result, the remaining resources on s1 or s2 cannot fulfil the
request of u4. Therefore, current EUA approaches will have
to allocate u4 to the remote cloud instead of any edge serv-
ers. If a user service request can be partitioned into a set of
tasks, it can be processed by multiple edge servers. Thus, a2
can be assigned to s1 and task a4; a6; a7f g can be assigned to
s2. In this way, the total amount of resources required by s1
to perform the submitted tasks is 7; 7; 7; 7h i. It does not
exceed s1’s capacity of 7; 9; 11; 8h i. In the meantime, s2 also
has abundant resources to process the tasks assigned to it.

Distance Awareness. Existing EUA approaches [2], [6], [11]
assume that each edge server has a specific coverage radius
and the users covered by the same edge server have the
same data rate. However, when a user communicates with
an edge server, the wireless transmission between them fol-
lows a slow attenuation pattern [12]. That is, the wireless
signal strength relies on the distance between the user and
the edge server, the closer the stronger. For example, u1; u2

and u4 are covered by s1. Since u2 is closer to s1, it receives a
stronger wireless signal than u1 and u4. This translates to a
higher data rate. On the contrary, being far away from s1, u1

and u4 may receive an unsatisfactory data rate, which low-
ers their QoE. Thus, geographical distance between users
and edge servers must be considered in EUA to maximize
users’ overall QoE.

Temporal Dynamics. Existing studies [2], [6], [9], [11] treat
an EUA problem as a static global optimization problem
and aim at finding an optimal or near-optimal solution.
However, they are ineffective in dynamic EUA scenarios
because they cannot handle the variations in the distribu-
tion of users and their service requests over time. Take u1 as
an example. It submits one service request a1; a4; a7f g in
time slot t1, one service request a1; a4f g in t2 and one service
request a1; a2; a4f g in t3. Such service demand dynamics
must be considered in the EUA problem to achieve the ser-
vice provider’s optimization objective.

3 SYSTEM MODEL

3.1 Task Decomposition and Capacity Constraint
Given a finite set of m edge servers S ¼ s1; s2; . . . ; smf g, and
n users Ut ¼ u1; u2; . . . ; unf g in a time slot t, a service request
submitted by a user can be decomposed as a set of indepen-
dent tasks, defined as follows. The notations used in this
paper are summarized in Table 1.

Fig. 1. A motivating example of an ST-EUA problem.

ZOU ETAL.: ST-EUA: SPATIO-TEMPORAL EDGE USER ALLOCATION WITH TASK DECOMPOSITION 629

Definition 1 (Task Decomposition). A user’s service
request r is composed of a set of independent tasks AtðuiÞ ¼
a1; a2; . . .f g. Each task ak can be processed by an edge server

sj 2 S covering the user.

The total amount of resources required by all the tasks
allocated to an edge server must not exceed its capacity
available in that time slot. Otherwise, the edge server will
be overloaded, causing performance degradation and even
service disruptions.

Definition 2 (Capacity Constraint). Given an edge server sj
and users within its coverage area in time slot t, denoted as
Ut
c ¼ u1

c ; u
2
c ; . . .

� �
, let us denote the tasks allocated to each edge

server sj 2 S as AtðsjÞ ¼ fa1sj ; a
2
sj
; . . .g. The total amount of

resources required by these tasks must not exceed sj’s resources
available in time slot t:

X
aksj2AtðsjÞ

wk � Ct
j; 8sj 2 S:

(1)

Take Fig. 1 for example. The resource required by each
task is 1; 1; 1; 1h i, and the total amount of resources required
by u1 and u2 is 6; 6; 6; 6h i. It does not exceed s1’s available
capacity 7; 9; 11; 8h i.

3.2 Distance-Aware QoE Model
In this study, we measure a user’s QoE in the same way as
[6], which depends on the Quality of the Service (QoS)
delivered to the user. According to [13], a user’s QoS is non-
linearly correlated with its QoE. Generally, it starts to
increase slowly at first, then speeds up, and finally con-
verges. The correlation between QoS and QoE is applica-
tion-specific. In many studies, the correlation between QoE
and QoS is modeled with the sigmoid function [6]

E0
i ¼

L

1þ e�aðxi�bÞ
; (2)

where L is the maximum QoE value, b is a domain-specific
parameter that controls the QoE growth, and a is the growth
rate of the QoE level, i.e., how significant the change from
the minimum to the maximum QoE is; E0

i represents the
QoE level given user ui’s QoS level Wt

i , and xi ¼
Wt

i
jBj . There

is E0
i ¼ 0 if ui is not allocated to any edge servers.
In a general EUA scenario, a user’s QoE relies on the

computing resources allocated to it from the edge servers,
e.g., CPU, RAM, storage and data rate [6]. To measure the
data rate received by a user, the attenuation of data rate in
wireless transmission must be taken into account. The Free
Space Path Loss (FSPL) [12] model is part of the IEEE 802.11
standard, where the received power is impacted by many
factors, such as transmit power, antenna gain and distance
between the transmitter and the receiver. Accordingly, the
received power decreases with the square of the distance
between the user and the edge server. The signal power
attenuation in a free space can be calculated as:

fðdÞ ¼ Pr

Pt
¼ GtGr

�
�

4pd

�2

(3)

where Pr and Pt are the received power and transmitted
power, respectively; Gr and Gt are the receiver antenna
gain and transmitter antenna gain, respectively; � is the
wavelength and d is the distance between transmitter and
receiver; Gr and Gt are commonly set to 1.

In the edge computing environment, edge servers are
attached to base stations. The transmitted power and
antenna gain of the base stations are ensured and controlled
by network operators. Thus, the distance is the key to find-
ing an proper solution to the ST-EUA problem. As illus-
trated in Fig. 2, a user’s signal strength is attenuated by the
increasing distance from the edge server. According to
Equation (3), the attenuation coefficient can be calculated as

fðdijÞ ¼
�

�

dij

�2

; (4)

where fðdijÞ is the attenuation coefficient for the communi-
cation between ui and sj.

Given the above attenuation coefficient, a user’s data rate
and QoE can be calculated. As a result, we measure a user’s
QoE in an ST-EUA scenario, where the tasks of a service
request may be allocated to multiple edge servers as fol-
lows:

Fig. 2. Quantitative correlation between distance and signal strength.

TABLE 1
Notations

Notation Description

B ¼ fCPU;RAM; a set of computing resource
storage; bandwidthg types
T ¼ t1; t2; . . . ; tp

� �
a set of time slots

Ut ¼ u1; u2; . . .; unf g a set of edge users in time slot t
S ¼ s1; s2; . . . ; smf g a set of edge servers
At ¼ a1; a2; . . . ; aq

� �
a set of tasks decomposed from users’
service requests in t

Dt ¼ d11; d12; . . . ; dnmf g a set of geographical distance in t
dij geographical distance between ui and

sj inDt

fðdijÞ attenuation coefficient caused by
distance dij

Ct
j available capacity of edge server sj in t

AtðuiÞ a set of tasks ui needs in a service
request in t

wk ¼ w1
k; w

2
k; . . . ; w

d
k

� �
computing resources demanded for
the task ak

AtðsjÞ a set of tasks allocated to sj in t
rtakðuiÞ A boolean indicator of whether ui’s

task ak is reallocated in t
ltakðuiÞ migration cost of user ui’ task ak in t
Wt

i computing resources that ui is
assigned in t

630 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

Ei ¼
Wt

iP
ak2AtðuiÞ wk

fðdijÞE0
i ; (5)

where
Wt

iP
ak2AtðuiÞ

wk
is the ratio of assigned computing resour-

ces over the total computing resources required for fulfilling

ui’s task requests in time slot t, fðdijÞ is the attenuation coef-

ficient caused by the distance dij and E0
i is QoE calculated

based on the corresponding QoS.

3.3 Migration Cost With Temporal Feature
In edge computing, when users move out from the signal
range of their allocated edge servers, the service is inter-
rupted. Thus, reallocation is required through service
migration between the source edge server and the destina-
tion edge server. Generally, service migration cost consists
of data transmission time and service restart time on the
destination edge server. When performing service migra-
tion for a user, data transmission, e.g., memory state data,
application image data, etc, is inevitable. Moreover, differ-
ent network topologies and communication systems (e.g.,
WiFi, LTE-U, 4G and 5G) result in various transmission
delays and processing costs. Therefore, the time cost
incurred by data transmission from the source edge server
to the destination edge server must be considered in service
migration in ST-EUA.

