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TRCF: Temporal Reinforced Collaborative
Filtering for Time-aware QoS Prediction

Guobing Zou, Yutao Huang, Shengxiang Hu, Yanglan Gan, Bofeng Zhang, and Yixin Chen, Fellow, IEEE

Abstract—The proliferation of homogeneous web services has necessitated the task of predicting vacant Quality of Service (QoS) for
service-oriented downstream tasks. Existing approaches primarily focus on user-service invocations without considering temporal
factors, limiting their applicability in QoS fluctuations over time. Moreover, some investigations are conducted to predict temporally
missing QoS, which still suffers from two limitations. First, time-aware collaborative filtering (CF) approaches fail to well capture
continuous temporal changes, which lowers the performance of time-aware QoS prediction. Second, they have paid less attention to
the high sparsity of user-service QoS invocations across sequentially multiple time slices, which affects the calculation of temporal
average QoS, thereby further reducing the accuracy of time-aware QoS prediction. To effectively mine the continuous temporal
variations and solve the high sparsity of user-service QoS invocations, we propose a novel time-aware QoS prediction approach
named Temporal Reinforced Collaborative Filtering (TRCF). We design temporal reinforced RBS and PCC to improve similarity
evaluation that leads to better calculation of temporal average QoS and deviation migration for predicting time-aware QoS. We evaluate
TRCF on a large-scale real-world temporal dataset WS-DREAM across 64 time slices and the results demonstrate its superior
performance in time-aware QoS prediction, both under relatively dense and extremely sparse QoS situations.

Index Terms—Web Service, Time-aware QoS Prediction, Temporal Factor, Collaborative Filtering, Deviation Migration

✦

1 INTRODUCTION

W ITH the rapid development of Internet technology,
web services are deployed by service vendors in real-

world application scenarios, which has greatly promoted
the advancements in service selection [1], composition [2],
recommendation [3] and mashup creation [4]. The growing
popularity of service-oriented architecture (SOA) and the
overwhelming web services registered on the Internet has
resulted in a huge number of functionally similar or equiv-
alent services. It has led to a homogenization of service
functionalities, making it difficult and time-consuming for
service consumers to select their desired and suitable ser-
vices from a large pool of homogeneous service repositories.

Quality of Service (QoS) as the representation of non-
functional criterion has been widely used to differentiate
those homogeneous web services. However, different ser-
vice requesters may receive discrepant QoS due to various
external factors. Simultaneously, the QoS of the same web
service can fluctuate over multiple time slices. Because of
the large number of service consumers and web services,
it is scarcely possible to monitor and experience all the
QoS of user-service invocations, emerging high sparsity of
QoS invocations across multiple time slices. Therefore, how
to design an effective approach to predicting time-aware
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vacant QoS has become a fundamental research issue in
service-oriented application contexts.

In recent years, QoS prediction has been received many
research investigations. Based on whether temporal factors
are taken into account or not, it can be classified into non-
temporal QoS prediction and time-aware QoS prediction
[5]. Non-temporal QoS prediction includes memory-based
[6], [7], model-based [8], [9], and deep learning based [10],
[11], [12] approaches for predicting missing QoS. With
the consideration of the time-series variations of network
performance, time-aware QoS prediction is dedicated to
integrating the temporal factor into memory-based collab-
orative filtering (CF) [13], [14], [15], which calculates similar
neighbors through historical user-service QoS invocations to
perform the task of QoS prediction. Simultaneously, some
researchers have proposed new fusion approaches for time-
aware QoS prediction by leveraging sequence prediction
techniques [16], [17]. Moreover, owing to the applicability
of machine learning, more sophisticated investigations such
as tensor decomposition of increasing time dimension [18],
[19] and deep learning models [20], [21], [22] have been
proposed for time-aware QoS prediction.

Despite the progress of existing approaches for partially
facilitating time-aware QoS prediction, they still cannot
reach satisfactory performance in service-oriented applica-
tion contexts. Specifically, they mainly suffer from the two
following deficiencies. First, most memory-based conven-
tional time-aware CF approaches try to divide the entire
temporal intervals into a set of time slices by corresponding
two-dimensional matrices for representing user-service QoS
invocations and combine the predicted QoS values from
the multiple partitioned QoS matrices based on distance
coefficient. Since they mechanically merge the isolated QoS
predictions of each time slice, ignoring the importance of
continuous temporal changes [15], it cannot well uncover
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the temporal relationships among users invoking web ser-
vices. That significantly undermines the accuracy of time-
aware QoS prediction. Second, it is observed that existing
approaches have paid less attention to how to address
the high sparsity of user-service QoS invocations across
sequentially multiple time slices, which affects the calcu-
lation of temporal average QoS, thereby further reducing
the accuracy of time-aware QoS prediction. Thus, current
approaches are incapable of achieving superior accuracy
of time-aware QoS prediction, due to a lack of effectively
mining the continuous temporal variations and solving the
high sparsity of user-service QoS invocations.

To address the above two issues, we propose a novel
framework for time-aware QoS prediction called Temporal
Reinforced Collaborative Filtering (TRCF), including three
mutually correlative procedures. When calculating temporal
average QoS under densely historical QoS records, it first
directly fusions the QoS values of target user-service invoca-
tions across multiple time slices; as for the situation of high
sparsity of user-service QoS invocations, similar neighbors
and their corresponding historical QoS values at different
time slices are taken to reinforce the reliability of calculating
temporal average QoS. Then, temporal deviation migration
is performed by incorporating reliable factor to improve the
effectiveness of calculating the aggregated deviations from
similar neighbors of a target user or service. Finally, we
integrate the temporal average QoS and temporal deviation
migration to predict the missing time-aware QoS.

To evaluate the effectiveness of our proposed TRCF, we
conduct extensive experiments on a public and large-scale
real-world dataset called WS-DREAM, which consists of
4500 real-world web services from 57 regions and 142 users
from 22 regions. It involves a total number of 27,392,643
user-service QoS invocations, which are partitioned into
a set of independent temporal groups of historical QoS
records across 64 time slices. The experimental results
demonstrate that TRCF achieves the best performance in
multiple evaluation metrics for time-aware QoS prediction
compared to several state-of-the-art competing baselines.

The main contributions are summarized as follows:
• We propose a novel framework TRCF for time-aware

QoS prediction. It integrates temporal average QoS and
temporal deviation migration by continuously tempo-
ral QoS vectors across multiple time slices, leading to
better accuracy of time-aware QoS prediction.

• With respect to the high sparsity of user-service QoS
invocations across multiple time slices, we propose a
flexible scheme to reinforce the reliability of calculating
temporal average QoS. Ratio-Based Similarity (RBS) [6]
is applied to find similar neighbors as hidden heuristics
of insufficient target user-service temporal interactive
relationships, further boosting the accuracy of time-
aware QoS prediction at extremely high QoS sparse
situations.

• To validate the performance of the proposed TRCF,
we conducted extensive experiments on a real-world
dataset. The experimental results show that TRCF re-
ceives superior time-aware QoS prediction accuracy
over competing baselines, and it comprehensively
achieves the best performance under both relatively
dense or extremely high sparse QoS invocations.
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Fig. 1: Temporal QoS matrix. It consists of a set of temporal
QoS vectors in terms of multiple user-service pairs at differ-
ent time slices.

The remainder of this paper is organized as follows.
Section 2 formulates the time-aware QoS prediction prob-
lem. Section 3 illustrates the overall framework of TRCF
and elaborates the approach in detail. Section 4 shows and
analyzes the experimental results. Section 5 reviews the
related work. Finally, Section 6 concludes the paper and
discusses the future work.

2 PROBLEM FORMULATION

We first focus on the understanding of temporal service
ecosystem, and then detailedly define time-aware QoS pre-
diction problem. Table 1 presents all the notations.

