
Adaptive Web API Recommendation via Matching

Service Clusters and Mashup Requirement

Yue Zhu1, Guobing Zou1, Song Yang1, Shengxiang Hu1, Pengtao Li1 and Chunhua

Zeng1

1 School of Computer Engineering and Science, Shanghai University, China
illescionor278@gmail.com,{gbzou,yangsong,shengxianghu,22721507,

kriya}@shu.edu.cn

Abstract. With the rapid proliferation of Web services and Web APIs, recom-

mendation systems can effectively address the issue of information overload

and alleviate the burden of meaningless filtering. Existing approaches can help

filtering appropriate Web services for mashup creation, however, they often fall

short of developers' different and personalized needs by recommending only a

fixed number of APIs and lack precision in aligning mashup requirements

across all categories. To solve the above issue, this paper introduces a novel

Web service recommendation framework called AWAR for mashup creation,

which focuses on the matching strategy between mashup requirements and Web

APIs, and enhances recommendation effectiveness by integrating natural lan-

guage processing, optimization algorithms, and deep learning. Extensive exper-

iments conducted on large-scale real datasets demonstrate that the proposed ap-

proach receives superior recommendation results on multiple evaluation metrics

compared to advanced competing baselines.

Keywords: Web Service, Service recommendation, Mashup Creation, Deep

Neural Network, 0-1 planning.

1 Introduction

With the rapid development of service-oriented architecture, the Internet has wit-

nessed a surge in the proliferation of Web services and Web APIs [1]. In addition,

major Internet companies like Yahoo, Google, and Amazon have made their data

accessible for integration with other data sources, resulting in the emergence of new

tools enabling developers to easily aggregate content from multiple sources to create a

new service displayed in a single graphical interface, namely mashup service [2].

Therefore, mashup services have experienced rapid growth on the network by rec-

ommending a set of functionally correlated Web API services.

However, the exponential increase in the number of Web services and the homog-

enization of these services have presented developers with a challenge that in face of

the vast sea of service information, they often struggle to quickly locate the services

required to fulfill their development needs, resulting in information overload [3]. Ad-

mailto:illescionor278@gmail.com,%7bgbzou,yangsong,shengxianghu,22721507

2

dressing how to expedite developers' discovery of necessary services for mashup crea-

tion is a pivotal problem to be tackled.

The recommendation system can effectively address this issue and alleviate the

burden of meaningless screening. Many researchers are committed to investigating

how to recommend Web services to mashup developers to help them effectively

building mashup services. Web service recommendations for mashup creation are

classified based on the recommendation strategy and the information used. Service

recommendations based on the quality of service often suggest potential high-quality

services to developers once they have determined a set of required services. Collabo-

rative filtering-based service recommendations typically suggest services to users

based on service composition and historical service invocation records. Social rela-

tionship-based service recommendations often utilize external information, such as

developers' social relationships, to recommend appropriate services. The function-

based service recommendation algorithm aims to recommend services to mashup

developers that can best meet their functional requirements, significantly reducing the

burden of service discovery on mashup developers. These service recommendation

approaches mentioned above for mashup developers can be applied in real-world Web

service sharing platforms.

While existing approaches can help filter appropriate Web services for mashup

creation, they still fail to fully meet the needs of mashup developers. The primary

reason for this limitation is that existing approaches typically recommend only a fixed

number of Web APIs. The size of the recommended API list is often artificially set,

making it impossible to dynamically adjust the number of recommended Web APIs

based on the required functions for creating the mashup service. Another issue arises

from the inadequacy of the existing function-based service recommendation ap-

proaches in accurately matching the needs of mashups across all categories. The rec-

ommended Web APIs may contain multiple APIs with similar functions, yet these

functions may not fully cover the requirements for creating a mashup service.

Aiming at the aforementioned research challenges, this paper proposes a novel ser-

vice recommendation approach for mashup creation, called Adaptive Web API Rec-

ommendation (AWAR). In the process of recommending services based on develop-

ers' mashup needs, it usually involves matching mashup requirements with candidate

services. We concentrate on refining the matching strategy between mashup require-

ments and services, leading to enhance the effectiveness of service recommendation

through the integration of natural language processing, optimization algorithms, and

deep learning. The main contributions of this paper are summarized as follows:

 We propose a novel Web API recommendation framework, which applies func-

tional division of mashup requirements and optimization algorithms to adaptive-

ly recommend an indefinite number of Web API services for creating a mashup

service.

 The recommended results are further optimized using a Multi-layer Perceptron

combined with user-service historical service invocation records and other in-

formation from the mashup services, making the functions of the recommended

services better cover the functions required for mashup creation.

3

 Large-scale experiments are conducted on real datasets, and the results demon-

strate that the proposed approach receives superior Web API recommendation

results.

The remainder of this paper is organized as follows: The problem is formulated in

Section 2. Section 3 elaborates on our approach for extracting API business execution

processes. Section 4 presents extensive experiments and analyzes their performance.

Section 5 reviews the related work. Finally, Section 6 concludes the paper.