In an ST-EUA problem, under the proximity constraint,
the variations in user distribution and users’ service
requests in different time slots may result in significant net-
work performance degradation, dramatic drop in QoS, and
even service interruptions. Therefore, services must be
migrated from source edge servers to destination edge serv-
ers to ensure service continuity for users if those services
are unavailable on the destination edge servers. Similar to
[14], [15], [16], we focus on the service migration in different
time slots, calculating the service migration cost for a user
in a time slot as follows.

Definition 3 (Migration Cost). Given a set of time slots T ¼
ft1; t2; . . . ; tpg and a set of users Ut ¼ fu1; u2; . . . ; ung in time
slot t, each user ui 2 Ut submits a service request ri. Let Rt ¼
fr1; r2; . . . ; rng denote all the service requests in time slot t.
Each user’s service request is composed of a set of tasks
AtðuiÞ ¼ a1; a2; . . .f g. Here, the cost ltakðuiÞ incurred by migra-
tion task ak 2 AtðuiÞ is defined as the span between the time
when the service migration starts and the time when the
migrated service starts on the destination edge server.

Here, data transmission delay for service migration from
the source edge server to the destination edge server can be
calculated as follows:

lmig ¼ ztakðuiÞ=vtakðuiÞ; (6)

where ztakðuiÞ indicates the size of the data that needs to be
transferred to the target edge server during service migra-
tion for ui’s task ak in time slot t, and vtakðuiÞ is the transmis-
sion rate from the source edge server to the destination
edge server.

Moreover, the service needs to be started on the target
server to respond to user ui’s task request, which will also
bring a certain time cost. Therefore, the total delay caused
by the service migration to the user ui is calculated as fol-
lows:

ltakðuiÞ ¼ lcom
wk

Ct
j

þ lmig; (7)

where ltakðuiÞ is the total delay, lcom is the delay caused by
request processing on the destination edge server, wk is the
amount of the requested resources, Ct

j is the capacity of the
destination edge server, and lmig is the delay caused by ser-
vice migration.

3.4 ST-EUA Problem

Definition 4 (Spatio-temporal User Allocation Prob-
lem). An ST-EUA problem can be defined as a six tuple ST �
EUA ¼< T;Ut; S;Dt; At;Wt > , where

(1) T ¼ ft1; t2; . . . ; tpg is a set of time slots;
(2) Ut ¼ fu1; u2; . . . ; ung is a set of users in time slot t and

each user has a service request composed by a set of
tasks;

(3) S ¼ fs1; s2; . . . ; smg is a set of edge servers;
(4) Dt ¼ d11; d12; . . . ; dnmf g is a set of distances between

users and edge servers in time slot t;
(5) At ¼ fa1; a2; . . . ; aqg is a set of tasks decomposed from

users’ service requests in time slot t;
(6) Wt ¼ fw1; w2; . . . ; wqg is a set of resources demanded

by At.

4 APPROACH

4.1 ST-EUA Optimization Model
Given an ST-EUA problem ST-EUA= T; Ut; S;Dt; At;Wth i,
there are two optimization objectives: (1) maximizing the
users’ overall QoE across multiple time slots, and (2) mini-
mizing the average migration cost incurred by users’ tasks
in multiple time slots, while satisfying the proximity con-
straint and capacity constraint. The LGP model of the ST-
EUA problem is as follows:

max
1

jT j
X
t2T

XjUtj

i¼1
Ei (8)

min
1

jT j
X
t2T

XjUtj

i¼1

XjAtðuiÞj

k¼1
rtakðuiÞltakðuiÞ (9)

s.t:

XjUtj

i¼1

XjAtðuiÞj

k¼1
wkxi;j;k � Ct

j
(10)

XjSj
j¼1

xi;j;k � 1; (11)

where xi;j;k and rtakðuiÞ are two binary variables indicating
that

xi;j;k ¼
1; if u0is task ak is allocated to sj

0; otherwise:

�
(12)

rtakðuiÞ ¼
1; if u0is task ak is reallocated

0; otherwise:

�
(13)

The objective function 8ð Þ maximizes users’ overall aver-
age QoE across all the time slots, where Ei depends on the
ratio of the assigned computing resources Wt

i for ui over the

ZOU ETAL.: ST-EUA: SPATIO-TEMPORAL EDGE USER ALLOCATION WITH TASK DECOMPOSITION 631

total computing resources requested by ui. The objective
function 9ð Þ minimizes the overall average migration cost
caused by users’ tasks reallocated in different time slots.
Constraint 10ð Þ makes sure that the aggregate resource
demands of all users’ tasks allocated to an edge server must
not exceed its available upper bound capacity in time slot t.
Constraint 11ð Þ ensures that each task can be allocated to at
most one edge server.

This optimization model takes into account the character-
istics of edge computing. First, unlike cloud servers that
have access to virtually unlimited computing resources in
the cloud center, edge servers’ computing resources are
restricted due to its physical size limit [17], [18]. In the open
edge computing environment, service providers may hire
computing resources on the edge servers to serve their users
in the same area. It causes competition among service pro-
viders, where the total resources required serving the users
allocated to an edge server must not exceed its available
capacity. Second, in the cloud computing environment,
there often is no hard requirement for the time taken to pro-
cess a task. Tasks can be scheduled to be processed on slow
cloud servers as long as the main optimization objective is
fulfilled, e.g., system throughput or reliability. However,
low service latency is a fundamental requirement in the
edge computing environment. Thus, task allocation optimi-
zation must not ignore the time constraint. It is often mod-
elled as an objective or a constraint in the optimization
model. Third, it is often assumed that a task can be allocated
to any servers for processing in the cloud computing envi-
ronment. However, in the edge computing environment, a
user’s tasks can only be processed by an edge server cover-
ing that user. Thus, tasks cannot be allocated arbitrarily.

4.2 ST-EUA Complexity Analysis

4.2.1 ST-EUA Hardness

Based on the LGP model built in Section 4, we now prove
that an ST-EUA problem isNP-hard. First, we introduce the
Knapsack problem, which is a classicNP-hard problem.

Definition 5 (Knapsack Problem). Given n items and their
corresponding weights and values, the aim of a Knapsack prob-
lem is to select a group of items so that the overall values of the
items are the highest within the total weight constraint W . It
can be formally modeled as follows:

max
Xn
i¼1

vixi; (14)

s.t.:

Xn
i¼1

wixi �W (15)

xi 2 0; 1f g; (16)

where vi and wi are the value and the weight of item i, respec-
tively,W is the total weight constraint on all the selected items
and xi is a binary variable indicating whether the ith item is
selected.

Theorem 1. The NP-hard Knapsack is reducible from the ST-
EUA problem, i.e., �p ST-EUA. Thus, the ST-EUA problem is
NP-hard.

Proof. Based on the definition of the Knapsack problem, we
now prove that an ST-EUA problem is NP-hard by reduc-
ing a Knapsack problem to a specialization of an ST-EUA
problem.

Based on Equations (2)(3)(4)(5), the QoE of a user ui

allocated to an edge server sj can be calculated as fol-
lows:

Ei ¼
Wt

iP
ak2AðuiÞ wk

�
�

dij

�2
L

1þ e�aðxi�bÞ
: (17)

To do the proof, we make the following assumptions
to constitute a special instance of the ST-EUA problem:

1. In a time slot t, each user ui has a service request
AtðuiÞ. For each task ak 2 AtðuiÞ, its requirements
for different types of computing resources are the
same, i.e., w1

k ¼ w2
k ¼ . . . ¼ wd

k. Thus, the ratio of
the resources available to a user to the total
resources required by the user

Wt
iP

ak2AtðuiÞ
wk

in 17ð Þ
is transformed into the ratio of the number of allo-
cated tasks to the total number of tasks requested by
a user.