Definition 1 (Temporal Service Ecosystem). A tempo-
ral service ecosystem is defined as a four-tuple M =<
U,S, T,R >, where U = {u1, u2, . . .} is a set of users,
S = {s1, s2, . . .} is a set of web services and T = {t1, t2, . . .}
is a set of continuous time slices. R = {rtu,s} consists of a
set of QoS values correlative to different user-service pairs
at multiple temporal slices.

Definition 2 (User-Service QoS Invocation). Given a
temporal service ecosystem M =< U,S, T,R >, a user-
service QoS invocation is defined as a four-tuple r =<
u, s, t, rtu,s >, where u ∈ U is a user, s ∈ S is a web service,
t ∈ T is a temporal slice, and rtu,s is a QoS value obtained
by u invoking s at t.

By aggregating all the QoS values from user-service QoS
invocations, we can obtain a three-dimensional temporal
QoS matrix R as shown in Fig. 1, where it can be equipped
by a set of temporal QoS vectors across multiple time slices.

Definition 3 (Temporal QoS Vector). A temporal QoS
vector is defined as a set Vu,s = {rt1u,s, rt2u,s, ..., r

t|T |
u,s }, where

u ∈ U is a user, s ∈ S is a web service, tx ∈ T is a temporal
slice of T , and rtu,s is the QoS value obtained by u invoking
s at t ∈ T . A temporal QoS vector represents QoS values of
a user-service pair at time slices T , reflecting the temporal
fluctuation of QoS sequences.

As depicted in Fig. 1, in a temporal service ecosystem
M , R can be formalized by temporal QoS vectors of all the
user-service pairs, denoted as R = Vu1,s1 ∪ . . . ∪ Vu1,sn ∪
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Fig. 2: Overall framework of user-based TRCF for time-aware QoS prediction.

TABLE 1: Notations.

Notation Description

U a set of users
S a set of Web services
T a set of time slices, time window
|T | length of T , window size
Vu,s temporal QoS vector of a user u invokes a

service s

V ′
u,s aggregated temporal QoS vector of a user

u invokes a service s

θPCC threshold of temporal reinforced PCC
θRBS threshold of temporal reinforced RBS
r̃tu,s aggregated QoS of a user u invokes a

service s at time slice t

r̂uu,s user-based temporal predicted QoS
r̂su,s service-based temporal predicted QoS
r̂tu,s time-aware predicted QoS

. . . ∪ Vum,s1 ∪ . . . ∪ Vum,sn , where m is the number of U , n
is the number of S, and l is the number of time slices.

In real application contexts, given a temporal QoS vector
Vu,s = {rt1u,s, rt2u,s, ..., r

t|T |
u,s }, if a user-service pair corre-

sponds to a QoS value at time slice t, we have rtu,s ∈ R;
otherwise, rtu,s /∈ R needs to be predicted for service
recommendation, which is defined as below.

Definition 4 (Time-aware QoS Prediction Problem).
Given a temporal service ecosystem M , time-aware QoS
prediction problem is defined as Ω =< M,u, s, t >, where
u ∈ U is a target user, s ∈ S is a target service, t ∈ T is a
target time slice and rtu,s /∈ R.

The solution to a given Ω can be represented by an
element < u, s, t, r̂tu,s >∈ Vu,s, where r̂tu,s denotes the
predicted missing temporal QoS for the invocation of a
target service s by a target user u at a time slice t.

3 APPROACH

3.1 The Framework of TRCF
Fig. 2 is the overall framework of TRCF for time-aware

QoS prediction. The goal of TRCF is to predict an unknown
temporal QoS value when a target user aims at invoking
a target web service at a specified time slice. It consists
of three crucial stages, including temporal average QoS
calculation, temporal deviation migration, and time-aware
QoS prediction. The processes of the three stages are marked
with different arrow types and described as below.

• In the stage of temporal average QoS calculation, the
module of dense temporal QoS fusion directly calcu-
lates the temporal average QoS by averagely accumu-
lating all the non-zero QoS values of target user-service
at multiple time slices. We propose TRCF-TA (Temporal
Average) for dense QoS distributions by directly aver-
aging the QoS values from the original temporal QoS
vector. For the context of highly sparse user-service QoS
invocations, temporal reinforced RBS is designed to
find similar neighbors of target service, where the QoS
values of target user invoking those similar services at a
certain time slice are aggregated to supplement the cor-
responding vacant historical QoS value of target user-
service, for better calculating temporal average QoS. We
propose TRCF-RTA (Ratio-based Temporal Average) for
highly sparse QoS distributions by indirectly averaging
the QoS values from the supplemented temporal QoS
vector.

• In the stage of temporal deviation migration, temporal
reinforced PCC is designed to find similar neighbors
of target user, which is used to calculate the deviation
migrations to temporal average QoS of each similar
user invoking the target service. Moreover, reliable fac-
tor is calculated by Jaccard similarity coefficient under
temporal QoS invocations of target user and similar
neighbors, further improving the effectiveness of tem-
poral reinforced PCC and enhancing the reliability of
temporal deviation migration.
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• In the stage of time-aware QoS prediction, we integrate
the calculated temporal average QoS and temporal
deviation migration to perform the final unknown tem-
poral predicted QoS.

3.2 Temporal Average QoS Calculation

As shown in Fig. 2, dense temporal QoS fusion is pro-
visioned to directly calculate the temporal average QoS for
the case of target user-service dense QoS invocations across
multiple time slices. Conversely, as for highly sparse QoS
invocations, temporal reinforced RBS is taken to find sim-
ilar neighbors for improving the effectiveness of temporal
average QoS.

3.2.1 Density-based Temporal Average

For a target user and web service under the distribution
of dense QoS invocations, temporal average QoS can be
calculated by averaging the values of user-service tempo-
ral QoS vector. Specifically, given a temporal QoS vector
Vu,s = {rt1u,s, rt2u,s, ..., r

t|T |
u,s }, density-based temporal average

QoS is expressed by:

Avguu,s = V u,s =

∑
t∈T rtu,s
|To|

(1)

where Avguu,s represent the user-based temporal average
QoS values. rtu,s represents the QoS value of target service
s invoked by target user u at time slice t ∈ T . To ⊂ T
represents a set of time slices with a non-zero QoS value.
That is, for a time slice t ∈ To, rtu,s ∈ R.

As to the calculation of service-based temporal average
QoS Avgsu,s, it can also be expressed by the same formula.
Specifically, when calculating temporal average QoS, it is
observed that a target user invokes a target service with the
same temporal QoS vector for both user-based and service-
based TRCF under dense QoS distributions. Consequently,
they obtain the same temporal average QoS by averaging
the invoked QoS values from the same temporal QoS vector
across multiple time slices.

3.2.2 Sparsity-based Temporal Average

To solve the extremely high sparsity when calculating
temporal average QoS, we apply RBS technique [6], [7] to
temporal scenario for finding similar neighbors of a target
user or service. Based on traditional RBS, we extend it
to a temporal reinforced RBS for measuring the similar-
ity between two temporal QoS vectors by matching the
QoS values at their corresponding time slice. The higher
similarity of temporal reinforced RBS, the more usefulness
of evaluating two similar users or services in terms of
their absolutely historical QoS values. It can collaboratively
aggregate the historical QoS from similar neighbors to
supplement the vacant QoS values of a target user-service
at corresponding time slices, enhancing the reliability of
sparsity-base temporal average QoS.

For the user-based temporal average QoS, we obtain
a candidate service set that is more similar to the target
service through temporal reinforced RBS filtering, by a

target user invoking a target service and candidate services,
respectively.