2 Problem Formulation

Definition 1 (Web Service). Web service is a platform-independent, modular, self-

contained and composable Web-based application with reusability and programmabil-

ity [4]. A Web service is denoted as 𝑠 = 〈𝑁(𝑠), 𝐷(𝑠), 𝐶(𝑠)〉 consists of the name of the

service 𝑁(𝑠), the textual functional description provided by the publisher 𝐷(𝑠) and the

category of the service 𝐶(𝑠). Moreover, we denote 𝑆 = {𝑠1, 𝑠2, … , 𝑠|𝑆|} as the set of all

the Web services in the service repository, where |𝑆| is the total number of Web ser-

vices.

Definition 2 (Mashup Service). One or more Web services can be aggregated to

create new services that meet the comprehensive needs of users and provide addition-

al business value. Generally, the API interfaces of the source services will be used

during aggregation. The new service obtained through aggregation is a mashup ser-

vice [5-6]. A mashup is denoted as 𝑚 = 〈𝑁(𝑚), 𝐷(𝑚), 𝑅(𝑚)〉 contains the name of the

mashup service 𝑁𝑚, the textual functional description provided by the publisher 𝐷𝑚

and a set of APIs invoked by the mashup service from the service repository 𝑅(𝑚) =

{𝑠1
(𝑚)

, 𝑠2
(𝑚)

, … , 𝑠
|𝑅(𝑚)|

(𝑚)
}, |𝑅(𝑚)| is the number of related APIs. As a result, we denote

𝑀 = {𝑚1, 𝑚2, … , 𝑚|𝑀|} as the set of all the mashup services in the service repository,

where |𝑀| is the total number of mashup services.

Definition 3 (Web Service Recommendation for Mashup Creation). The problem

to be solved is defined as follows. Suppose that the mashup service to be created is

𝑚∗. Given the user requirement 𝐷(𝑚∗) = {𝑤1
(𝑚∗)

, 𝑤2
(𝑚∗)

, … , 𝑤
|𝐷(𝑚∗)|

(𝑚∗)
} which consists

of a set of words to describe the functional requirement of 𝑚∗ and |𝐷(𝑚∗)| is the word

count of the requirement, based on the functional descriptions of Web services and

mashups, a set of APIs 𝑚′ = {𝑠1
(𝑚′)

, 𝑠2
(𝑚′)

, … , 𝑠
|𝑚′|

(𝑚′)
}, where |𝑚′| is the number of

APIs in the set, is needed to be recommended to the user to meet the requirement. The

recommended API set is ideal when it includes all the relevant APIs without redun-

dancy and is of an appropriate size. In this study, our focus lies on recommending an

API set in which the APIs adequately cover the user’s functional requirement without

redundancy.

4

Fig. 1. The Workflow of Web Service Recommendation for Mashup Creation

The flow chart of mashup service recommendation is depicted in Figure 1. Initial-

ly, mashup developers, referred to as users, put forward a demand for mashup devel-

opment. Subsequently, the recommendation system employs certain recommendation

strategies to filter several APIs from the service repository that could potentially be

invoked to create the mashup, based on the user demand. These APIs are then rec-

ommended to the users [7].

3 Approach

The purpose is to recommend services based on the functional requirements of

mashup developers and the API invocation records of mashups. Following popular

service recommendation advancements in recent years, the process first typically

involves service clustering and feature extraction. Subsequently, the similarity be-

tween demand features and different cluster features is calculated, sorted, and K clus-

ters with the highest similarity are selected. Finally, a certain number of Web services

are filtered from each selected cluster to obtain the list of recommended services. In

these traditional approaches, the number of clusters selected is often set manually and

the corresponding number of APIs cannot be dynamically recommended according to

the number of functions required by the mashup service to be created. K is usually a

value determined through numerous experiments to improve experimental results.

However, in practical applications, the service repository undergoes constant up-

dates, necessitating dynamic adjustments to K adapting to real demands of personal-

ized mashup requirements. Therefore, setting K as a fixed value potentially lowers the

performance of Web API recommendation. Furthermore, there may be multiple APIs

with similar functions because they are filtered from the same cluster, leading to inad-

equate coverage of the functions required to create a mashup service. For instance, a

function that occupies a small space in the mashup description is likely to be over-

looked when selecting the Top-K similar clusters.

3.1 Overall Framework of AWAR

To address the two disadvantages, a novel approach of Web API recommendation is

proposed, focusing on improving the selection and matching of functional clusters

with user requirements. It is called Adaptive Web API Recommendation (AWAR) for

mashup creation, aiming to improve the recommendation accuracy. The workflow of

5

Fig. 2. The Overall Framework of Adaptive Web API Recommendation for Mashup Creation.

AWAR involves dividing a mashup requirement into multiple subtasks based on ex-

isting functional cluster features. It enables the automatic prediction of the number of

relevant functional clusters and enhances the coverage of recommended APIs to better

meet the mashup requirements. The overall framework of AWAR is illustrated in

Figure 2.

 In the component of mashup requirement feature extraction, the mashup re-

quirement feature is derived from the demands proposed by the mashup devel-

oper through feature extraction.