2. The coverage of each edge server sj 2 S is infinite,
i.e., a task can be allocated to any of the edge serv-
ers in the area. In this way, the distance between a
user and an edge server can be omitted in an ST-
EUA problem. That is, the attenuation coefficient
of a user’s signal ð �dijÞ

2 is reduced to a constant.
3. For any edge server sj, its capacities in differ-

ent resource dimensions are equal, i.e., c1j ¼
c2j ¼ � � � ¼ cdj .

4. In a time slot t, the migration cost ltakðuiÞ of any
user ui’s task ak is omitted. That is, the ST-EUA
problem aims to maximize the users’ overall QoE
without considering the migration cost.

For the simplified special case, objective (8) can be pro-
jected to objective (14). Constraint (11) can be projected to
constraint (16), because a task can be allocated to an edge
server or it cannot be satisfied by any edge server. More-
over, constraint (10) can be projected to constraint (15),
since the computing capacities of all the edge servers can
be aggregated to obtain an overall resource upper bound.
Consequently, there is a solution to the ST-EUA problem
if and only if there is a solution to a corresponding knap-
sack problem. Thus, an ST-EUAproblem isNP-hard. tu

4.2.2 ST-EUA Challenges

Based on the definition of ST-EUA problem, it aims to
assign edge servers for satisfying users’ task requests in a
specific area across multiple time slices, maximizing overall
users’ satisfaction and minimizing services’ migration cost.

The main challenges are threefold. First, the allocation of
edge users in each time slot is highly affected by previousmul-
tiple time slots. Over time, users may move across multiple
edge servers, leading to service interruptions and QoE degra-
dation. Service migration across edge servers incurs energy,
bandwidth and transportation costs. To improve users’ overall
QoE, migration cost optimization is a key factor across multi-
ple time slots that must be considered during the process of

1 rand(0,1) generates a random real number ranged in [0,1].

632 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

edge user allocation. Second, how to match feasible edge serv-
ers with tasks effectively to achieve high user satisfaction is a
challenging issue. Each of these users may submit multiple
task requests in a time slot. Since edge servers’ computing
capacities are constrained, they may not be able to process all
the incoming service requests from within their coverage
areas. Fortunately, a user may be covered by multiple edge
servers and its tasks can be processed by any of these edge
servers with an adequate processing capacity. Thus, a proper
allocation strategy is needed to allocate service requests to
appropriate edge servers. Third, the ST-EUA problem exhibits
both temporal and spatial features. We must consider user
mobility and service requests with task decomposition over
time, as well as the distances between edge users and edge
servers. Finding the optimal solution that fulfil all the con-
straints is not trivial, especially in large-scale scenarios.

4.3 Approximate Algorithm of ST-EUA

4.3.1 Overview of GA-ST Algorithm

The genetic algorithm (GA) encodes specific problems in a
chromosome-like structure and simulates the evolution

process by applying a fitness function to judge whether a
chromosome is predominant. However, there are two issues
when the traditional GA is directly employed to solve an
ST-EUA problem, i.e., inappropriate fitness function and
lack of heuristic information in a specific application sce-
nario. To ensure the effectiveness of GA in solving the ST-
EUA problem, we make the following improvements. First,
we leverage the capacities of edge servers and the resource
requirements of tasks when initializing the population to
obtain better offspring. Second, we choose superior individ-
uals to perform crossover and mutation operations in each
iteration based on dual fitness functions, which balances the
two optimization goals of overall users’ satisfaction and
services’ migration cost. Finally, the distances between edge
users and edge servers are applied as heuristic information
in a mutation operation to find a suitable edge server for the
replacement of a selected locus.

The pseudo code of GA-ST is presented in Algorithm 1. It
begins with parameter settings (line 1), including the size of
initial populations Npop, the maximum iteration times Nit,
the probability of crossover Pcr and mutation Pmu, and the
mutation times at each iteration Nmu. Then, the initial chro-
mosomes are generated by leveraging the heuristic informa-
tion and put into the chromosome set H (line 2).
Afterwards, we calculate the fitness score of each chromo-
some inH (line 3), and the chromosome with the best fitness
score is selected as the optimal one (line 4). Subsequently,
the pivotal iteration steps of generation update are per-
formed (lines 7-18), including the operations of selection
(line 8), crossover (lines 9-10) and mutation (lines 11-12). At
the end of the iteration, the chromosomes for the next gener-
ation are generated according to the different situations
(lines 14,16). After each round of generation update, the
algorithm recalculates the fitness score of each chromosome
and updates the best one (lines 19-20). Finally, Q is returned
as the approximate solution to an ST-EUA problem (line 23).

4.3.2 Generation Update of GA-ST

In GA-ST, a feasible solution to the ST-EUA problem is
encoded as a chromosome. Each chromosome is comprised
of a set of independent genes used to represent edge serv-
ers. The locus of a gene in a chromosome represents a task
of a user. The steps of generation update in GA-ST are elab-
orated as follows.

Initialization of GA-ST. At the beginning, GA-ST generates
Npop chromosomes as the individuals of the initial popula-
tions. Instead of randomly generating a chromosome as a
solution to the EUA problem, Hi ¼ s1; s2; . . . ; sq

� �
, heuristic

information including the resources required for each task
and edge servers’ remaining capacities are taken into
account to configure a set of more effective populations.

Fitness Evaluation of GA-ST. For a chromosome Hi, we
first calculate the QoE for each user according to (2)-(5).
Then, fitness fqoeðHiÞ is measured as (18). Second, we calcu-
late the migration cost for each user according to (6)(7), and
the fitness fmcðHiÞ is measured as in (19).

fqoeðHiÞ ¼
XjUtj

j¼1
Ej (18)

fmcðHiÞ ¼
XjUt j

j¼1

XjAtðujÞj

k¼1
rtakðujÞltakðujÞ: (19)

Algorithm 1. Genetic Algorithm-Based Spatio-Temporal
User Allocation (GA-ST)

Input: An ST-EUA problem T;Ut; S;Dt; At;Wth i.
Output: An approximate solution Q.
1: Set the parameters ofNpop;Nit; Pcr; Pmu and Nmu

2: Initialize Npop chromosomes as the solutions to the ST-EUA
problem by heuristic information,H ¼ H1; H2; . . . ; HNpop

� �
3: Calculate the fitness score of each Hi 2 H by QoE and

migration cost:
fqoeðHiÞ ¼

PjUtj
j Ej

fmcðHiÞ ¼
PjUtj

j¼1
PjAtðujÞj

k¼1 rtakðujÞltakðujÞ
4: Hbest argmaxHi2H fqoeðHiÞ; argminHi2H fmcðHiÞ
5: for i ¼ 1! Nit do
6: Create an empty set H’ to save the populations of the

next generation
7: for j ¼ 0! Npop

2 do
8: Select two chromosomes Hu;Hv by the fitness

scores of user allocation strategy
9: if randð0; 1Þ1 � Pcr then
10: Crossover:Hu ! H 0u;Hv ! H 0v,
11: if rand(0,1) � Pmu then
12: Mutation: randomly select Nmu loci to

replace genes with candidate servers
by distance-aware mutation probability pk

13: end if
14: PutH 0u;H

0
v toH 0

15: else
16: PutHu;Hv toH 0

17: end if
18: end for
19: Calculate the fitness score of eachH 0i 2 H 0 by QoE

and migration cost:
fqoeðH 0iÞ ¼

PjUt j
j Ej

fmcðH 0iÞ ¼
PjUt j

j¼1
PjAtðujÞj

k¼1 rtakðujÞltakðujÞ
20: Hbest argmaxH0

i
2H0 fqoeðH 0iÞ; argminH0

i
2H0 fmcðH 0iÞ

21: H 0 ! H
22: end for
23: return Q ¼ u1; u2; . . . ; up

� �
decoded fromHbest

ZOU ETAL.: ST-EUA: SPATIO-TEMPORAL EDGE USER ALLOCATION WITH TASK DECOMPOSITION 633

Selection of GA-ST. By leveraging the fitness of chromo-
somes, we choose those superior solutions to the ST-EUA
problem, while eliminating inferior ones. In GA-ST, the
objective of selection is to transmit the chromosomes with
high fitness scores directly or indirectly to the next genera-
tion by crossover and mutation operations. Here, we adopt
the well-known roulette wheel method to perform the selec-
tion operation. The probability of a chromosomeHi with fit-
ness fqoeðHiÞ and fmcðHiÞ to be selected out of the
populationsH are calculated as in (29) and (21), respectively

PqoeðHiÞ ¼
fqoeðHiÞPjHj
j¼1 fqoeðHjÞ

(20)

PmcðHiÞ ¼
expð�fmcðHiÞÞPjHj
j¼1 expð�fmcðHjÞÞ

: (21)

In the ST-EUA problem, we first select chromosomes
according to Pqoe, because the users’ overall QoE has much
higher priority than migration cost in an ST-EUA problem.
If PqoeðHiÞ ¼ PqoeðHjÞ, we select chromosomes according to
Pmc. Since we select two parent chromosomes to generate
two children each time, the selection operation at each itera-
tion is performed Npop=2 times to generate the number of
chromosomes in GA-ST.

