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Abstract—With the surge in Web service users, user profiling
has become increasingly prominent in personalized service recom-
mender system. Graph Neural Networks (GNNs) has emerged as a
key technology for user feature extraction. However, these methods
mostly focus on modeling pairwise interaction relationships by
type and overlook the high-order interaction relationships and
deep semantic correlations. Moreover, GNNs’ limited receptive
fields restrict their capacity to capture user high-order features
effectively. To address these issues, we propose a novel framework
for advanced user profiling named Heterogeneous Interaction
Graph Transformer (HIGT). Firstly, HIGT constructs a weighted
heterogeneous interaction graph from historical user-service
interactions, using edge types for interaction modes and weights
for their frequency. Secondly, it uses a Transformer to extract
high-order semantic attribute correlations and enhance global
understanding through self-attention, while proposing a structure-
enhanced attention mechanism to incorporate the graph structure
into the Transformer architecture for extracting high-order
interaction features of users. This dual high-order feature learning
method provides deeper insight into users’ preferences for Web
services. Extensive experiments on two real-world e-commerce
service datasets reveal that HIGT brings a significant performance
boost compared with competing models for user profiling.

Index Terms—Service Recommendation, Service User Profiling,
High-order Feature, Graph Transformer, User-Service Heteroge-
neous Interaction Graph

I. INTRODUCTION

With the rapid evolution of information technology and
network infrastructure, Web services now play a pivotal role
in attracting global users and accumulating large amounts
of data. Personalized service recommendation techniques,
which efficiently extract pivotal information from massive
user data, optimize service resource allocation, and enhance
user experience, have found widespread application. However,
as the volume and complexity of data generated by various
services increase, effectively conducting user analysis and
accurately identifying user preferences have become critical
prerequisites and challenges for realizing personalized service
recommendation.

* Corresponding author.

User profiling is commonly employed as a crucial element for
personalized recommendation of Web services on e-commerce
and social media [1]–[4], describing and categorizing users
from extensive data. In general, primary data sources used
for user profiling include user content data, which covers
what users create; behavioral data, showing how users interact
with the services; and relational data, mapping out users’
connections. The intricate nature of these data makes model
development challenging. To tackle this, many efforts focus on
developing models that can efficiently handle these complex
data types while keeping their design simple.

User profiling models typically predict user attributes such
as age [5]–[10], gender [6]–[10], and geolocation [11], [12],
commonly viewed as classification tasks. Existing research can
be broadly divided into single-source methods and fusion-based
methods. Traditional research paradigms [13]–[27] often narrow
their focus only to a single data source, leading to limited user
representations. Recent shifts towards fusion methods integrate
multiple data sources, overcoming this limitation. However,
hand-crafted-based fusion strategies [28]–[31] face scalability
challenges. Bridging this gap, automated fusion models using
deep learning, particularly deep graph learning, offer a solution
by modeling complex interrelations in a graph structure, where
users and services are nodes, and their interactions are edges.
Subsequently, employing Graph Neural Networks (GNNs) for
feature propagation, researchers predict user attributes with
high accuracy. Such deep graph learning models [7]–[9], [12],
[32] have shown superior performance in user profiling tasks
compared to traditional methods, highlighting their potential
in this field.

Despite the effectiveness of graph-based user profiling
methods, we argue that three critical issues have not yet been
fully considered. Firstly, from a modeling perspective, current
methods tend to focus on the direct interactions between entities,
often neglecting the more complex high-order interactions.
These high-order interactions involve multi-hop associations
between user-to-user or user-to-service. Research in network
theory and complex systems underscores the importance of
high-order relationships for a deep understanding of complex
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networks [33], [34]. At the same time, these methods also
ignore the high-order semantic correlations of entities, thereby
limiting a comprehensive understanding of user behavior
patterns. Secondly, from a technical perspective, GNNs are
commonly used as the technique to extract user features along
interaction graphs due to their effectiveness in modeling entities
and their complex relationships. However, they struggle to
capture high-order user features due to their limited receptive
fields. Additionally, these approaches typically consider only
the type of interaction, neglecting the significance of interaction
frequency, which can directly indicate a user’s engagement
with specific services, thus serving as a more precise indicator
for understanding user preferences.