 In the component of Web service cluster feature extraction, the Web services

within a service repository are partitioned to a set of service clusters where each

cluster has Web services with similar functions, and then the features of these

clusters are extracted to further match the extracted mashup feature.

 In the component of requirement division, m clusters are selected based on the

condition that the similarity is the highest between the aggregated features of the

clusters and the requirement features. It is equivalent to approximately dividing

the requirements into corresponding number of subtasks.

 In the component of Web service recommendation, a specific number of services

are chosen from each of these desired clusters.

3.2 Matching Service Clusters and Mashup Requirement by 0-1 Planning

Model

When the requirement is divided into 𝑚 subtasks, it can be modeled as a 0-1 planning

problem. From the existing 𝑛 service clusters, 𝑚 clusters are selected to be screened

out so that the aggregated feature vector of these m clusters has the highest similarity

with the mashup demand feature vector. As a result, the objective function is:

 max(𝑆𝑖𝑚(𝑀𝑅, 𝑀𝑅′)) (1)

where 𝑀𝑅 is the feature vector of mashup requirement, and 𝑀𝑅′ = 𝑎1𝐶1 + 𝑎2𝐶2 +

6

Fig. 3. The MLP Model.

… + 𝑎𝑛𝐶𝑛 is the service feature vector obtained from the aggregation of 𝑚 subtasks

and 𝐶𝑖 (0 < 𝑖 ≤ 𝑛) is the feature vector of cluster 𝑖. The constraints are as follow:

 𝑠. 𝑡. 𝑎1, 𝑎2, … , 𝑎𝑛 = {
0 unselect the cluster
1 select the cluster

 (2)

while 𝑚 is the number of selected clusters equaling to the number with the value of 1

in 𝑎1, 𝑎2, … , 𝑎𝑛.

Here, the simple genetic algorithm (SGA) is proposed to tackle the 0-1 program-

ming problem because it can compute and search for the approximately optimal solu-

tion by simulating the principles of biological evolution, and demonstrates robust

global optimization capabilities [8]. SGA simulates the phenomena occurring in natu-

ral selection and heredity through 3 fundamental operations: selection Φ(𝑥), crosso-

ver Γ(𝑥) and mutation 𝜓(𝑥), collectively known as genetic operators.

First of all, the randomly initialized population 𝑃0 is encoded into a fixed-length

binary string by applying specific encoding methods. Starting from the encoded popu-

lation 𝑃0, the next generation 𝑃1 , which is more suited to the environment, can be

generated through random selection, crossover and mutation operations. Thus, the

population can evolve towards increasingly favorable regions within the search space.

In this way, through successive generations of reproduction and evolution conver-

gence occurs towards a group of individuals 𝑃𝑡 which are best adapted to the envi-

ronment, indicating obtain a high-quality solution to the problem.

As a result, SGA can be described as 𝑆𝐺𝐴 = (𝐶, 𝐸, 𝑃0, 𝑀, Φ, Γ, Ψ, Τ) where 𝐶 rep-

resents the individual coding method, 𝐸 denotes the fitness function which describes

individual performance and determines whether the individual is eliminated, 𝑃0 is the

initialized population, 𝑀 is the population size, Φ, Γand Ψ are 3 genetic operators, and

T is the termination condition dictating when the evolution cease. When implement-

ing SGA, parameters such as 𝑀, T, crossover probability 𝑝𝑐 and mutation probability

𝑝𝑚 should be initially set for generating a suboptimal to an originally adaptive Web

API recommendation problem for mashup creation.

3.3 Recommending Adaptive Web APIs by Multi-layer Perceptron

The Multi-layer Perceptron (MLP) is also known as the Artificial Neural Network

(ANN) that is a basic type of deep neural network [9-10]. MLP is capable of detecting

complex, non-linear interactions among features and evaluating their different levels

 0 1

7

of importance [11]. In our adaptive Web API recommendation framework, the MLP

model in step 2 is used for capturing the interactions among the invocation records

and target mashup service and it is depicted in Figure 3. The output in step 1 signifies

the APIs predicted for the creation of a mashup service. Relatively, invocation history

comprises the record of the APIs utilized in crafting existing mashup services, thus

the invocation history of similar mashup services as the target one serves as a practi-

cal reference for mashup creation. In the step of MLP, the result from step 1 and the

invocation history of the Top-N similar mashups {𝑅1, … , 𝑅𝑁} are combined to forecast

the APIs for mashup creation. Hence, the input of the MLP consists of the outcome of

the 0-1 planning 𝑅0 = {𝑎1
0, 𝑎2

0, … , 𝑎𝑛
0} concatenated with the invocation history matrix

of similar mashup services 𝑅𝑥 = {𝑅0, 𝑅1, … , 𝑅𝑁}, where 𝑅𝑥 has the dimensions of

𝑛 × (𝑁 + 1), with 𝑛 denoting the number of service clusters and 𝑁 indicating the

number of selected similar mashups.