Crossover of GA-ST. Given two selected chromosomes,
they are reciprocally crossed to generate newly two children
ones, aiming at improving the fitness scores of user alloca-
tion in the next generation. GA-ST adopts the two points
crossover operation to exchange the partially allocated edge
servers of two solutions to the ST-EUA problem. Let Hu and
Hv be the two chromosomes selected. Given two points i
and j, the results of crossover are obtained as in (22)

H 0u ¼ ½Huð1:i�1Þ; Hvði:jÞ; Huðjþ1:qÞ�
H 0v ¼ ½Hvð1:i�1Þ; Huði:jÞ; Hvðjþ1:qÞ�; (22)

where Huði:jÞ intercepts the chromosome from the ith to the
jth allocated edge servers of an ST-EUA solution vector
encoded in H, and [] concatenates a set of vectors in order.
Through the crossover operation, the advantageous parts of
user allocation strategies encoded in the parent chromo-
somes may be merged into the children ones.

Mutation of GA-ST. It is a crucial for GA to avoid early
convergence. There are many conventional mutation opera-
tors such as Uniform and Gaussian. However, they have
not taken full advantage of prior knowledge as heuristic
information to improve the mutation operation, which
influences the performance of GA-ST. In an ST-EUA prob-
lem, the distance between an edge user and an edge server
impacts the user’s data transmission rate, and consequently
its QoE. As illustrated in Fig. 2, a user’s signal strength is
attenuated by the increasing distance from the edge server.
Based on the prior knowledge of signal strength, distance-
aware mutation operation is applied to GA-ST. It will
increase the users’ overall QoE across multiple time slots.

Fig. 3 illustrates the process of the improved distance-
aware mutation operation with three steps. Step 1 is the
selection of mutation locations, where Nmu loci are ran-
domly chosen from a chromosome of user-task-server allo-
cation strategy. Step 2 is the calculation of distance and
probability. When a locus is selected, we search for candi-
date edge servers according to the corresponding user uj.

For each edge server, we calculate its distance from the user
uj. Based on the results, we can estimate the probability of
each edge server being selected. Step 3 is the matchmaking
of edge server. It matches edge server sk that is most likely
to replace locus ui.

Specifically, given a solution to an ST-EUA problem Q ¼
u1; u2; . . . ; uq

� �
, let us assume that a gene ui is chosen for

mutation and a user uj corresponds to the task at ui. On this
condition, the candidate edge servers of uj that meet the
capacity and proximity constraints are SðujÞ ¼ s1; s2; . . .f g,
each of which is a feasibly mutated gene. By using SðujÞ,
the distance set between uj and candidate edge servers can
be calculated as DtðujÞ ¼ dj1; dj2; . . .

� �
. Based on results, we

measure the probability pk of each candidate edge server sk
to be selected for the mutation operation, which is calcu-
lated by applying the softmax function to normalize the
additive inverse of distance djk between uj and a candidate
edge server sk as in (23)

pk ¼
expð�djkÞPjSðujÞj

l¼1 expð�djlÞ
(23)

where pk denotes the probability of selecting sk to replace
gene ui. Thus, with the consideration of distance as heuristic
information, the overall average QoE of a solution Q can be
improved after mutation operations.

5 EXPERIMENTS

5.1 Experimental Setup and Datasets
To validate the performance of GA-ST, we evaluate its effec-
tiveness and efficiency experimentally. All the experiments
are performed on a machine equipped with an Intel(R)
Xeon(R) Gold 6130 CPU@2 and 192GB RAM. The TD-EUA-
O and TD-EUA-O-D approaches employ the Gurobi Opti-
mizer to solve the ST-EUA problem. GA-ST and its varia-
tions are implemented in Python 3.7.4.

The experiments are conducted on two public bench-
marking datasets that are widely used in research on edge
computing, including the EUA dataset2 and Shanghai-Tele-
com dataset.3 The EUA dataset contains 125 edge servers
(base stations) in the Melbourne central business district
area in Australia. It has already been extensively applied as
experiment datasets in a largy body of existing research [2],
[6], [9], [11]. Following the Gaussian distribution Nðu; sÞ,
512 users are distributed in different ways in this area to

Fig. 3. The process of distance-aware mutation operation for ST-EUA
problem.

2 https://sites.google.com/site/heqiang/eua-respository https://
github.com/swinedge/eua-dataset

3 http://www.sguangwang.com/TelecomDataset.html

634 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

https://sites.google.com/site/heqiang/eua-respository
https://github.com/swinedge/eua-dataset
https://github.com/swinedge/eua-dataset
http://www.sguangwang.com/TelecomDataset.html

simulate three kinds of real-world ST-EUA scenarios with
diverse user distributions, as illustrated in Fig. 4, where
each black point represents an edge server and each orange
point represents a user. The Shanghai-Telecom dataset con-
tains 3,233 base stations within Shanghai, China. In the
experiments, we choose those edge servers (base stations) of
Lujiazui Finance and trade zone, and then generate users
based on a Gaussian distribution Nðu; sÞ, where there are
also three different distributions with 345 edge servers and
1,000 users, as illustrated in Fig. 5.

5.2 Competing Methods and Evaluation Metrics
To evaluate the performance of GA-ST, we compare it with
twelve competing approaches, including four baseline
approaches, four state-of-the-art approaches, and four GA-
based approaches.

� Random: It randomly selects an available edge server
to process users’ tasks.

� Greedy-distance: It calculates the geographical dis-
tance between a user and an edge server, and selects
the nearest edge server to perform the user’s tasks.

� Greedy-capacity: It evaluates edge servers’ available
computing resources, and selects the edge server
with the most remaining resources to process tasks.

� Greedy-task: It ranks the computing resources
required for each task in descending order, then ran-
domly selects an available edge server to process
each task sequentially.

� TD-EUA-O [10]: It models the ST-EUA problem as a
variant of the knapsack problem and finds an opti-
mal solution that maximizes users’ overall QoE.

� TD-EUA-H [10]: It finds a sub-optimal EUA solution
by taking advantage of heuristic information on the
computing resources required tasks and edge serv-
ers’ available capacities.

� TD-EUA-O-D: It is a variation of TD-EUA-O, where
the distance between a user and an edge server is
integrated into the estimation on the QoE, when
globally and optimally allocating each task to an
appropriate edge server.

� TD-EUA-H-D: It is a variation of TD-EUA-H, where
the distance between an user and an edge server is
integrated into the QoE for finding an approximate
solution to a user allocation problem.

� GA: This basic GA approach randomly selects edge
servers to serve the tasks of users to generate initial
populations.

� GA-distance: It is a variation of GA, where the
Greedy-distance approach is employed to generate
user allocation strategies as initial populations.

� GA-capacity: It is a variation of GA, where the
Greedy-capacity approach is employed to gener-
ate user allocation strategies as initial populations.

� GA-task: It is a variation of GA, where the Greedy-
task approach is used to generate user allocation
strategies as initial populations.

In the experiments, we employ four widely-used eval-
uation metrics to compare and analyze the experiment
results, two for effectiveness and two for efficiency.

� QoE: It is measured by users’ overall QoE produced
by the approach.

Fig. 4. Different distributions of users and servers on EUA dataset. Where (1),(2),(3) have one hot spot, two hot spot and three hot spot, respectively.