Simu
RBS(s, g) =

∑
t∈Tc

min(rtu,s,r
t
u,g)

max(rtu,s,r
t
u,g)

|Tc|
(2)

where Simu
RBS(s, g) represents the temporal reinforced RBS

of a target user u invoking a target service s and candidate
service g. Tc represents a set of time slices of u invoking s
and g simultaneously, and |Tc| is the number of time slices in
Tc. min(rtu,s, r

t
u,g) and max(rtu,s, r

t
u,g) denote the minimum

and maximum invoked QoS of rtu,s and rtu,g at time slice t,
respectively.

S∗(s) = {g ∈ S|Simu
RBS(s, g) > θRBS} (3)

where S∗(s) represents the selected set of similar neighbors
of a target service s, and θRBS is the specified threshold of
temporal reinforced RBS filtering.

We find that when the temporal reinforced RBS between
s and g approaches 1, it indicates that u invoking s and g
has highly similar QoS values in their temporal QoS vectors,
respectively.

Based on the filtering results, we can obtain a QoS value
from each similar service, which is invoked by the target
user at a time slice. Specifically, given a target user u, a target
service s and its similar service g ∈ S∗(s), the estimated QoS
value at time slice t is calculated as:

r̃tu,s(g) =

{
rtu,g · Simu

RBS(s, g), V u,g ≥ V u,s

rtu,g/Sim
u
RBS(s, g), V u,g < V u,s

(4)

where V u,s and V u,g represent the temporal average QoS
of user-service pair u, s and u, g, respectively. By comparing
V u,s and V u,g , when the temporal average QoS reflected by
user-service pair u, s is less than u, g, the QoS of u invoking
g at time slice t is reduced by Simu

RBS(s, g) to denote r̃tu,s;
otherwise, it is represented by amplifying the QoS value
through Simu

RBS(s, g).
By accumulating the estimated QoS from each similar

service, a group of QoS values can be obtained for estimat-
ing the QoS of the target user invoking the target service at
a time slice.

Pu(u, s, t) = {r̃tu,s(g1), r̃tu,s(g2), . . . , r̃tu,s(g|S∗(s)|)} (5)

where Pu(u, s, t) is the set of QoS values estimated for the
target user u and the target service s on the time slice t,
which is assisted by all similar services gx ∈ S∗(s).

By using the above Pu(u, s, t), we estimate the missing
QoS of u invoking s based on similar services at time slice t.

r̃tu,s =


∑

r̃∈Pu(u,s,t) r̃

|Pu
o (u, s, t)|

, rtu,s /∈ R

rtu,s, rtu,s ∈ R

(6)

where r̃tu,s is the final estimated QoS of u invoking s at t.
Pu
o (u, s, t) is the subset of non-zero values in Pu(u, s, t), and

|Pu
o (u, s, t)| is the number of non-zero values.

Here, we note that not every similar service can provide
a valid estimated QoS value because some similar services
may not be invoked by the target user at time slice t. As
a result, if a target user has not invoked a target service
at a time slice, we supplement the missing value with the
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estimated QoS from similar services; otherwise, its original
invoked QoS is used to calculate the temporal average QoS.

Consequently, the updated temporal QoS vector V ′
u,s can

be represented by leveraging the estimated QoS values with
temporal reinforced RBS of similar services, or its original
invoked QoS at each time slice. It is expressed by:

V ′
u,s = {r̃t1u,s, r̃t2u,s, . . . , r̃

t|T |
u,s }u (7)

where V ′
u,s is the updated temporal QoS vector for a target

user u and a target service s, and T is a set of time slices.
By applying the updated temporal QoS vector V ′

u,s to
enhancing the reliability of sparsity-based temporal average
QoS. It is expressed by:

Avguu,s = V ′
u,s =

∑
t∈T r̃tu,s

|T+
o |

(8)

where Avguu,s is user-based temporal average QoS, and
r̃tu,s ∈ V ′

u,s denotes the estimated or original QoS of u
invoking s at time slice t. T+

o ⊂ T represents a set of time
slices with non-zero QoS value and estimated QoS with
similar services.

Similarly, from the perspective of service-based temporal
average QoS calculation, its temporal reinforced RBS for
finding similar users is expressed as:

Sims
RBS(u,w) =

∑
t∈Tc

min(rtu,s,r
t
w,s)

max(rtu,s,r
t
w,s)

|Tc|
(9)

where Sims
RBS(u,w) represents the temporal reinforced

RBS of a target u and candidate user w both invoking a
target service s, and Tc is a set of time slices of u and w
commonly invoking s. min(rtu,s, r

t
w,s) and max(rtu,s, r

t
w,s)

denote the minimum and maximum QoS of rtu,s and rtw,s at
a time slice t, respectively.

By applying the calculated service-based temporal rein-
forced RBS, we can generate a set of similar users U∗(u) of a
target user u, which are fed to estimate approximative QoS
r̃tu,s of each w ∈ U∗(u) invoking a target service s at t.

U∗(u) = {w ∈ U |Sims
RBS(u,w) > θRBS} (10)

r̃tu,s(w) =

{
rtw,s · Sims

RBS(u,w), V w,s ≥ V u,s

rtw,s/Sim
s
RBS(u,w), V w,s < V u,s

(11)

P s(u, s, t) = {r̃tu,s(w1), r̃
t
u,s(w2), . . . , r̃

t
u,s(w|U∗(u)|)} (12)

where U∗(u) represents the selected set of similar neighbors
of a target user u. V u,s and V w,s denote the temporal
average QoS of the user-service pair u, s and w, s, respec-
tively. By accumulating the estimated QoS from each similar
user wx ∈ U∗(u), P s(u, s, t) is the set of QoS obtained for
estimating the QoS of the target user u invoking the target
service s at a time slice t.

Finally, the missing historical QoS value of a target user
u invoking a target service s at a specified time slice t is
estimated by P s(u, s, t). It can be used to generated an
updated the temporal QoS vector V ′

u,s for calculating the
service-based temporal average QoS.

r̃tu,s =


∑

r̃∈P s(u,s,t) r̃

|P s
o (u, s, t)|

, rtu,s /∈ R

rtu,s, rtu,s ∈ R

(13)

V
′

u,s = {r̃t1u,s, r̃t2u,s, . . . , r̃
t|T |
u,s }s (14)

Avgsu,s = V ′
u,s =

∑
t∈T r̃tu,s

|T+
o |

(15)

where r̃tu,s represents the final estimated QoS of u invoking
s at t. P s

o (u, s, t) denotes the subset of non-zero QoS values
in P s(u, s, t). V ′

u,s is the updated temporal QoS vector
generated by similar neighbors of a target user. Avgsu,s is
the service-based temporal average QoS.

3.3 Temporal Deviation Migration

We first design temporal reinforced PCC to find a set
of similar neighbors for aggregating the deviations to their
temporal average QoS. With the consideration of high QoS
sparsity, we then take into account reliable factor to fur-
ther improve the effectiveness of temporal reinforced PCC,
which finally leads to better calculation of temporal devia-
tion migration.

3.3.1 Temporal Reinforced PCC

Existing time-aware QoS prediction approaches typically
incorporate temporal factors using neural networks or tem-
poral decay factors after separately calculating QoS matrix
of each time slice. In other words, they first mine the two-
dimensional QoS invocation relationships among users and
services, and then consider the characteristics of temporal
factor, ignoring the importance of continuous temporal QoS
invocation changes between users and services [15] [23].
Thus, it cannot reveal the temporal QoS relationships among
users invoking web services. To solve this issue, TRCF
utilizes temporal QoS vector of user-service pair across mul-
tiple time slices to perform temporal reinforced PCC that
focuses on evaluating the linear relationship and calculating
the similarity of two temporal QoS vectors to more accu-
rately find similar neighbors. It enhances the expression of
QoS variations along with continuous time slices, reflecting
the temporal fluctuation of QoS sequences. Following the
observation, TRCF can better capture temporal deviation
migration by similar neighbors.