Through several hidden layers, the sigmoid function is used to map the result be-

tween 0 and 1, which can be expressed as:

 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) =
1

1+𝑒−𝑥 (3)

Here, the activation function of the other layers is the Rectified Linear Unit (ReLU)

function:

 𝑅𝑒𝑙𝑢(𝑥) = max(0, 𝑥) (4)

The output is 𝑅𝑦 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑅𝑥 + 𝑏), which can also be represented as {𝑅𝑦 =

𝑅𝑇 , 𝑅𝐹}, where 𝑤 is the weight and 𝑏 is the bias of MLP and 𝑅𝑦 has the shape of

𝑛 × 2. Each element in the output denotes a probability that the cluster is or is not

chosen, which ranges from 0 to 1. The element 𝑎𝑖
𝑇in 𝑅𝑇 = {𝑎1

𝑇 , 𝑎2
𝑇 , … , 𝑎𝑛

𝑇} indicates

the probability that the service cluster 𝑖 is selected, and the element 𝑎𝑖
𝐹 in 𝑅𝑇 =

{𝑎1
𝐹 , 𝑎2

𝐹 , … , 𝑎𝑛
𝐹} shows the probability that the cluster is not selected. Then, if the value

of 𝑎𝑖
𝑇 is larger than the value of 𝑎𝑖

𝐹, the 𝑖𝑡ℎ element of the final result is 1, otherwise,

the value is 0, the function of which is:

 𝑎𝑖
𝐹𝑖𝑛𝑎𝑙 = {

0 𝑎𝑖
𝑇 < 𝑎𝑖

𝐹

1 𝑎𝑖
𝑇 > 𝑎𝑖

𝐹 (5)

Finally, the result 𝑅𝐹𝑖𝑛𝑎𝑙 = {𝑎1
𝐹𝑖𝑛𝑎𝑙 , 𝑎2

𝐹𝑖𝑛𝑎𝑙 , … , 𝑎𝑛
𝐹𝑖𝑛𝑎𝑙} is obtained with the shape of

𝑛 × 1, where 𝑎𝑖
𝐹𝑖𝑛𝑎𝑙 = 1 𝑜𝑟 0 indicates whether to select the service cluster 𝑖 or not. A

particular quantity of services can be selected from each of these desired clusters af-

terwards.

3.4 Model Training and Parameter Optimization

In our Adaptive Web API recommendation framework, it is crucial to select an ap-

propriate loss function which quantifies the dispersity between the predicted value �̂�

and the ground truth value 𝑦. In this paper, the binary cross entropy loss function,

which is widely utilized in multi-label classification, is employed to train our recom-

8

Fig. 4. Training Loss and Accuracy Curve.

mendation model:

 𝐿 = −
1

𝑛
∑ 𝑦𝑞 log(𝑝𝑞)𝑛

𝑞=1 + (1 − 𝑦𝑞)log (1 − 𝑝𝑞) (6)

where 𝑛 is the number of clusters, 𝑝𝑞 denotes the predicted possibility that a service

cluster is selected, 𝑦𝑞 indicates whether the service cluster is selected or not. That is,

when 𝑦𝑞 = 1 means the cluster is selected and 𝑦𝑞 = 0 indicates that it is not selected

for mashup creation.

The values of weights and bias are randomly initialized at first. After forward

propagation, the error between the predicted results and the ground truth values is

calculated. Then the error of each neurons in each layer is calculated backward during

back propagation. As previously mentioned, for each layer of the MLP, the output is

𝑦 = 𝐹(𝑤, 𝑏). Given the errors of each cell, gradient descent algorithm is applied for

updating weights and bias in order to minimize errors:

 𝑤′ = 𝑤 − 𝜂
∂C

∂w
 (7)

 𝑏′ = 𝑏 − 𝜂
∂C

∂b
 (8)

where 𝜂 represents the learning rate which may influence the convergence efficiency

and performance.

Additionally, the selection of an optimizer is also an important part of deep learn-

ing model [10]. The mini-batch adaptive moment estimation (Adam) optimization

algorithm is used to optimize the parameters of our adaptive Web API recommenda-

tion model. The Adam has the superiority of high computing effectiveness, minimal

memory specifications, and robust interpretability, etc. Furthermore, Adam effective-

ly accepts the estimation of the first and the second moments of the gradient to calcu-

late the step size and efficiently integrates the strengths of the previously given two

optimization algorithms RMSProp and AdaGrad. The function of training accuracy is:

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
 (9)

The training accuracy and loss curve are illustrated in Figure 4.

9

 Table 1. Distribution of selected APIs.

Number of Max Min Average

APIs per Category 850 229 38.3

APIs per Mashup 10 1 1.3

4 Experiments

4.1 Experimental Datasets and Setup

To evaluate the performance of AWAR, a series of experiments are conducted on an

equipment configured with an Intel(R) Xeon(R) Gold 6130 CPU@2 and a 192GB

RAM in the environment of python3.7. A Web information crawler has been devel-

oped and deployed to obtain Web services and related data up to July 1st, 2018 from

ProgrammableWeb. The dataset crawled comprises 3,989 mashup services and

16,243 Web services across 403 categories. From these, 7,666 Web services from the

top 20 categories and 2,724 mashup services containing only these Web services are

selected for the experiments. The distribution of the selected services is presented in

Table 1.