Fig. 5. Different distributions of users and servers on Shanghai-Telecom dataset. Where (1),(2),(3) have one hot spot, two hot spot and three hot spot,
respectively.

ZOU ETAL.: ST-EUA: SPATIO-TEMPORAL EDGE USER ALLOCATION WITH TASK DECOMPOSITION 635

� Allocation Rate: It is measured by the percentage of
users allocated to edge servers.

� Migration Cost: It is measured by the cost of service
migration across all time slots.

� CPU Time: It is measured by the computation time
taken to find a solution.

5.3 Experiment Results and Analyses
In the experiments, the parameters are tuned to achieve the
optimal performance for the competing approaches. Specifi-
cally, the number of tasks of a user follows a Gaussian distri-
bution with u ¼ 3. We set the number of users to 512, and the
number of edge servers to 125 in the EUA dataset, while the
number of users is set to 1,000 and the number of edge serv-
ers to 345 in Shanghai-Telecom dataset. Edge users are gen-
erated based on the Gaussian distribution s ¼ 55 to simulate
hot spots. Moreover, an edge server’s available computing
capacities follow a Gaussian distribution Nð20; 1Þ in both
EUA datasets and Shanghai-Telecom datasets. The best and
second-best values in each column are marked in dark and
light grey, respectively. Furthermore, regarding the parame-
ter settings of GA-ST, they are determined through iterative
experiments to achieve the best experimental performance.
Specifically, there areNpop ¼ 50; Nit ¼ 5; Pcr ¼ 0:8 and Pmu ¼
0:3. Parameter Nmu is related to the total number of task
requests q from all users in time slot t, which is set by q � 0:2.

Table 2 summarizes the experimental results on four
evaluation metrics across three EUA datasets with diverse
distributions of users and servers, where we compare GA-
ST with twelve competing methods partitioned into two cat-
egories, consisting of six baselines and six advanced com-
peting approaches. First, we analyze the comparison
between GA-ST and the six baselines, including Random,
Greedy-distance, Greedy-capacity, Greedy-task, TD-EUA-H
and TD-EUA-O. The results demonstrate that GA-ST
achieves the highest overall QoE compared to the baselines.
Specifically, GA-ST outperforms Random, Greedy-distance,
Greedy-capacity, Greedy-task, TD-EUA-H and TD-EUA-O
by 2,774, 1,806, 2,930, 2,831, 2,874 and 2,561 in QoE in EUA
Dataset1, respectively. In terms of allocation rate, GA-ST is
superior to Random, Greedy-distance, Greedy-capacity,
Greedy-task and TD-EUA-H with an advantage of 16.98%,

16.98%, 12.72%, 21.56% and 19.23% on EUA Dataset1,
respectively. The main reason for the advantage of GA-ST
lies in its consideration of multiple key factors, including
temporal features, geographical distance between users and
servers, and task decomposition. Note that TD-EUA-O
achieves the highest allocation rate, because it pursues
global optimization. However, it generates a low QoE and
takes the most time to find a solution. Furthermore, it can
only solve a static global optimization problem of user allo-
cation. In terms of migration cost, GA-ST achieves the sec-
ond best performance, while Greedy-distance outperforms
all the competing approaches because it always allocates a
user to the nearest edge server. With regard to CPU time,
TD-EUA-O takes the most time to find a solution, followed
GA-ST. Note that TD-EUA-O’s time consumption is several
times higher than GA-ST’s.

Second, we analyze the experimental results across three
EUA datasets between GA-ST and the six advanced com-
peting approaches, including TD-EUA-H-D, TD-EUA-O-D,
GA, GA-capacity, GA-task and GA-distance. Compared to
these approaches, GA-ST achieves the highest user overall
QoE on EUA Dataset 1 and EUA Dataset 3, while TD-EUA-
O-D obtains slightly higher QoE on EUA Dataset 2. More
specifically, GA-ST is superior to the competing approaches
with an advantage of 56.16% over TD-EUA-H-D, 11.09%
over TD-EUA-O-D, 31.47% over GA, 37.84% over GA-
capacity, 31.47% over GA-task and 3.89% over GA-distance
in QoE on EUA Dataset 1. Due to the high computational
complexity of TD-EUA-O-D, it is intractable in dealing with
large-scale ST-EUA problems, where timely decision-mak-
ing is desired in real-world application scenarios. As for
allocation rate, GA-ST outperforms TD-EUA-H-D and TD-
EUA-O-D in most cases, and has a similar performance as
GA, GA-capacity, GA-task and GA-distance across three
EUA Datasets. Note that the QoE achieved by GA-capacity
is worse than GA, opposite to allocation rate. The underly-
ing reason is that even though GA-capacity chooses edge
servers with the most remaining resources to process tasks
in the initial population, it does not consider the distance
between edge users and servers which is of vital importance
to QoE. However, GA randomly selects edge servers for
users’ task requests when initializing the population. There-
fore, it may potentially choose nearby edge servers to obtain

TABLE 2
Experimental Results of User Allocation Among Competing Approaches on EUA Datasets

636 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

a higher QoE. With regard to migration cost, TD-EUA-H-D
still achieves the best performance followed by GA-ST. The
main reason is that it tends to allocate users to their nearest
edge servers. In terms of computational cost, TD-EUA-O-D
and TD-EUA-H-D take the most and least CPU time to find
a solution, respectively, while GA, GA-capacity, GA-task,
GA-distance and GA-ST have similar time consumption.

Table 3 summarizes the experimental results on three
Shanghai-Telecom datasets, where we compare GA-ST with
six baselines and six advanced competing approaches.
Among all the Shanghai-Telecom datasets, GA-ST achieves
the highest QoE compared to the six baselines. For instance,
GA-ST achieve superior QoE with an advantage of 169.32%,
45.05%, 189.23%, 188.34%, 205.41% and 155.37% over Ran-
dom, Greedy-distance, Greedy-capacity, Greedy-task, TD-
EUA-H and TD-EUA-O on Shanghai-Telecom Dataset 1,
respectively. As for allocation rate, TD-EUA-O still achieves
the highest allocation rate, followed by GA-ST. Similarly,
Greedy-distance obtains the best performance in migration
cost, although GA-ST can efficiently allocate the tasks to
nearby servers. The computational cost has the same fluctu-
ations between Shanghai-Telecom and EUA datasets.

From the above results, we conclude that GA-ST achieves
the best balance across multiple evaluation metrics on all the
datasets, which is critical in real-world application scenarios.

5.4 Performance Impact of Parameters
To evaluate the performance impact among competing
approaches, we vary the average capacity of edge servers.
In the experiments, we generate users’ service requests and
moving trajectories within 2 hours, including totally 512
users in EUA Dataset 2. By tuning three different capacity
levels of edge servers, we compare the performance impact
on four evaluation metrics between GA-ST and six compet-
ing approaches, including Random, Greedy-distance,
Greedy-capacity, Greedy-task, TD-EUA-O-D and TD-EUA-
H-D. The results on 50%, 100% and 150% of edge servers’
capacity along with the changes of time are shown in
Figs. 6, 7 and 8, respectively.

The subfigure (a) of Figs. 6, 7, and 8 compare the QoE
achieved by the approaches where edge servers’ capacities
vary from 50% to 150% in steps of 50%. As the capacity of
edge server increases, all competing approaches achieve a

better performance on users’ QoE in different time slots.
More specially, GA-ST outperforms most of competing
approaches in maximizing QoE. It is approximately 4,300 in
Fig. 6a, 5,100 in Fig. 7a and nearly 7,000 in Fig. 8a, respec-
tively. It is worth noting that Greedy-task, Random and
Greedy-capacity achieve similar performance in maximiz-
ing QoE, when the capacity of edge server is 50% or 100%.
However, as it increases to 150%, Greedy-task and Random
outperform Greedy-capacity in QoE. The underlying reason
is that as edge servers’ capacity gradually increases, com-
puting resources become increasingly abundant, making it
cost-ineffective to allocate a task to an edge server with the
most remaining resources.