When finding user-based similar neighbors by temporal
reinforced PCC, instead of traditional PCC that is used to
calculate the similarity between two users jointly invoking
multiple services, we incorporate temporal factors by calcu-
lating temporal QoS vectors of two users invoking the same
web service at multiple time slices. That is, it enables us to
calculate the similarity of QoS fluctuations for a target user
u and candidate user v invoking the target service s across
multiple time slices Tc. It is expressed as:

Sims
PCC(u, v) =∑

t∈Tc
(rtu,s − V u,s)(r

t
v,s − V v,s)√∑

t∈Tc
(rtu,s − V u,s)2

√∑
t∈Tc

(rtv,s − V v,s)2

(16)

where Tc = Tu,s ∩ Tv,s represents the intersection of
time slices when u and v have both invoked s. rtu,s and
rtv,s represent the QoS values of s invoked by u and v at
time slice t, respectively. V u,s and V v,s denote the temporal
average QoS of user-service pair u, s and v, s, respectively.
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Based on the calculation of temporal reinforced PCC, a
set of candidate users whose similarity to the target user is
greater than a threshold are selected as similar users.

U(u) = {v ∈ U |Sims
PCC(u, v) > θPCC} (17)

where U(u) is the selected set of similar users, and θPCC is
the similarity threshold of temporal reinforced PCC.

Likewise, when finding service-based similar neighbors
by temporal reinforced PCC, we introduce temporal factors
to traditional PCC by calculating temporal QoS vectors
of two services invoked by the same user. It can reflect
the similarity of QoS fluctuations between a target user u
invoking a target service s and candidate service f over a
set of time slices Tc. It is expressed as:

Simu
PCC(s, f) =∑

t∈Tc
(rtu,s − V u,s)(r

t
u,f − V u,f )√∑

t∈Tc
(rtu,s − V u,s)2

√∑
t∈Tc

(rtu,f − V u,f )2

(18)

S(s) = {f ∈ S|Simu
PCC(s, f) > θPCC} (19)

where Tc = Tu,s ∩ Tu,f represents the intersection of time
slices when u has jointly invoked s and f . rtu,s and rtu,f
represent the QoS values of s and f invoked by u at time
slice t, respectively. V u,s and V u,f denote the temporal
average QoS of user-service pair u, s and u, f , respectively.
S(s) is the selected set of similar services of s for calculating
temporal deviation migration.

3.3.2 Reliable Factor
When user-service QoS invocations are abundant, tem-

poral reinforced PCC can accurately calculate the similarity
between two temporal QoS vectors. However, in case of
high QoS sparsity, the impact of vector intersection factors
may cause PCC to either underestimate or overestimate the
similarity between two QoS vectors [15]. It can result in low
reliability of temporal reinforced PCC, which has a negative
influence on calculating temporal deviation migration.

To address this issue, we have employed the Jaccard sim-
ilarity coefficient as a reliable factor to numerically adjust
the similarity of temporal reinforced PCC. It is expressed as:

Js(u, v) =
|Vu,s ∩ Vv,s|
|Vu,s ∪ Vv,s|

(20)

where |Vu,s ∩ Vv,s| is the number of time slices that both u
and v have invoked s, and |Vu,s ∪ Vv,s| is the total number
of time slices that u and/or v have invoked s.

It is observed that under the same density of user-service
QoS invocations, as the number of common time slices
increases for a target user and candidate user invoking a
target service, it strengthens the reliability of calculating
the similarity of temporal reinforced PCC, and vice versa.
In such case, we integrate the temporal reinforced PCC
similarity calculated by Eq. 16 and reliable factor calculated
by Eq. 20 to optimize the user-based similarity between a
target user u and a candidate user v.

Sims(u, v) = Sims
PCC(u, v) · Js(u, v) (21)

where the multiplication of Js(u, v) can avoid false high
similarity that may not truly reflect the similarity between

two users due to the small number of intersection of time
slices on co-invoked service. Furthermore, even though in-
tegrating both similarity calculations may result in relatively
small Sims(u, v) when temporal deviation migration is
performed by Eq. 24, the difference among similar users can
still be significantly reflected by the ratio of the similarity of
a target user’s neighbor to the sum of similarities of all the
neighbors. Thus, it can ensure a more reliable and accurate
QoS prediction result.

Similarly, the updated similarity of service-based tempo-
ral reinforced PCC with reliable factor is expressed as:

Ju(s, f) =
|Vu,s ∩ Vu,f |
|Vu,s ∪ Vu,f |

(22)

Simu(s, f) = Simu
PCC(s, f) · Ju(s, f) (23)

where |Vu,s ∩ Vu,f | is the number of time slices that u has
jointly invoked s and f , and |Vu,s∪Vu,f | is the total number
of time slices that u has invoked s and/or f . Simu

PCC(s, f)
is the similarity of service-based temporal reinforced PCC
calculated by Eq. 18.

When calculating the temporal deviation migration, we
prioritize the filtration of selecting similar neighbors based
on the specified threshold of temporal reinforced PCC,
followed by the integration of reliable factor, rather than se-
lecting similar neighbors by the updated similarity together
with temporal reinforced PCC and reliable factor. It can be
explained by the following example.
Example:

O = {0.7, 0.6, 0.6, 0.4}
Filtration → Integration:
A = {0.7, 0.6, 0.6}
A′ = {0.7× 0.06, 0.6× 0.06, 0.6× 0.03}
Integration → Filtration:
B = {0.7× 0.06, 0.6× 0.06, 0.4× 0.09, 0.6× 0.03}
B′ = {0.7× 0.06, 0.6× 0.06, 0.4× 0.09}
Suppose we have calculated the similarity set O of tem-

poral reinforced PCC, consisting of four similar neighbors
with the corresponding QoS similarity. In the Filtration →
Integration, assuming that we specify the threshold to 0.5,
it filters out 0.4 and obtains the similar neighbors with
the similarity set A. After integrating the reliable factors,
we generate the final similarity set A′. Conversely, in the
Integration → Filtration, we first integrate O with reliable
factors and obtain the updated similarity set B. Assuming
that we specify the threshold to 0.030, the updated sim-
ilarity 0.6 × 0.03 having higher temporal reinforced PCC
and lower reliable factor is filtered out from B, whereas
the updated similarity 0.4 × 0.09 having lower temporal
reinforced PCC and higher reliable factor keeps in the final
similarity set B′.

From the above analysis, it is more reasonable to first
find a set of similar neighbors by the similarity of temporal
reinforced PCC, and then further update the similarity of
each selected neighbor by integrating reliable factor, when
performing the temporal deviation migration. That is, for a
similar neighbor, although it has a relatively bigger reliable
factor and potentially leads to higher deviation weight, it
still may be classified as a dissimilar neighbor that cannot
be used for calculating temporal deviation due to its lower
temporal reinforced PCC.
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3.3.3 Temporal Deviation Calculation
By combining temporal reinforced PCC, reliable factor

and temporal average QoS of similar neighbors, the user-
based temporal deviation migration is calculated as:

Devuu,s =

∑
v∈U(u) Sim

s(u, v) · (rtv,s −Avguv,s)∑
v∈U(u) Sim

s(u, v)
(24)

where Avguv,s represents the temporal average QoS of a
candidate user v and a target service s. rtv,s is the true QoS
value of s invoked by v in the currently predicted time slice.

Similarly, the service-based temporal deviation migra-
tion is calculated as follows:

Devsu,s =

∑
f∈S(s) Sim

u(s, f) · (rtu,f −Avgsu,f )∑
f∈S(s) Sim

u(s, f)
(25)

where Avgsu,f represents the temporal average QoS of a
target user u and a candidate service f . rtu,f is the true QoS
value of f invoked by u in the currently predicted time slice.