Following data preprocessing, APIs are clustered into several groups. Moreover,

the language model BERT, introduced by Google in 2018, is implemented for word

embedding in the experiments. BERT, based on the transformer architecture, is a pre-

trained model known for its strong performance in language representation and fea-

ture extraction. In consideration of the relatively limited word count in most service

descriptions and the computational cost of model training, we implement the BERT-

base model (with parameters L=12, H=768, A=12) for word embedding of both Web

and mashup service descriptions.

4.2 Evaluation Metrics

The recommendation performance of AWAR is evaluated by 4 metrics: Precision,

Recall, F1-score and Hit Ratio. TP is the number of services recommended which

meet the requirement; FP is the number of services recommended which do not fit the

requirement; FN is the number of services not recommended but required; HitNumber

is the number of services recommended are required; GT is the number of Web ser-

vices the mashup service actually required for creation. They are calculated as below.

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10)

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11)

 𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (12)

 𝐻𝑅 =
𝐻𝑖𝑡𝑁𝑢𝑚𝑏𝑒𝑟

𝐺𝑇
 (13)

10

 Table 2. Experimental Results of Web API Recommendation Among Competing Approaches.

Method Precision Recall F1 Hit Ratio

SingleBPR 0.1691 0.5655 0.2603 0.5655

LSTM 0.2661 0.4207 0.3260 0.4207

SPR 0.4722 0.6501 0.5471 0.6501

Pop 0.3887 0.7079 0.5019 0.7079

MTFM 0.6164 0.5452 0.5786 0.5452

AWAR 0.7368 0.6260 0.6769 0.6260

The values of these 4 evaluation metrics are in the range of [0,1] and have a direct

ratio with the recommendation performance.

4.3 Competing Methods

To evaluate the performance of AWAR, it is compared with 5 representative ap-

proaches, which are listed as follows.

 SingleBPR[12]: BPR is effectively employed in Web API recommendation by

predicting user preferences. It learns user behavior through pairwise compari-

sons of API interactions. This enables the model to recommend APIs that match

user interests closely, ensuring high preference scores and improving recom-

mendation accuracy.

 LSTM[13]: LSTM is commonly used to track sequential features when recom-

mending Web APIs. By capturing long-term dependencies, LSTM delivers pre-

cise and relevant Web API recommendations that adapt to changing user prefer-

ences, improving the personalization and efficiency of web service discovery.

 SPR[14]: The SPR model applies the author-topic model to learn how mashup

descriptions relate to APIs. By analyzing the topical structure of these descrip-

tions, SPR produces Web API recommendations that are more relevant and ac-

cord with user’s requirement, enhancing the precision of results.

 Pop[15]: The Pop model recommends services based on their popularity to us-

ers. In mashup creation, this popularity is quantified by the number of category-

aware invocations. APIs with higher usage within these categories are priori-

tized, ensuring that the most frequently used APIs are recommended, thereby

enhancing the relevance and reliability of the recommendations.

 MTFM[16]: MTFM model integrates multi-model fusion and multi-task learning

to enhance prediction accuracy. The inclusion of a semantic component to repre-

sent service requirements improves the API recommendation results.

4.4 Experiment Results And Analyses

The performance of AWAR is validated by comparing it with five competing base-

lines. Since AWAR can adaptively adjust the recommended number of Web APIs

instead of a predefined one, we initially compare its performance with the best per-

formance of each competing approach, regardless of the recommended number K.

11

Fig. 5. Web API Recommendation Performance of SingBPR with Different K and AWAR.

Fig. 6. Web API Recommendation Performance of LSTM with Different K and AWAR.

Fig. 7. Web API Recommendation Performance of SPR with Different K and AWAR.

Fig. 8. Web API Recommendation Performance of Pop with Different K and AWAR.

Fig. 9. Web API Recommendation Performance of MTFM with Different K and AWAR.

Experimental results of Web API recommendation among competing approaches are

provided in Table 2.

From the results, it is observed that Pop achieves the highest recall and hit ratio,

followed by SPR, but their precisions and F1-scores are not competitive. AWAR

12

Table 3. Comparison Results of Web API Recommendation in Ablation Experiments.

Method Precision Recall F1 Hit Ratio

0-1 0.3621 0.3262 0.3432 0.3270

MLP 0.7111 0.5289 0.6066 0.5289

AWAR 0.7368 0.6260 0.6769 0.6260

exhibits the highest precision and F1-score, while its recall and hit ratio rank are not

the best but also quite high. Overall, AWAR outperforms the five comparative ap-

proaches significantly on precision and F1-score as well as competitive in recall and

hit ratio.

Specifically, the recommendation performance among competing baselines with

different numbers of K are shown in Figures 5-9. SingleBPR and LSTM share similar

results compared to AWAR. When K=10 and K=5, SingleBPR and LSTM are ob-

served to have the best performance because their F1 score reaches the maximum

values. For SingleBPR, LSTM and SPR, they achieve comparable accuracy of Web

API recommendation. The advantage of SingleBPR lies in direct ranking optimiza-

tion, while LSTM lies in the superior encoding structure of bidirectional LSTM with

an attention mechanism. The advantage of SPR is that the hidden topic layer can

overcome the disadvantages of the bag-of-words model and semantically connect the

requirements with the APIs.