The subfigure (b) of Figs. 6, 7, and 8 compare the perfor-
mance in allocation rate with the changes in edge servers’
capacities. Similar to QoE, the allocation rates of all the com-
peting approaches show the same fluctuation trend, as the
capacity of edge servers increases. More specifically, when
the capacity of edge servers is at a low level, the available
computing resources is insufficient for serving users’ ser-
vice requests. As illustrated in Fig. 6b, it shows that the allo-
cation rates of all competing approaches range from 0.5 to
0.7. With the increase in edge servers’ capacity, th allocation
rate raises up to the range of 0.65 to 0.875 across the compet-
ing approaches in Fig. 7b. As shown in Fig. 8b, the allocation
rates of all the competing approaches exceed 0.94. Further-
more, Greedy-capacity achieves the highest allocation rate
when the capacity of edge servers is 100%. When edge serv-
ers’ capacities vary, GA-ST always achieves high perfor-
mance in terms of allocation rate.

The subfigure (c) of Figs. 6, 7, and 8 compare the perfor-
mance in migration cost along with the changes in edge
servers’ capacities. As demonstrated, it follows a similar
trend as QoE and allocation rate. As the capacity increases,
it has an upward trend in terms of migration cost. The rea-
son is that the complexity of th ST-EUA problem increases
with the increase in the capacity of edge servers, producing
more possible solutions. It is worth noting that the migra-
tion cost of TD-EUA-O-D reaches the highest and is not
evaluated, since it needs to reallocate all the users in each
time slot t. As for GA-ST, it achieves the third best perfor-
mance after Greedy-distance and TD-EUA-H-D with the
change in edge servers’ capacities.

TABLE 3
Experimental Results of User Allocation Among Competing Approaches on Shanghai-Telecom Datasets

ZOU ETAL.: ST-EUA: SPATIO-TEMPORAL EDGE USER ALLOCATION WITH TASK DECOMPOSITION 637

The subfigure (d) of Figs. 6, 7, and 8 compare the perfor-
mance in CPU time along with the changes in edge servers’
capacities. On the contrary, as the capacity of edge servers
increases, the CPU times of all the competing approaches
decline. As shown in the results at different capacity levels,
the computation time of GA-ST fluctuates slightly and it
takes significantly less time consumption than TD-EUA-O-
D. As for TD-EUA-H-D, Greedy-distance, Greedy-capacity,
Greedy-task and Random, their CPU times always remain
at a low level.

5.5 Threats to Validity
To our best knowledge, it is the first attempt to tackle the
spatio-temporal EUA problem with task decomposition.
When verifying the performance of GA-ST, we compare it
with a random baseline, three greedy-based approaches,
four state-of-the-art approaches and four GA-based
approaches. Some of these approaches are not specifically
designed to solve the ST-EUA problem as GA-ST. As a
result, GA-ST tends to outperform these approaches, which
threatens the construct validity. In addition, there is no real-
world dataset that describes user distribution, user mobility
path, and edge server distribution accurately at the same
time. To minimize this external threat, we conducted the
experiments on two widely-used datasets, i.e., the EUA
dataset and the Shanghai-Telecom dataset with three differ-
ent types of user distributions.

6 DISCUSSION

6.1 Relation to Service Oriented Computing
Service Oriented Computing (SOC) is a computing para-
digm that utilizes services as fundamental components for
developing and integrating real-world applications. The
core of SOC is how to use services effectively and efficiently
to facilitate service-oriented system development. Research-
ers have carried out investigations on SOC and made a lot
of prominent contributions to service discovery, selection,
composition, recommendation, mashup creation, QoS man-
agement, and verification [19].

With the development of network technology, the Inter-
net has become a huge resource repository for global infor-
mation transmission and sharing. In recent years, more and
more web services have been published over the Internet,
which significantly increases the burden on energy con-
sumption, network congestion and security risks. Edge
computing, as a new paradigm, has recently emerged to
address these issues. However, it raises many new and criti-
cal challenges, e.g., edge user allocation, computing offload-
ing and edge data caching.

Although service-oriented computing and edge comput-
ing are different in nature, they share some similarities.
More specifically, SOC techniques can be applied to support
the research on edge computing, such as the application of
service discovery and selection in computing offloading.
Simultaneously, edge computing can support diverse

Fig. 6. Performance comparisons on 50% edge servers’ capacity among GA-STand competing approaches.

Fig. 7. Performance comparisons on 100% edge servers’ capacity among GA-STand competing approaches.

Fig. 8. Performance comparisons on 150% edge servers’ capacity among GA-STand competing approaches.

638 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

applications that promote the development of SOC and
raise new research challenges. For example, in the edge
environment, QoS prediction can use a federated learning
framework to protect users’ privacy and obtain more accu-
rate prediction performance.

6.2 Optimization Techniques in Traditional
Architectures

Optimization techniques have been extensively investigated
for task allocation in the fields of traditional architectures,
including distributed and grid computing, and cloud com-
puting. With the popularity of edge computing, it is rapidly
receiving many attentions from researchers to solve research
challenges in edge computing, such as edge user allocation.
Since these computing paradigms have their own characteris-
tics, they focus on different application requirements and
optimization objectives for task allocation.

Distributed and Grid Optimization. Grid computing exploits
a group of networked computers that collaborate as a virtual
supercomputer to handle data-intensive computing tasks.
Generally, it uses specifically middleware to decompose a
huge scientific computing task into a bunch of independent
and logically related subtasks, which are then processed and
fused by corresponding nodes with sufficient computing
capacities. When some computing nodes crash, the comput-
ing task will not fail, because its subtasks can be reassigned to
other computing nodes for processing. Therefore, job schedul-
ing optimization and subtask result aggregation are the main
optimization challenges in grid computing [20], [21].

Cloud Optimization. Compared with grid computing,
cloud computing offers computing and storage resources in
a much more flexible manner. Service vendors can hire vir-
tual machines (VMs) for hosting their services in the cloud
without having to worry about the maintenance of the
underlying physical machines. From their perspective, task
allocation optimization focuses on scheduling various tasks
across heterogeneous cloud nodes. There may be dependen-
cies among these tasks, or deadlines. In this context, task
allocation optimization often aims to maximize system
throughput, minimize task execution time, etc. [22], [23].

Edge Optimization. Edge computing extends cloud comput-
ing by deploying edge servers at base stations. Aiming to
ensure low service latency for users, task allocation in the edge
computing environment often focuses on service latencymini-
mization, costminimization, etc. The edge computing environ-
ment exhibits two new characteristics compared with the
cloud computing environment, i.e., proximity constraint and
capacity constraint [4]. Edge servers oftenneed to collaborative
to overcome the capacity constraint [24], [25]. The optimization
techniques designed for solving the problem in theMEC envi-
ronmentmust consider these unique characteristics.

7 RELATED WORK

With the advances in mobile devices and the Internet of
Things, cloud centers may easily be overwhelmed by exces-
sive workloads, causing network latency and congestion.
The emergence of edge computing overcomes the major
drawback of service latency in cloud computing. As a new
computing paradigm, edge computing integrates network,
computing, storage, and application core capabilities for
deployment and invocation of low-latency edge services
close to end users. Services deployed on edge servers can

provide fast responses to nearby users’ requests. However,
an edge server has a limited resource capacity, making it
difficult or sometimes impossible to serve all the users
within its coverage area. Offering many new opportunities,
edge computing has raised a variety of new research chal-
lenges, e.g., edge user allocation (EUA) [2], [4], [6], [26], [27],
computing offloading [28], [29], edge service placement
[30], [31], [32], edge data management [24], [33], [34], [35],
edge resource management [36], [37] and edge server place-
ment [38], [39]. Specially, there are somewhat similarities
between computing offloading and edge user allocation,
where they both aim at executing the computation-intensive
and latency sensitive mobile tasks on edge servers. How-
ever, they differ significantly in (but are not limited to) the
following four main ways. First, computation offloading is
studied from the edge infrastructure provider’s perspective,
e.g., Amazon and Vodafone, while edge user allocation is
studied from the service vendor’s perspective, e.g., You-
Tube and Uber. These are different stakeholders in the edge
computing environment and have different interests and
concerns. Second, computation offloading allocates tasks
coming from all the users as generic computation tasks,
while edge user allocation allocates users to edge servers so
that they can be served with low service latency. Third,
computation offloading assumes that a task can be proc-
essed by any edge server. Edge user allocation assumes that
a service vendor must hire resources like CPUs, RAMs and
storage to serve their users. Last but not least, computation
offloading usually do not consider the costs incurred. Edge
user allocation considers the cost of hiring resources on
edge servers for serving users.