Towards the above limitations, we introduce a novel frame-
work for user profiling, named Heterogeneous Interaction Graph
Transformer (HIGT), which adaptively extract dual high-order
user features. Specifically, differing from traditional GNNs-
based methods, HIGT utilizes a self-attention mechanism in
the Transformer architecture to learn global semantic attribute
correlations and a path-augmented structural encoding strategy
to capture high-order interactions between user-to-user and user-
to-service. Then, by employing a structure-enhanced attention
mechanism to aggregates attribute and structural high-order
features, a comprehensive understanding of user preference is
ensured. A classifier then leverages these refined representations
for accurate user attribute prediction. Finally, this end-to-end
training process allows the model to automatically learn the
relative importance of various user or services for target user
within the weighted user-service heterogeneous interaction
graph. In summary, the main contributions of this paper are
summarized as follows:

• We introduce a novel framework named Heterogeneous
Interaction Graph Transformer (HIGT), which innovatively
optimizes and enhances the conventional Transformer
architecture to extract user features from the modeled
weighted user-service heterogeneous interaction graph,
thereby refining user profiling for personalized service
recommendations.

• In the feature extraction process of HIGT, we design an
innovative dual high-order feature learning approach to
refine user representation by integrating both semantic
and structural insights from the graph. It employs a
self-attention mechanism to identify high-order semantic
attribute correlations, and a path-augmented encoding
strategy to capture high-order interactions along the
graph’s topology.

• Extensive experiments are conducted on two real-world
e-commerce Web services datasets, demonstrating that our
method receives significant advancements in user profiling.

The remainder of this paper is organized as follows. Section
II formulates the research problem. Section III illustrates the
overall framework of HIGT and elaborates the approach of
user profiling. Section IV shows the experimental results and
analyses. Section V reviews the related work. Finally, we
conclude the paper and discuss the future work in Section VI.

Fig. 1. User-Service heterogeneous interaction graph for user profiling in the
service recommendation system.

II. PROBLEM FORMULATION

In service recommender system, interactions among entities
are typically modeled using a heterogeneous interaction graph.
These entities, rich in attribute, are mainly categorized as ’users’
and ’services’. We define these entities as follows:

Definition 1 (Service User). Service users mainly refer to
individuals who have interacted with one or more Web services.
Let U be a user set, where U = {u1, u2, ..., um}. Each u ∈ U
is characterized by a set of attributes Au.

Definition 2 (Web Service). For user profiling, the Web
service primarily pertains to the suite of services offered by e-
commerce platforms or social media. Let S = {s1, s2, ..., sn}
denote a set of Web services. For each service s ∈ S, it can
be described by an attribute set As.

Next, we will explore how these entities interact with each
other in a complex network structure, known as the ”user-
service heterogeneous interaction graph”. The following is a
definition of this graph.

Definition 3 (User-Service Heterogeneous Interaction
Graph). The User-Service Heterogeneous Interaction Graph
can be defined as G = {U , I,A, E ,W, T }. This graph G
consists of two types of nodes: user nodes U and service nodes
S , each with respective attributes Au and As. The interactions
between users U and services S are represented as edges in
the set E . Each edge, denoted by (u, s, wus, tus), connects a
user u ∈ U with a service s ∈ S, where wus ∈ W denotes
the frequency of interactions and t ∈ T signifies the type
of interaction. This graph models the intricate relationships
between users and services, forming the basis for user profiling.

Fig.1 presents a toy example of user-service interaction
heterogeneous graph in the service recommendation system. It
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Fig. 2. The overall framework of HIGT for service user profiling.

shows users U with attributes such as age and gender, services
S with attributes including price, brand, and category, and the
weighted edges E representing the frequency of user clicks
and purchases.

Definition 4 (Service User Profiling). Given the constructed
user-service heterogeneous interaction graph G, service user
profiling is defined as Tup = ⟨G,M, Â⟩. Here, M(·|W ) denotes
the predictive model, equipped with parameters W , which
is applied to the graph G. The set Â includes the inferred
user attributes. The process of profiling is thus described as
Â = M (G|W ), which translates interactions within the graph
into individual user attributes in service recommender system.

III. APPROACH

This section introduces the details of the proposed HIGT
for user profiling. As shown in Fig.2, it consists of three core
components: (1) The Graph Modeling Stage, which lays the
foundation by construct a weighted user-service heterogeneous
interaction graph. (2)The Dual High-order Feature Extraction
Stage, which employs a refined self-attention mechanism within
the Transformer architecture to extract high-order attribute
features of users, and a structure-enhanced attention mechanism
to embed the graph’s topology into the Transformer architecture
for extracting high-order interaction features of users; (3)The
User Attribute Prediction Stage, which accepts the refined user
representations and predicts specific user attributes.

A. User-Service Heterogeneous Interaction Graph Modeling

In this section, we elaborate on the construction of the
User-Service Heterogeneous Interaction Graph. This graph
effectively illustrates the complex interactions between users
and services through diverse connection types, interaction
strengths, and the specific attributes of services, providing
a comprehensive view of user behaviors.