By applying the above temporal deviation migration, it
may result in a negative non-zero temporal predicted QoS.
This is primarily due to the fact that the temporal deviation
migration of is negative and its absolute value is relatively
large, possibly triggering an illegal prediction of missing
temporal QoS by adding temporal average QoS. To guar-
antee the non-negative predicted QoS in real application
contexts, we further modify the temporal deviation migra-
tion for those cases with negative predicted QoS. They are
reconstructed by multiplication scaling for user-based and
service-based temporal deviation migration, respectively.

Dev′uu,s =

∑
v∈U(u) Sim

s(u, v) · (rtv,s/Avguv,s)∑
v∈U(u) Sim

s(u, v)
(26)

Dev′su,s =

∑
f∈S(s) Sim

u(s, f) · (rtu,f/Avgsu,f )∑
f∈S(s) Sim

u(s, f)
(27)

3.4 Time-aware QoS Prediction
Based on temporal average QoS and temporal deviation

migration, the user-based missing temporal QoS is pre-
dicted:

r̂uu,s = Avguu,s +Devuu,s (28)

where r̂uu,s denotes the predicted temporal QoS at a time
slice t. Avguu,s and Devuu,s represent the user-based temporal
average QoS and temporal deviation migration of a target
user u invoking a target service s, respectively.

Similarly, the service-based missing temporal QoS is
predicted by:

r̂su,s = Avgsu,s +Devsu,s (29)

where r̂su,s denotes the predicted temporal QoS at a time
slice t. Avgsu,s and Devsu,s represent the service-based tem-
poral average QoS and temporal deviation migration of a
target user u invoking a target service s, respectively.

Based on the results of above user-based and service-
based predicted temporal QoS values, the finally time-aware
predicted QoS is calculated as follows:

r̂tu,s = α · r̂uu,s + (1− α) · r̂su,s (30)

where α denotes the adjusting coefficient of user-based and
service-based temporal QoS prediction.

TABLE 2: Statistics of Temporal RT in WS-DREAM.

Item Value

Users 142
Services 4500
Time Slices 64
Range of RT 0-20
Invocation Records 27,392,643
Maximum QoS Density 66.98%

TABLE 3: Parameter Settings of TRCF.

Parameter Range Interval Step

Density 5%-20% 5%
Window Size 8-64 8
θPCC 0.3-0.8 0.1
θRBS 0.66-0.76 0.02
α 0.0-1.0 0.1

When the predicted temporal QoS value r̂tu,s is less than
0, i.e., r̂tu,s < 0, we perform the user-based and service-
based missing temporal QoS prediction by the reconstructed
temporal deviation migration. They are further combined
by adjusting coefficient to predict the finally time-aware
missing QoS.

r̂′
u

u,s = Avguu,s ·Dev′uu,s (31)

r̂′
s

u,s = Avgsu,s ·Dev′su,s (32)

r̂′
t

u,s = α · r̂′
u

u,s + (1− α) · r̂′
s

u,s (33)

where r̂′
t

u,s represents the finally missing temporal QoS for
the phenomenon of negative prediction.

Despite the enhancement of information expression
through similar user and service neighbors for the re-
inforcement of linearly temporal user-service invocations
across multiple continuous time slices, TRCF still struggles
to learn complex nonlinear invocation relationships under
time-aware situations. It may partially weaken temporal
QoS prediction performance.

4 EXPERIMENTS

4.1 Experimental Setup and Dataset

All the experiments are carried out on our workstation
equipped with two NVIDIA GTX 1080Ti GPUs, an Intel(R)
Xeon(R) Gold 6130 @2.60 GHz CPU and 192GB RAM. All
the components of TRCF are implemented by python 3.7.1.

To evaluate the effectiveness of TRCF, we have con-
ducted extensive experiments on a publicly available large-
scale real-world temporal QoS dataset called WS-DREAM
[24]. It has been widely used for time-aware QoS prediction
that contains two kinds of QoS criteria, namely response
time (RT) and throughput (TP). Since RT can intuitively
reflect the networking status of users and services across dif-
ferent time slices, we have chosen RT as the primary experi-
mental temporal QoS dataset. It comprises 142 independent
users, 4500 web services, and a total number of 27,392,643
user-service QoS invocations, which is partitioned into a set
of independent temporal groups of historical QoS records
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across 64 time slices. The overall QoS sparsity of WS-
DREAM dataset is approximately 66.98%. Table 2 provides
the detailed statistics regarding the temporal RT dataset.
For the splitting strategy of training data, we have ran-
domly selected QoS invocation records across multiple time
slices from the original dataset to generate the experimental
dataset that aims to simulate realistic application scenarios
as closely as possible. In the experiments, we have divided
the dataset into four different QoS densities, including 5%,
10%, 15%, and 20%. For the comparison of temporal QoS
prediction performance, the remaining QoS samples at each
QoS density are used as testing samples.

To verify the effectiveness of our proposed TRCF, we
tune different ranges of parameters. In the experiments,
the prediction performance of TRCF is impacted by the
parameter settings, which is shown in Table 3.

4.2 Evaluation Metrics
In the experiments, we compare the QoS prediction

performance of TRCF and competing baselines by two
evaluation metrics, including Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE).

Let rtu,s and r̂tu,s represent the ground truth QoS and
predicted time-aware QoS of a target service s invoked by a
target user u at a time slice t, respectively. MAE and RMSE
are applied to measure the variances between the observed
QoS and the predicted missing temporal QoS.

MAE =

∑
u,s

∣∣rtu,s − r̂tu,s
∣∣

N
(34)

RMSE =

√∑
u,s

(
rtu,s − r̂tu,s

)2
N

(35)

where N is the number of test samples of the predicted
time-aware QoS. Obviously, we can find that smaller values
on MAE and RMSE indicate better accuracy of predicting
missing temporal QoS across multiple time slices.

In our experiments, MAE is a linear evaluation metric
that equally weights all individual differences, enabling
it to demonstrate the accuracy of overall time-aware QoS
prediction. Conversely, RMSE enhances the weighting of
those individual outliers that is more sensitive to large errors
of time-aware QoS prediction.

4.3 Competing Methods
To evaluate the performance of TRCF, we compare it

with eight competing baselines, including a benchmark
approach UIMean, two traditional CF-based approaches
UPCC [25] and IPCC [26], as well as five well-known and
state-of-the-art approaches, namely PNCF [20], WSPred [18],
TUIPCC [15], PLMF [22], and RNCF [23].

• UIMean: It is a hybrid QoS prediction approach that
combines the average user-based QoS value from
UMEAN and the average service-based QoS value from
IMEAN. Here, UMEAN and IMEAN calculate the av-
erage QoS of a target user who has invoked all services,
and a target service that has been invoked by all users
in the current time slice, respectively.

• UPCC [25]: It is a user-based QoS prediction approach
that involves finding a group of users similar to a target

user. The predicted QoS is obtained by combining the
average QoS from UMEAN and the deviation migration
from similar users.

• IPCC [26]: It is a service-based QoS prediction approach
that involves finding a set of services similar to a target
service. The predicted QoS is obtained by combining
the average QoS from IMEAN and the deviation mi-
gration from similar services.

• PNCF [20]: It is a personalized recommendation model
by neural collaborative filtering that can also be used
for QoS prediction. It uses a deep neural network to
capture user-service nonlinear invocation relationships
and obtain the feature representations of users and
services by sparse vectors for predicting missing QoS.

• WSPred [18]: It is a temporal perception QoS prediction
approach that upgrades the temporal dimension feature
based on two-dimensional user-service QoS matrix.
It expands to three-dimensional tensor decomposition
and makes reliable QoS prediction results by adding
the dimension of temporal factor.

• TUIPCC [15]: It is a temporal QoS prediction approach
that combines the average historical QoS value and
collaborative QoS value calculated by the selected user
or service neighbors based on the similarity of user-
service temporal QoS invocations.