Recently, EUA problem has attracted a lot of attentions
from academia and industry. Lai et al. [2] made the first
attempt to tackle the EUA problem. They modeled the EUA
problem as a variable sized vector bin packing problem, and
solved it with the objective to allocate the most users to the
fewest edge servers. Subsequently, user satisfaction was fur-
ther applied as the criterion to measure whether user alloca-
tion is cost-effective, considering that users’ requests on
computing resources may be differentiated [6]. Peng et al.
[11] targeted at mobile edge computing and modeled the
EUA problem as a revolvable process. They proposed a
mobility-aware greedy algorithm to find an approximate
solution to effectively allocating users to their nearby servers
with the consideration of user mobility. In our previous
work [9], we made the first attempt to study the distance-
aware EUA problem.We considered the correlation between
users’ signal strength and their distances from edge servers.

Currently, existing studies have simply assumed that a
user’s service request on computing resources can either be
fully fulfilled by a single edge server or cannot be satisfied at
all.What ismore, existing studies have neglected the complex-
ity of wireless signal transmission and treated the EUA prob-
lem as a static global optimization. More importantly, users’
service requests vary over time with temporal features that
have not been fully considered by existing approaches and
have yet to be properly explored and leveraged.

8 CONCLUSION AND FUTURE WORK

In this paper, we investigated the problem of spatio-tempo-
ral edge user allocation (ST-EUA) with task decomposition.
First, we formally formulated the ST-EUA problem by inte-
grating spatio-temporal features and task decomposition,

ZOU ETAL.: ST-EUA: SPATIO-TEMPORAL EDGE USER ALLOCATION WITH TASK DECOMPOSITION 639

modelled it as a constrained optimization problem and
proved its NP-hardness. To solve the ST-EUA problem
effectively and efficiently, we proposed a novel genetic
algorithm-based heuristic approach GA-ST for finding an
approximate solution that aims at maximizing users’ overall
QoE. Extensive experiments were conducted on two real-
world datasets with different distributions of users and
edge servers to evaluate the performance of GA-ST. The
results demonstrate our proposed approach GA-ST outper-
forms 12 representative competing approaches and achieves
a proper trade-off across multiple evaluation metrics.

In future work, we plan to explore the relationships
among different edge servers by their communication paths
to further boost the performance of edge user allocation.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things J., vol. 3, no. 5,
pp. 637–646, Oct. 2016.

[2] P. Lai et al., “Optimal edge user allocation in edge computing with
variable sized vector bin packing,” in Proc. 16th Int. Conf. Service-
Oriented Comput., 2018, pp. 230–245.

[3] M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864,
Dec. 2016.

[4] Q. He et al., “A game-theoretical approach for user allocation in
edge computing environment,” IEEE Trans. Parallel Distrib. Syst.,
vol. 31, no. 3, pp. 515–529, Mar. 2020.

[5] P. Lai, Q. He, J. Grundy, and F. e. Chen, “Cost-effective app user
allocation in an edge computing environment,” IEEE Trans. Cloud
Comput., to be published, doi: 10.1109/TCC.2020.3001570

[6] P. Lai et al., “Edge user allocationwith dynamic quality of service,” in
Proc. 17th Int. Conf. Service-Oriented Comput., 2019, pp. 86–101.

[7] P. Lai et al., “Quality of experience-aware user allocation in edge
computing systems: A potential game,” in Proc. 40th IEEE Int.
Conf. Distrib. Comput. Syst., 2020, pp. 223–233.

[8] Q. Peng et al., “A decentralized collaborative approach to online
edge user allocation in edge computing environments,” in Proc.
IEEE Int. Conf. Web Serv., 2020, pp. 294–301.

[9] Z. Xu et al., “Distance-aware edge user allocation with QoE opti-
mization,” inProc. 27th IEEE Int. Conf.Web Serv., 2020, pp. 66–74.

[10] G. Zou et al., “Td-eua: Task-decomposable edge user allocation
with QoE optimization,” in Proc. 18th Int. Conf. Serv.e-Oriented
Comput., 2020, pp. 215–231.

[11] Q. Peng et al., “Mobility-aware and migration-enabled online edge
user allocation in mobile edge computing,” in Proc. 26th IEEE Int.
Conf. Web Serv., 2019, pp. 91–98.

[12] T. S. Rappaport et al., Wireless Communications: Principles and Prac-
tice. Hoboken, NJ, USA: Prentice hall, 1996.

[13] M. Hemmati, B. McCormick, and S. Shirmohammadi, “QoE-aware
bandwidth allocation for video traffic using sigmoidal pro-
gramming,” IEEE MultiMedia, vol. 24, no. 4, pp. 80–90, Oct.–Dec.
2017.

[14] T. Taleb, A. Ksentini, and P. Frangoudis, “Follow-me cloud: When
cloud services follow mobile users,” IEEE Trans. Cloud Comput.,
vol. 7, no. 2, pp. 369–382, Apr.–Jun. 2019.

[15] K. Ha et al., “Adaptive VM handoff across cloudlets,” Carnegie Mel-
lonUniv., Pittsburgh, PA,USA, Tech.l Rep. CMU-CS-15–113, 2015.

[16] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with pre-
dicted future costs,” IEEE Trans. Parallel Distrib. Syst., vol. 28,
no. 4, pp. 1002–1016, Apr. 2017.

[17] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for
energy-constrained mobile edge computing in small-cell networks,”
IEEE/ACMTrans. Netw., vol. 26, no. 4, pp. 1619–1632, Aug. 2018.

[18] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile
edge computing networks,” in Proc. IEEE Int. Conf. Comput. Com-
mun., 2019, pp. 10–18.

[19] Y. Wei and M. B. Blake, “Service-oriented computing and cloud
computing: Challenges and opportunities,” IEEE Internet Comput.,
vol. 14, no. 6, pp. 72–75, Nov./Dec. 2010.

[20] E. N. Alkhanak, S. P. Lee, R. Rezaei, and R. M. Parizi, “Cost
optimization approaches for scientific workflow scheduling in
cloud and grid computing: A review, classifications, and open
issues,” J. Syst. Softw., vol. 113, pp. 1–26, 2016.

[21] K. Eng, A. Muhammed, M. A. Mohamed, and S. Hasan, “A hybrid
heuristic of variable neighbourhood descent and great deluge
algorithm for efficient task scheduling in grid computing,” Eur.
J. Oper. Res., vol. 284, no. 1, pp. 75–86, 2020.

[22] M. Abd Elaziz, L. Abualigah, and I. Attiya, “Advanced optimi-
zation technique for scheduling IoT tasks in cloud-fog comput-
ing environments,” Future Gener. Comput. Syst., vol. 124, pp.
142–154, 2021. [Online]. Available: https://doi.org/10.1016/j.
future.2021.05.026

[23] D. Ding, X. Fan, Y. Zhao, K. Kang, Q. Yin, and J. Zeng, “Q-learning
based dynamic task scheduling for energy-efficient cloud
computing,” Future Gener. Comput. Syst., vol. 108, pp. 361–371, 2020.

[24] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin,
“Cost-effective app data distribution in edge computing,” IEEE
Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 31–44, 2021.

[25] Q. He et al., “A game-theoretical approach for mitigating edge
DDOS attack,” IEEE Trans. Dependable Secure Comput., to be pub-
lished, doi: 10.1109/TDSC.2021.3055559

[26] G. Cui et al., “Interference-aware SaaS user allocation game for
edge computing,” IEEE Trans. Cloud Comput., to be published,
doi: 10.1109/TCC.2020.3008448

[27] G. Cui, Q. He, F. Chen, Y. Zhang, H. Jin, and Y. Yang,
“Interference-aware game-theoretic device allocation for mobile
edge computing,” IEEE Trans. Mobile Comput., to be published,
doi: 10.1109/TMC.2021.3064063

[28] X. Xu, Q. Wu, L. Qi, W. Dou, S.-B. Tsai, and M. Z. A. Bhuiyan,
“Trust-aware service offloading for video surveillance in edge
computing enabled internet of vehicles,” IEEE Trans. Intell. Transp.
Syst., vol. 22, no. 3, pp. 1787–1796, Mar. 2021.