Additionally, the results of SPR, Pop, and MTFM are similar to each other com-

pared to AWAR. Their recall and hit ratio outperform AWAR, but precision and F1

score are lower. Compared with all the competing baselines, MTFM has the ad-

vantages of both CF-based and content-based approaches. AWAR outperforms them

significantly on all the accuracy indicators.

Since other 3 comparison methods are not self-adaptive, their recall and hit ratio

may outperform AWAR when K is set to a large number because the more candidate

services there are, the more correct services will be recommended. However, most

mashup services generally apply a small number of Web services, as our proposed

AWAR adaptively recommends a small number of Web APIs. In addition, Ks of the

comparison methods are artificially set after a large number of experiments for opti-

mal results, but in real application scenarios, setting K in advance is not feasible be-

cause the services in the repository are not fixed. A conclusion can be drawn that

from the perspective of self-adaptation, AWAR can make recommendations more

stably by better meeting users’ requirements and is more effective in practical use.

4.5 Performance Impact of Parameters

Ablation experiments are conducted to validate the effectiveness of the two parts of

AWAR. In the first part, service clusters the combination of which is most similar to

the target mashup service are preliminary filtered out. Then in the second part, the

result is improved according to invocation history. The results are shown in Table 3.

From the results, it can be seen that the 0-1 planning and MLP can recommend Web

13

Fig. 10. The Impact of the Number of Similar Mashup Services N.

 Table 4. Web API Recommendation Performance with Different Learning Rates.

Method Precision Recall F1 Hit Ratio

LR=0.01 0.8916 0.3058 0.4554 0.3058

LR=0.001 0.7798 0.4920 0.6034 0.4921

LR=0.0001 0.7368 0.6260 0.6769 0.6260

Table 5. Web API Recommendation Performance with Different Gradient Descent Algorithms.

Method Precision Recall F1 Hit Ratio

SGD 0.8421 0.1882 0.3077 0.1882

Adam(LR=0.0001) 0.7368 0.6260 0.6769 0.6260

Adam(LR=0.001) 0.8346 0.4398 0.5761 0.4398

Adam(LR=0.01) 0.6704 0.4878 0.5647 0.4878

services for mashup creation separately, and the performance of MLP is better than

that of 0-1 planning. Additionally, the combination of the two parts has the best per-

formance of all four evaluation metrics. As a result, it indicates that the two compo-

nents in the AWAR framework can effectively make recommendations for mashup

creation.

In the experiments, as the number of similar mashup services changes for the input

of MLP, the comparison results are shown in Figure 10. According to the results, the

value of the four evaluation metrics reaches its maximum when the input of MLP

contains the five similar mashup services. Thus, AWAR has the best Web API rec-

ommendation performance when the number of similar mashup services is set as 5.

Simultaneously, the learning rate also affects the performance of Web API recom-

mendation. Table 4 shows the recommendation results with different learning rates.

Although the model achieves the highest precision when learning rate is set as 0.01,

its recall and F1-score are lower than the others. From the overall consideration,

learning rate is set as 0.0001 because it has the highest values of recall, F1-score, and

hit ratio. Although the precision is the lowest compared with the other learning rates,

it is still relatively high compared to the competing baselines.

In addition to learning rate, different gradient algorithms used in MLP are evaluat-

ed in the experiments. From the results of Table 5, the SGD gradient algorithm has

the highest precision among the four algorithms, while the values of the other three

evaluation metrics are much lower. In contrast, Adam has the highest recall, F1-score,

and hit ratio, while its precision is low. Therefore, the Adam gradient algorithm is

14

chosen, when it is applied to perform adaptive Web APIs for its superior performance

on multiple evaluation metrics.

5 Related Work

In recent years, with the continuous development of Web services, API recommenda-

tion for mashup creation have gradually become a research hotspot. Many researchers

are committed to studying how to recommend Web services to mashup developers,

aiding them in quickly building their desired mashup services. Currently, service rec-

ommendations for mashup creation can be divided into four categories: quality-based

service recommendations, collaborative filtering-based service recommendations,

social relationship-based service recommendations, and function-based service rec-

ommendations.

Quality-based service recommendation often involves recommending potentially

high-quality services to developers after they have identified a set of required ser-

vices[17]. Reference [18] utilized temporal information to refine similarity measure-

ments in neighborhood-based CF (Collaborative Filtering). Location information was

also integrated to cluster services and users, enabling personalized recommendations

based on clustering results [19]. Paper [20] proposed a hidden Markov model-based

approach to assist users in locating services with optimal response times for their

requests. Additionally, Luo et al. [21] introduced the BNLFTs model regarding the

issue of QoS data fluctuating over time. Biased non-negative latent factorization of

tensors were utilized for predicting Quality of Service (QoS) in a temporal context.

Wang et al. [22] introduced a novel method extending the original Graphplan form

and incorporating branch structures into composite solutions to address uncertainty in

the service composition process.