• PLMF [22]: It is an LSTM-based time-aware QoS pre-
diction approach. It first encodes three-dimensional
tensor of user-service-time invocation relationships and
obtains the feature representations by one-hot encod-
ing. Then, the encoded eigenvector is reduced by the
embedding dimension of a fully connected network.
Finally, LSTM is applied to extract the latent temporal
characteristics for predicting time-aware QoS.

• RNCF [23]: It introduces a multi-layer GRU into the
framework of neural collaborative filtering and lever-
ages historical user-service invocations of different time
slices to learn the temporal patterns between users and
services for superior time-aware QoS prediction.

4.4 Experiment Results and Analyses

In the experiments, we denote our proposed TRCF-TA
as the approach of time-aware QoS prediction under dense
user-service invocations, and TRCF-RTA for highly sparse
QoS invocations. To ensure the fairness of the performance
comparison of time-aware QoS prediction, we evaluate the
effectiveness among TRCF and the competitive baselines
by calculating MAE and RMSE under four different QoS
densities of 5%, 10%, 15%, and 20%.

Table 4 shows the experimental results of time-aware
QoS prediction under four different matrix densities on
temporal RT dataset. Here, the best results of MAE and
RMSE of each column within eight competing baselines
and TRCF variants are first respectively highlighted in
the gray background, and then the best results of each
column among all competing approaches are marked in
bold. From the results, we can see that our proposed TRCF-
TA and TRCF-RTA continue to outperform all competitive
approaches in terms of RMSE, and the QoS prediction
accuracy of TRCF-TA and TRCF-RTA on MAE is slightly
lower than RNCF at QoS density of 10%, but superior to
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TABLE 4: Experimental Results of Time-aware QoS Prediction under Multiple QoS Densities on Temporal RT Dataset.

Methods
Density=5% Density=10% Density=15% Density=20%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
UIMean 1.1494 2.6801 1.0755 2.5657 1.0012 2.4427 0.9309 2.3218
UPCC 0.9022 1.9243 0.9587 1.7961 0.8948 1.7041 0.8513 1.6284
IPCC 1.0657 2.0001 0.8938 1.7465 0.8432 1.6807 0.8075 1.6228
PNCF 1.1653 1.8358 1.0891 1.7221 1.0427 1.6533 1.0129 1.6170
WSPred 0.7809 1.7065 0.6894 1.6334 0.6726 1.6076 0.6634 1.5930
TUIPCC 0.7675 1.8025 0.7578 1.7148 0.7427 1.6584 0.7223 1.5947
PLMF 0.7267 1.7059 0.6786 1.6126 0.6582 1.5749 0.6444 1.5525
RNCF 0.6920 1.7582 0.6007 1.6685 0.5902 1.6035 0.5559 1.5935
TRCF-TA 0.6771 1.7106 0.6178 1.5135 0.5656 1.3932 0.5301 1.3162
TRCF-RTA 0.6532 1.6283 0.6194 1.4922 0.5851 1.4215 0.5655 1.3712
Gains 5.61% 4.55% -2.85% 7.47% 4.17% 11.54% 4.64% 15.22%

TABLE 5: Performance Comparisons between TRCF-TA and TRCF-RTA under extremely high sparse QoS densities.

Methods
Density=1% Density=2% Density=3% Density=4%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE
TRCF-TA 0.8638 2.0834 0.7396 1.9396 0.6900 1.8311 0.6836 1.7732
TRCF-RTA 0.8341 1.9368 0.6924 1.7711 0.6740 1.6860 0.6671 1.6641

all competitive approaches at other three QoS densities. In
the case of 10% QoS density where RNCF achieves slightly
better performance than our proposed TRCF-TA and TRCF-
RTA in terms of MAE, it may be occurred because the
model complexity of RNCF at that QoS density could more
precisely match the characteristics of the dataset, allowing
the model to fully capture key factors and thereby exhibiting
superior QoS prediction performance. Additionally, as QoS
density on temporal RT increases from 5% to 20% with
an interval step 5%, it is observed that MAE and RMSE
gradually become smaller among all competing approaches,
indicating more effective QoS prediction performance. The
underlying reason is that higher QoS density provides more
sufficient user-service temporal invocations that is beneficial
to mine temporal characteristics and find similar neighbors,
enabling competing approaches to receive better accuracy of
time-aware QoS prediction.

More Specifically, UIMEAN, UPCC, and IPCC, as ba-
sic and purely traditional CF approaches, have relatively
poor QoS prediction performance. The primary reason is
that they can only predict missing QoS values through
two-dimensional historical QoS records, instead of three-
dimensional temporal QoS invocations. That is, these ap-
proaches cannot take full advantage of past historical QoS
records across multiple time slices. Compared to the three
conventional approaches, the other five competing baselines
take into account temporal factors, which can boost the
accuracy of time-aware QoS prediction on MAE and RMSE.
In particular, RNCF that can effectively represent features
of different user-service pairs on multiple time slices by
neural collaborative filtering performs better among all
eight competitive baselines in terms of MAE under dif-
ferent QoS densities, but a little bit worse in terms of
RMSE. On the contrary, PLMF that trains the complete
time series of user-service pairs through a personalized
LSTM model achieves better accuracy of time-aware QoS
prediction on RMSE among all eight competitive baselines,
whereas relatively lower performance on MAE. Inspired by

these competing baselines, we have found that the tempo-
rally dynamic changes of user-service invocations play an
important role in QoS prediction across multiple time slices,
due to the differences of networking conditions among users
and services. Following the observation, TRCF captures the
continuous QoS fluctuations along multiple time slices by
temporal QoS vectors, which are used to measure the simi-
larity between two users or services. As a result, it can find
neighbors of a user or service with similar QoS temporal
trends, which is used to calculate temporal average QoS and
temporal deviation migration for better accuracy of time-
aware QoS prediction on both MAE and RMSE.

As for our proposed TRCF-TA and TRCF-RTA, when
the temporal QoS matrix is dense, abundant user-service
QoS invocations can be available across multiple time slices.
In such case, TRCF-TA can straightforwardly adopt suffi-
cient temporal historical records from a target user-service
pair for more accurately calculating temporal average QoS.
Meanwhile, it can also directly employ temporal QoS vec-
tors of a target user and target service to find similar
users and services for more effectively calculating temporal
deviation migration. Consequently, TRCF-TA obtains supe-
rior MAE and RMSE compared to TRCF-RTA at almost
all of the dense QoS situations of 10%, 15% and 20%,
as shown in Table 4. That is, due to sufficient historical
QoS records of a given target user-service pair, TRCF-TA
can effectively reflect temporal QoS vectors for predicting
missing temporal QoS. At this moment, it is unnecessary
to further rely on similar users or services to supplement
missing historical QoS records for a target user invoking
a target service at corresponding time slices, which may
trigger noisy representation of temporal QoS vector for
worsening the QoS prediction accuracy. However, when
the density drops, the prediction results of TRCF-TA will
rapidly decline. This is because the decline in data volume
leads to the unclear expression of network conditions, which
also affects the neighbor selection and benchmark value
calculation of TRCF-TA.
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Fig. 3: Performance impact of window size on TRCF-TA and TRCF-RTA under different QoS densities.

To improve the prediction accuracy of TRCF at high
sparsity, we added an RBS aggregation module when cal-
culating the baseline value and proposed the TRCF-RTA
method suitable for extremely-high sparsity. The reason
is that TRCF-TA cannot directly capture useful temporal
QoS vectors of a target user and target service, which
significantly affects its calculation of temporal average QoS
and selection of similar neighbors for temporal deviation
migration. In such a scene, TRCF-RTA is applied for time-
aware QoS prediction at high QoS sparsity, since it finds
both similar neighbors of a target user and target service for
supplementing historical QoS records that a target user has
not invoked a target service at multiple time slices. In this
way, TRCF-RTA enriches the originally high sparse tempo-
ral QoS vectors for more effectively calculating temporal av-
erage QoS and temporal deviation migration, where similar
neighbors of a target user or service also take into account
the compensation of missing historical QoS in their temporal
QoS vectors to solve the high sparsity. Thus, it leads to better
time-aware QoS prediction accuracy, as shown at the density
of 5% in Table 4.