[29] M. Dai, Z. Su, Q. Xu, and N. Zhang, “Vehicle assisted comput-
ing offloading for unmanned aerial vehicles in smart city,”
IEEE Trans. Intell. Transp. Syst., vol. 22, no. 3, pp. 1932–1944,
Mar. 2021.

[30] Y. Chen, S. Deng, H. Ma, and J. Yin, “Deploying data-intensive
applications with multiple services components on edge,” Mobile
Netw. Appl., vol. 25, no. 2, pp. 426–441, 2020.

[31] Z. Xiang, S. Deng, J. Taheri, and A. Zomaya, “Dynamical service
deployment and replacement in resource-constrained edges,”
Mobile Netw. Appl., vol. 25, no. 2, pp. 674–689, 2020.

[32] B. Li, Q. He, G. Cui, X. Xia, F. Chen, H. Jin, and Y. Yang, “Read:
Robustness-oriented edge application deployment in edge com-
puting environment,” IEEE Trans. Serv. Comput., to be published,
doi: 10.1109/TSC.2020.3015316

[33] X. Xia et al., “Graph-based optimal data caching in edge
computing,” in Proc. 17th Int. Conf. Serv.-Oriented Comput., 2019,
pp. 477–493.

[34] X. Xia, F. Chen, Q. He, and J. E. A. Grundy, “Online collaborative
data caching in edge computing,” IEEE Trans. Parallel Distrib.
Syst., vol. 32, no. 2, pp. 281–294, 2020.

[35] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He,
“Constrained app data caching over edge server graphs in
edge computing environment,” IEEE Trans. Serv. Comput., to be
published, doi: 10.1109/TSC.2021.3062017

[36] N. Wang, B. Varghese, M. Matthaiou, and D. S. Nikolopoulos,
“ENORM: A framework for edge node resource management,”
IEEE Trans. Serv. Comput., vol. 13, no. 6, pp. 1086–1099, Nov./Dec.
2020.

[37] M. Zakarya et al., “epcAware: A game-based, energy, performance
and cost efficient resource management technique for multi-access
edge computing,” IEEE Trans. Serv. Comput., to be published,
doi: 10.1109/TSC.2020.3005347

[38] G. Cui, Q. He, F. Chen, H. Jin, and Y. Yang, “Trading off bet-
ween user coverage and network robustness for edge server
placement,” IEEE Trans. Cloud Comput., to be published,
doi: 10.1109/TCC.2020.3008440

[39] G. Cui, Q. He, X. Xia, F. Chen, H. Jin, and Y. Yang, “Robustness-
oriented k edge server placement,” in Proc. 20th IEEE/ACM Int.
Symp. Cluster, Cloud Grid Comput., 2020, pp. 81–90.

640 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 16, NO. 1, JANUARY/FEBRUARY 2023

http://dx.doi.org/10.1109/TCC.2020.3001570
https://doi.org/10.1016/j.future.2021.05.026
https://doi.org/10.1016/j.future.2021.05.026
http://dx.doi.org/10.1109/TDSC.2021.3055559
http://dx.doi.org/10.1109/TCC.2020.3008448
http://dx.doi.org/10.1109/TMC.2021.3064063
http://dx.doi.org/10.1109/TSC.2020.3015316
http://dx.doi.org/10.1109/TSC.2021.3062017
http://dx.doi.org/10.1109/TSC.2020.3005347
http://dx.doi.org/10.1109/TCC.2020.3008440

Guobing Zou received the PhD degree in com-
puter science from Tongji University, Shanghai,
China, in 2012. He is currently an associate
professor and the dean of the Department of
Computer Science and Technology, Shanghai
University, China. From 2009 to 2011, he was a
visiting scholar with the Department of Computer
Science and Engineering, Washington University
in St. Louis USA. He has authored or coauthored
more than 80 papers on premier international
journals and conferences, including IEEE Trans-

actions on Services Computing, IEEE Transactions on Network and Ser-
vice Management, IEEE International Conference on Web Services and
International Conference on Service-Oriented Computing. His research
interests mainly include services computing, edge computing, data min-
ing and intelligent algorithms, and recommender systems.

Ya Liu received the bachelor’s degree in com-
puter science and technology from the Jiangxi
University of Finance and Economics in 2019.
She is currently working toward the master’s
degree with the School of Computer Engineer-
ing and Science, Shanghai University, China.
She has authored or coauthored two papers on
the 18th International Conference on Service-Ori-
ented Computing and the 27th IEEE International
Conference on Web Services, respectively. Her
research interests include edge computing, QoS

management, and heuristic algorithms. As the key member, she led a
research and development group to successfully design and implement a
service-oriented Big Data analysis and visualization platform that has
widely applied in environmental protection agency.

Zhen Qin received the bachelor’s degree in com-
puter science and technology from Shanghai Uni-
versity in 2018. He is currently working toward
the master’s degree with the School of Computer
Engineering and Science, Shanghai University,
China. He will pursue the PhD degree with
Zhejiang University, China. He has authored or
coauthored four papers on IEEE Transactions
on Services Computing, Knowledge-Based Sys-
tems, 18th International Conference on Service-
Oriented Computing, and the 26th IEEE Interna-

tional Conference on Web Services. His research interests include Web
service clustering, deep learning, and intelligent algorithms.

Jin Chen received the bachelor ’s degree in com-
puter science and technology from Fujian Normal
University in 2018. He is currently working toward
the master’s degree with the School of Computer
Engineering and Science, Shanghai University,
China. He has authored or coauthored two papers
on IEEE Transactions on Network and Service
Management and 18th International Conference
on Service-Oriented Computing. His research
interests include quality of service and deep learn-
ing. He has participated in a research and develop-

ment group to successfully design and implement a service-oriented Big
Data analysis and visualization platform.

Zhiwei Xu is currently working toward the under-
graduate degree with the School of Computer
Engineering and Science, Shanghai University,
China. He will pursue the master’s degree with
the School of Software, Tsinghua University,
2021. He has authored or coauthored two papers
on the 27th IEEE International Conference on
Web Services and the 18th International Confer-
ence on Service-Oriented Computing, respec-
tively. His research interests include edge
services computing, online social networks, and
data mining.

Yanglan Gan received the PhD degree in com-
puter science from Tongji University, Shanghai,
China, in 2012. She is currently an associate
professor with the School of Computer Science
and Technology, Donghua University, Shanghai,
China. She has authored or coauthored more than
50 papers on premier international journals, inc-
luding Bioinformatics, BMC Bioinformatics, IEEE/
ACM Transactions on Computational Biology and
Bioinformatics, IEEE Transactions on Services
Computing, and IEEE Transactions on Network

and Service Management. Her research interests include bioinformatics,
service computing, and datamining.

Bofeng Zhang received the PhD degree from the
Northwestern Polytechnic University (NPU),
China, in 1997. He is currently a full professor
with the School of Computer Engineering and
Science, Shanghai University. From 1997 to
1999, he was a postdoctoral research with Zhe-
jiang University, China. From 2006 to 2007, he
was also a visiting professor with the University of
Aizu, Japan, and a visiting scholar with Purdue
University, USA, from 2013 to 2014. He has auth-
ored or coauthored more than 150 papers on

international journals and conferences. His research interests include
service recommendation, intelligent human-computer interaction, and
data mining.

Qiang He received the first PhD degree from the
Swinburne University of Technology, Australia, in
2009 and the second PhD degree in computer
science and engineering from the Huazhong Uni-
versity of Science and Technology, China, in
2010. He is currently an associate professor with
the Department of Computer Science and Soft-
ware Engineering, Swinburne University of Tech-
nology, Australia. His research interests include
mobile edge computing, software engineering,
cloud computing, services computing, Big Data
analytics, and green computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZOU ETAL.: ST-EUA: SPATIO-TEMPORAL EDGE USER ALLOCATION WITH TASK DECOMPOSITION 641