Collaborative filtering-based service recommendation typically recommends ser-

vices to users based on service composition and call records. Jiang et al. [23] intro-

duced an effective personalized collaborative filtering method for Web service rec-

ommendation. When calculating user similarity, this method considers the personal-

ized impact of services rather than solely relying on the Pearson correlation coeffi-

cient (PCC). Liang et al. [24] proposed a recommendation algorithm for secure col-

laborative filtering services. The algorithm integrated deep neural networks and con-

tent similarity modules to alleviate the problem of data sparsity in Mashup Web ser-

vice matrix using traditional collaborative filtering algorithms. In [25], the authors

focused on the problem of data sparsity and cold start and proposed a service recom-

mendation model. It combines knowledge graph for uncovering potential relation-

ships and collaborative filtering for API recommendations.

Social relationship-based service recommendation often uses external information,

such as the social connections among developers, to recommend services. In [26], the

authors studied service usage patterns in an evolving service repository called myEx-

periment, proposing a recommendation algorithm based on service correlations within

the network. Wei et al. [27] proposed the Social-powered Graph Hierarchical Atten-

tion Network (SGHAN) using a service-level attentional encoder to identify signifi-

15

cant services in friends' mashups and a friend-level graph attention network to priori-

tize and propagate the social influences of friends. Additionally, [28] outlined a ser-

vice recommendation approach grounded in link prediction within a dynamic service

co-occurrence network. Recent work has applied association mining techniques over

service networks to discern positive and negative collaboration patterns among ser-

vices.

Function-based service recommendation aims to recommend services that best ful-

fill the functional requirements of mashup developers, thereby alleviating the burden

of service discovery. Wu et al. [29] introduced a probabilistic model for suggesting

services to mashup developers, applying a topic model to represent mashup require-

ments, APIs, and their relationships. Xia et al. [30] proposed a distributed recommen-

dation method comprising two steps: service clustering and distributed service rec-

ommendation, which help narrow the search scope of mashup developers' service

discovery. Its notable feature is the recommendation of multiple sorting lists to users,

with each list representing a category of service sets, rather than recommending all

services to developers at once. Gao et al. [3] presented a service recommendation

framework to suggest sets of services to developers, where each service set can be

viewed as a potential mashup rather than a single service. The framework consists of

two stages: service clustering and service set sorting. Gu et.al. [31] build a semantic

service package repository where the service packages are denoted with composition-

al semantics by mining mashup and then recommend Web APIs based on the reposi-

tory.

6 Conclusion And Future Work

In this paper, we are dedicated to adaptively recommending Web API into service

recommendation tailored for mashup creation. The proposed AWAR focuses on the

matching process between mashup requirements and candidate API services, improv-

ing recommendation effectiveness through the integration of natural language pro-

cessing, optimization algorithms, and deep learning, where 0-1 planning and multi-

layer perceptron are applied for accurately performing adaptive Web API recommen-

dation. We conduct a series with competing baselines to assess the performance of

AWAR, including comparative analyses of methods and the impact of parameters

within our proposed recommendation approach.

In the future work, we aim to further explore the latest techniques to advance Web

API recommendations by refining the alignment between the descriptions of Web

services and mashup requirements. We also focus on improving the way of calculat-

ing similarity between mashup services and aggregated services by utilizing neural

network. Moreover, we intend to further optimize the feature extraction method for

aggregated service and API services.

16

Acknowledgments

This work was supported by National Natural Science Foundation of China (No.

62272290, 62172088).

References

1. Al-Masri, E., Mahmoud, Q. H. Investigating Web services on the world wide Web. In: In-

ternational Conference on World Wide Web, pp.795-804 (2008).

2. Fichter, D., What Is a Mashup, http://books.infotoday.com/books/Engard, last accessed

2013/12/8.

3. Gao, W., Wu, J.: A novel framework for service set recommendation in mashup creation.

In: 2017 IEEE International Conference on Web Services (ICWS), pp. 65-72. (2017).

4. David, B., Hugo, H., Francis, M., et al.: Web Services Architecture,

https://www.w3.org/TR/ws-arch/, last accessed 2024/7/30.

5. Gao, W., Chen, L., Wu, J., et. al.: Manifold-learning based API recommendation for

mashup creation. In: 2015 IEEE International Conference on Web services, pp.432-439

(2015).

6. Zhong, Y., Fan, Y., Huang, K., et al.: Time-aware service recommendation for mashup

creation. In: IEEE Transactions on Services Computing 8(3), 356-368 (2014).

7. Yao, L., Wang, X., Sheng, Q. Z., et al.: Mashup recommendation by regularizing matrix

factorization with API co-invocations. In: IEEE Transactions on Services Computing

14(2), 502-515 (2018).

8. Man, K. F., Tang, K. S., Kwong, S.: Genetic algorithms: concepts and applications in en-

gineering design. In: IEEE Transactions on Industrial Electronics 43(5), 519-534 (1996).

9. Nielsen, M. A.: Neural networks and deep learning. Determination press, San Francisco,

CA, USA (2015).