To further testify the advantages of TRCF-RTA over
TRCF-TA at extremely low densities of temporal QoS ma-
trix, we make the performance comparisons of time-aware
QoS prediction under QoS densities ranging from 1% to
4% with an interval step 1%. Here, TRCF-TA is designed
for temporal QoS prediction when there are sufficient his-
torical QoS records from different time slices. TRCF-RTA is
designed to enhance the performance of temporal QoS pre-
diction in situations where the QoS density distributions are
extremely sparse among multiple time slices. It can facilitate
the QoS prediction by incorporating the module of temporal
reinforced RBS to find similar service neighbor and sup-
plement the missing QoS invocations in temporal QoS vec-
tor. The performance comparisons between TRCF-TA and
TRCF-RTA on MAE and RMSE under additional four highly
sparse QoS densities of 1%, 2%, 3%, and 4% are shown in
Table 5, where the best results of each column are marked
in bold and gray background. The results indicate that at
each low QoS density, TRCF-RTA consistently outperforms
the prediction accuracy of TRCF-TA on both MAE and
RMSE. Therefore, our designed temporal reinforced RBS can
effectively improve time-aware QoS prediction performance
of TRCF under those densities with high QoS sparsity. It
demonstrates the usefulness of temporal reinforced RBS for
enhancing the reliability of calculating temporal average
QoS, which ultimately raises time-aware QoS prediction of
TRCF-RTA at extremely low QoS densities.

4.5 Performance Impact of Parameters

4.5.1 Impact of Window Size

In the experiments, window size of user-service his-
torical QoS invocations impacts the performance of time-
aware QoS prediction for both TRCF-TA and TRCF-RTA. A
window size refers to the length of a temporal QoS vector
where a user has invoked a service across a set of time slices.
A larger window size reflects a longer temporal QoS vector
for a user-service pair and vice versa. A small window size
may result in the exclusion of useful historical QoS records,
whereas a large window may introduce outdated noisy QoS
lowering the prediction accuracy [15]. Therefore, selecting
an appropriate window size is crucial to improve the per-
formance of temporal QoS prediction of TRCF. To test the
performance impact of window size, we have conducted a
series of experiments by setting the parameters of θPCC=0.5,
θRBS=0.68 and α=0.5, while varying the window size from
8 to 64 with an interval step of 8. The experimental results
of performance impact of window size on MAE and RMSE
is illustrated in Fig. 3, where each window size is tested on
TRCF-TA and TRCF-RTA under four QoS densities of 5%,
10%, 15% and 20%.

It can be observed from the experimental results that
when the window size is small, increasing it significantly en-
hances the performance of time-aware QoS prediction, since
a relatively larger window size can provision more useful
historical invocation QoS records. More specifically, in the
case of low window size, since TRCF-TA only considers the
original temporal QoS vector of a target user-service pair,
it lacks of sufficient historical temporal QoS records and
results in poor prediction accuracy. Comparatively, TRCF-
RTA can enrich temporal QoS vector by using similar neigh-
bors’ historical QoS records, thereby achieving relatively
superior QoS prediction performance in a small window
size. However, as the window size becomes larger, TRCF-
TA can capture its own original historical QoS records that
remarkably improves the prediction accuracy, while TRCF-
RTA probably brings in noisy historical QoS invocations
by similar neighbors that may has a negative impact of
outweighing the benefits of increased number of temporal
QoS invocations, thereby weakening the effectiveness of
predicting temporal QoS in a large window size. Moreover,
as the windows size continues to increase, the final QoS
prediction accuracy of TRCF-RTA is inferior to that of TRCF-
TA. Thus, the overall experimental curve on MAE and
RMSE of TRCF-RTA converges faster than that of TRCF-
TA, as shown in Fig. 3. In the temporal RT dataset, larger
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Fig. 4: Performance impact of θPCC and θRBS on MAE and RMSE of TRCF-RTA under different QoS densities.

window sizes lead to better accuracy for TRCF, whereas it
takes more additionally computational costs for predicting
missing temporal QoS.

4.5.2 Impact of θPCC and θRBS

The settings of θPCC and θRBS impact the selection
of similar neighbors of a target user and service, which
are crucial to effectively calculate temporal average QoS
and temporal deviation migration for better time-aware
QoS prediction. However, a higher or lower threshold of
θPCC and θRBS affects the experimental results due to the
exclusion of potentially useful temporal characteristics or
additional noisy user-service invocations that compromise
the temporal QoS prediction accuracy.

To test the performance impact of two similarity thresh-
olds for optimally finding similar neighbors, we have con-
ducted experiments with a predefined window size of 64
and α=0.5, while θPCC ranges from 0.3 to 0.8 with an
interval step of 0.1, and θRBS varies from 0.66 to 0.76 with
an interval step of 0.02. Fig. 4 illustrates the performance
impact of θPCC and θRBS on MAE and RMSE, where TRCF-
RTA is used to predict temporal QoS under four different
densities of 5%, 10%, 15% and 20%, respectively.

From the three-dimensional visualizations on MAE and
RMSE as the variations of θPCC and θRBS , we can find that
when the QoS density starts from 5%, adjusting θPCC has
a weak performance impact on time-aware QoS prediction
because of relatively less influence on temporal deviation
migration by θPCC than that of temporal average QoS by
θRBS . Thus, adjusting θRBS leads to significantly positive
changes on MAE and RMSE since TRCF-RTA is sensitive to
more accurately calculate temporal average QoS by useful
similar neighbors under highly sparse QoS. As the increas-
ing QoS density from 5% to 10% and 15%, TRCF-RTA is
impacted more by temporal deviation migration relative
to θPCC than that by temporal average QoS relative to
θRBS , where adjusting both θPCC and θRBS has obvious

influence on the accuracy of temporal QoS prediction. How-
ever, when the QoS density arises at 20%, the influence of
adjusting θRBS has been significantly reduced, particularly
on RMSE, while θPCC can still keep a substantial impact
on prediction accuracy. The main reason is that as the QoS
density gradually increases, an original temporal QoS vector
of a target user-service pair can sufficiently represent their
temporally historical invocation patterns, without externally
supplementing missing QoS invocations across multiple
time slices for better calculating the temporal average QoS.
After comprehensive parameter tuning, we set θPCC=0.5
and θRBS=0.68 that achieve the best performance of time-
aware QoS prediction in temporal RT dataset.

4.5.3 Impact of Adjusting Coefficient α
TRCF combines user-based and service-based time-

aware QoS prediction by an adjusting coefficient α, which
balances the impact of these two kinds of ways and opti-
mizes the finally missing time-aware predicted QoS. Since
the total adjusting coefficients of the two ways are 1, we
focus on analyzing the performance impact of α. In the
experiments, we set the parameters of window size as
64, θPCC=0.5, and θRBS=0.68, while varying the adjusting
coefficient α from 0.0 to 1.0 with an interval step of 0.1. The
densities of temporal QoS matrix are 5%, 10%, 15% and 20%.

Fig. 5 illustrates the performance impact of adjusting
coefficient on time-aware QoS prediction. When α is set to
1.0, TRCF completely degenerates into user-based approach;
at the other extreme, when α is set to 0.0, it turns to be a
purely service-based temporal approach. It can be observed
from Fig. 5 that both TRCF-TA and TRCF-RTA can receive
the lowest MAE and RMSE for the best performance with
the setting of α at a certain value between 0 and 1. It
indicates that both user-based and service-based time-aware
QoS prediction make contributions to the improvement of
predicting missing temporal QoS under multiple densities.
However, it is challenging to identify a fixed α that achieves
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Fig. 5: Performance impact of adjusting coefficient α on TRCF-TA and TRCF-RTA under different QoS densities.

the best performance on MAE and RMSE for TRCF-TA
and TRCF-RTA across multiple QoS densities. For example,
when QoS density is set to 10% for TRCF-TA, it performs
optimally on MAE and RMSE with the setting of α=0.4,
while TRCF-TA can receive the best performance by adjust-
ing α=0.7 under the QoS density of 20%. Taking into account
the prediction performance on MAE and RMSE, TRCF-TA
and TRCF-RTA can receive superior accuracy of temporal
QoS prediction when their adjusting coefficients are set by
α=0.6 and α=0.5, respectively.

5 RELATED WORK

5.1 Non-temporal QoS Prediction
Non-temporal QoS prediction can be classified into three

categories: memory-based, model-based and deep learning
based approaches, which are typically performed on a two-
dimensional matrix of user-service QoS invocations.

Memory-based approaches mainly employ traditional
collaborative filtering (CF) to predict missing QoS. It can be
divided into user-based [25], service-based [26], and their
linear combination through weight coefficients. The core of
memory-based QoS prediction approaches is to identify a
group of similar users or services as the neighborhood by
similarity calculation, and use them for calculating devia-
tion migration, which is finally combined with average QoS
to perform the task of QoS prediction. Some researchers
have focused on effectively quantifying the similarity be-
tween users and services to recognize similar neighbor-
hoods [27]. Wu et al. [6] proposed a rate-based similarity
(RBS) approach to select the neighborhood of users and
services, resulting in better QoS prediction. Zou et al. [7]
proposed a reinforced CF approach based on both RBS
and PCC, which can accurately calculate average QoS and
deviation migration.

Model-based and deep learning approaches can partially
address the limitation of CF-based ones by extracting im-
plicit linear or nonlinear invocation relationships to enhance
QoS prediction performance. Xu et al. [8] proposed two
context-aware matrix factorization models for users and
services to obtain more accurate QoS prediction results. Wu
et al. [9] proposed a general context-sensitive matrix factor-
ization approach to model the interaction between users and
services. Additionally, deep learning techniques have been
recently used to solve QoS prediction problems since they
can better deal with sparsity and learn implicit nonlinear
interactions [10], [11]. [28] combined neural networks and
matrix factorization, adopting multi-task learning to reduce

prediction errors and improve the performance of the pre-
dicted QoS. Zou et al. Li et al. [12] proposed topology-
aware neural (TAN) model to address the challenge of
collaborative QoS prediction by considering the underly-
ing network topology and complex interactions between
autonomous systems. [29] designed a location-aware two-
tower deep residual network together with collaborative
filtering to achieve superior QoS prediction. In the latest
advancements, some researches have further improved QoS
prediction performance by using expert systems and atten-
tion mechanisms [30] or graph neural networks [31] for
multiple feature selection, extraction, and interaction from
user-service contextual information and QoS invocations.

5.2 Time-aware QoS Prediction

Time-aware QoS prediction can be partitioned into four
categories, including temporal factor integrated CF, se-
quence prediction, tensor decomposition and deep learning.

Hu et al. [13] integrated temporal factor with the CF ap-
proach and selected more similar neighbors through a ran-
dom walk algorithm to alleviate data sparsity and achieve
better time-aware QoS prediction. Ma et al. [14] proposed a
new vector comparison approach that combines orientation
similarity and dimension similarity to implement time series
analysis for multi-valued collaborative QoS prediction in
cloud computing. Tong et al. [15] proposed an improved
time-aware QoS prediction approach based on CF. First, it
normalized the historical QoS value and calculated the simi-
larity. Then, it calculated the weight based on the distance of
time slices and selected similar neighbors. Finally, the miss-
ing QoS was predicted using hybrid CF. These approaches
demonstrate the effectiveness of integrating temporal infor-
mation into QoS prediction, and addressing the limitations
of non-temporal QoS prediction approaches.

Due to the correlation between time-aware QoS predic-
tion and sequence prediction analysis, relevant research has
used the ARIMA model to enhance the prediction perfor-
mance of missing temporal QoS. Hu et al. [16] established a
QoS prediction model that effectively combines CF and the
ARIMA model, and applied the Kalman filtering algorithm
to compensate for the shortcomings of the ARIMA model
in time-aware QoS prediction. Ding et al. [17] combined
the ARIMA model with memory-based CF to capture the
temporal characteristics of user similarity, improving the
performance of missing predicted temporal QoS. These
approaches demonstrate the effectiveness of integrating se-
quence prediction analysis with QoS prediction, improving
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the accuracy of time-aware QoS prediction by capturing
temporal characteristics of QoS variations.

Compared to non-temporal QoS prediction, incorporat-
ing temporal factor requires converting the classic two-
dimensional user-service matrix into a three-dimensional
tensor representation, where matrix factorization is up-
graded to three-dimensional tensor decomposition [18], [19].
Meng et al. [32] proposed a time-aware hybrid collaborative
cloud service recommendation approach, which introduced
a temporal-aware LFM model-based on CP decomposition
and biases model to distinguish temporal QoS metrics from
stable QoS ones. Zhang et al. [33] proposed an approach
that combines Personalized Gated Recurrent Unit (PGRU)
and Generalized Tensor Factorization (GTF) to comprehen-
sively predict unknown time-aware QoS by leveraging long
short term dependency patterns. Luo et al. [34] proposed a
temporal pattern-aware QoS prediction approach by biased
non-negative late factorization of tensors (BNLFTs) model,
which extracts time potential factors from dynamic QoS.
These approaches demonstrate the effectiveness of incorpo-
rating temporal factor into QoS prediction by using tensor
representations and factorization techniques.

With regard to deep learning models, RNN and its vari-
ants LSTM and GRU have been recently used for time-aware
QoS prediction. Wang et al. [35] applied LSTM to create on-
line reliable QoS prediction model for service-oriented sys-
tems. Xiong et al. [21] considered multi-dimension context
for learning an effective QoS prediction model derived from
the past QoS invocation history. Xiong et al. [22] proposed a
personalized matrix factorization approach PLMF based on
LSTM, which can capture dynamic representations for on-
line QoS prediction. Zou et al. [36] proposed a temporal QoS
prediction framework called DeepTSQP, which combines
binary features with memory-based similarity to express
the characteristics of users or services and feeds them to
a GRU model for mining temporal aggregated feature for
predicting unknown temporal QoS value. These approaches
demonstrate the effectiveness of using deep learning models
for temporal QoS prediction by capturing temporal depen-
dencies and patterns.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel approach called TRCF,
which is dedicated to advancing the performance of time-
aware QoS prediction. First, when calculating temporal
average QoS with densely historical QoS records, TRCF-TA
directly fusions the QoS values of a given target user-service
invocations across multiple time slices; especially for high
QoS sparsity, TRCF-RTA finds a set of similar neighbors and
their corresponding historical QoS values at different time
slices are taken by temporal reinforced RBS to enhance the
reliability of calculating temporal average QoS. Then, TRCF
performs temporal deviation migration by incorporating
reliable factor to improve the effectiveness of calculating
the aggregated deviations from similar neighbors based
on temporal reinforced PCC. Finally, TRCF integrates the
temporal average QoS and temporal deviation migration to
predict the missing time-aware QoS. The experimental re-
sults demonstrate that TRCF achieves the best performance
compared with state-of-the-art competing baselines.

In the future, we plan to explore and design new deep
neural networks by plugging into similar neighborhoods in
TRCF as heuristics to further improve the performance of
time-aware QoS prediction.
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