10. Goodfellow, I., Bengio, Y., Courville, A. Deep learning. MIT press (2016).

11. Ma, Y., Geng, X., Wang, J., He, K., Athanasopoulos, D.: Deep learning framework for

multi‐round service bundle recommendation in iterative mashup development. In: CAAI

Transactions on Intelligence Technology 8(3), 914-930 (2023).

12. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian personal-

ized ranking from implicit feedback. In: 25th Conference on Uncertainty in Artificial Intel-

ligence, UAI 2009, pp. 452–461 (2009).

13. Shi, M., Tang, Y., Liu, J.: Functional and contextual attention-based LSTM for service

recommendation in mashup creation. In: IEEE Transactions on Parallel and Distributed

Systems 3(5), 1077–1090 (2019).

14. Zhong, Y., Fan, Y., Tan, W., et al.: Web service recommendation with reconstructed pro-

file from mashup descriptions. In: IEEE Transactions on Automation Science and Engi-

neering 15(2), pp. 468-478 (2016).

15. Rocío, C., Pablo C.: Should I Follow the Crowd? A Probabilistic Analysis of the Effec-

tiveness of Popularity in Recommender Systems. In: The 41st International ACM SIGIR

Conference on Research & Development in Information Retrieval, pp.415-424 (2018).

16. Wu, H., Duan, Y., Yue, K., Zhang, L.: Mashup-oriented web API recommendation via

multi-model fusion and multi-task learning. In: IEEE Transactions on Services Computing,

15(6), 3330-3343(2021).

17

17. Zheng, Z., Li, X., Tang, M., Xie, F., Lyu, M. R.: Web service QoS prediction via collabo-

rative filtering: A survey. In: IEEE Transactions on Services Computing 15(4), 2455-2472

(2020).

18. Zhong, Y., Fan, Y., Tan, W., Zhang, J.: Web service recommendation with reconstructed

profile from mashup descriptions. In: IEEE Transactions on Automation Science and En-

gineering 15(2), 468-478 (2016).

19. Liu, Y., Cao, J.: API-Prefer: An API Package Recommender System Based on Composi-

tion Feature Learning. In: International Conference on Service-Oriented Computing, pp.

500-507. Springer, Cham (2020).

20. Li, C., Zhang, R., Huai, J., Sun, H.: A novel approach for API recommendation in mashup

development. In: 2014 IEEE International Conference on Web Services, pp. 289-296

(2014).

21. Luo, X., Wu, H., Yuan, H., Zhou, M.: Temporal Pattern-Aware QoS Prediction via Biased

Non-Negative Latent Factorization of Tensors. In: IEEE transactions on cybernetics 50(5),

1798-1809 (2020).

22. Wang, P., Ding, Z., Jiang, C., Zhou, M., Zheng, Y.: Automatic Web service composition

based on uncertainty execution effects. In: IEEE Transactions on Services Computing 9(4),

551-565 (2015).

23. Jiang, Y., Liu, J., Tang, M., Liu, X.: An effective Web service recommendation method

based on personalized collaborative filtering. In: 2011 IEEE International Conference on

Web Services, pp. 211-218 (2015).

24. Liang, W., Xie, S., Cai, J., Xu, J., Hu, Y., Xu, Y., Qiu, M.: Deep neural network security

collaborative filtering scheme for service recommendation in intelligent cyber–physical

systems. In: IEEE Internet of Things Journal 9(22), 22123-22132 (2021).

25. Jiang, B., Yang, J., Qin, Y., Wang, T., Wang, M., Pan, W.: A service recommendation al-

gorithm based on knowledge graph and collaborative filtering. In: IEEE access 9, 50880-

50892 (2021).

26. Li, H., Liu, J., Cao, B., Tang, M., Liu, X., Li B.: Integrating Tag, Topic, Co-Occurrence,

and Popularity to Recommend Web APIs for Mashup Creation. In: 2017 IEEE Internation-

al Conference on Services Computing (SCC), pp. 84-91. Honolulu, HI (2017).

27. Wei, C., Fan, Y., Zhang, J.: Time-aware service recommendation with social-powered

graph hierarchical attention network. In: IEEE Transactions on Services Computing 16(3),

2229-2240 (2022).

28. Gu, Q., Cao, J., Peng, Q.: Service package recommendation for mashup creation via

mashup textual description mining. In: 2016 IEEE International Conference on Web Ser-

vices (ICWS), pp. 452-459 (2016).

29. Wu, H., Duan, Y., Yue, K., Zhang, L.: Mashup-oriented web API recommendation via

multi-model fusion and multi-task learning. In: IEEE Transactions on Services Computing

15(6), 3330-3343 (2021).

30. Xia, B., Fan, Y., Tan, W., Huang, K., Zhang, J., Wu, C.: Category-aware API clustering

and distributed recommendation for automatic mashup creation. In: IEEE Transactions on

Services Computing 8(5), 674-687 (2014).

31. Gu, Q., Cao, J., Liu, Y.: CSBR: A compositional semantics-based service bundle recom-

mendation approach for mashup development. In: IEEE Transactions on Services Compu-

ting 15(6), 3170-3183 (2021).