Before constructing the graph, we ensure the consistency
and reliability of the raw data extracted from Web services. It
consists of two primary steps:

a) Interaction Type Prioritization: Given the variety of
user-service interaction modes, we introduce a hierarchy to
sequence interaction types. This approach posits that certain
interactions, like purchases, naturally encompass others, such
as clicks. Thus, our strategy retains only the highest priority
interaction in cases of multiple interactions between a user and
a service.

b) Core User/Service Filtering: To balance the graph’s
representativeness and scale, we adopt a filtering technique
to include core services interacted with by a minimum of
k users and core users who have interacted with at least t
different services. By doing so, we sharpen the graph’s focus
on capturing crucial interaction patterns from historical user
behaviors.

Following data pre-processing, we construct the User-Service
Heterogeneous Interaction Graph through the following steps:
First, we initiate Node Creation, where every entity within Web
services is represented as a node. Each user node, denoted by u,
not only signify individual users but also encompass attribute
information Au that is the label for the user profiling task.
Each service node, denoted by s, are detailed with attributes
As, aiding in the user profiling process. Following this, in the
Edge Establishment phase, the interactions between users and
services are depicted as weighted edges to reflect the strength
of these interactions. Notably, these edges are undirected, it
implies that there is no specific direction between users and
services.

Next, the user-service heterogeneous interaction graph serves
as a basic input to our proposed model.
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B. Dual High-Order User Feature Extraction

In this section, we optimize and enhance Transformer
architectures to user feature learning inspired by their recent
success in graph analysis [35], and focusing on the effective
integration of semantic user/service attribute and structural
interaction information within the graph.

1) High-order Attribute Feature Extraction: The first step is
node embedding, transforming users and services into semantic
vectors in a d-dimensional space, Rd, through embedding
functions that convert discrete attributes into continuous vectors,
a process also known as attribute encoding.

For users, embeddings are initialized based on their unique
identifiers, formalized as ϕU (u) : (u, ID) 7→ hu ∈ Rd.
Specifically, ϕU (u) represents the function implemented by the
Multi-Layer Perceptron (MLP), mapping a user’s identifier to
an embedding vector hu. For services, the embedding process
is more intricate due to the diversity of their attributes. Textual
attributes, such as names, which are semantically significant,
are encoded using pretrained Large Language Model (LLM)
framework, with the function ϕA(t) : (t) 7→ at ∈ Rd. Here,
ϕA(t) signifies the process of calling the OpenAI’s embedding
API. This step transforms the rich textual attribute t into
structured, low-dimensional vectors at that capture the essence
of each service’s identity. Additionally, for other categorical
attributes, an embedding function ϕA(c) : (c) 7→ ac ∈ Rd maps
each category attribute c to a point in the same latent space via
an MLP, yielding the embedding vector ac.This ensures con-
sistency with the text-based embeddings. Thus, the embedding
of a service, ϕS(s) : (s, at1 , ..., atm , ac1 , ..., acn) 7→ hs ∈ Rd,
integrates its textual and categorical attributes, formalized as:

hs =

m∑
i=1

ati +

n∑
j=1

acj
(1)

Following initialization, user embeddings form Hu ∈ R|U |×d

and service embeddings form Hs ∈ R|S|×d. These are merged
into a unified matrix H ∈ R(|U |+|S|)×d. This process encodes
nodes with semantic information, enriching the context for
analyzing user interactions and uncovering implicit preferences
and behavioral patterns, which reflect user profiles.

To capture this depth of context over longer distances and
further enhance our understanding of user behaviors, we have
utilized a self-attention mechanism within the Transformer
architecture to learn and extract the global semantic similarity
within the network. This approach efficiently identifies and
emphasizes entities most semantically relevant to the target
user, whether they be other users or services. This aligns with
the idea that user profiles can be reflected not only through
their personal interaction preferences, but also from user groups
with similar behavior patterns.

This means that the input matrix H is transformed by three
distinct projection matrices WQ ∈ Rd×dK , WK ∈ Rd×dK ,
and WV ∈ Rd×dV to obtain the query matrix Q, key matrix
K, and value matrix V , respectively, which are then used
within the self- attention mechanism to compute the semantic
attention matrix A ∈ R(|U |+|S|)×(|U |+|S|) . Consequently, the

computation of pairwise semantic association in the user-service
heterogeneous interaction graph is as follows:

Q = HWQ (2)
K = HWK (3)
V = HWV (4)

A =
Q (K)

T

√
dK

(5)

where aij ∈ A indicates the strength of semantic association
of node vi and vj , and each node belonging to the set U ∪ S.
To illustrate with simplicity, we focus on the single-head self-
attention framework and operate under the assumption that
dK = dV = d. Furthermore, generalizing to the multi-head
attention is a standard and uncomplicated process.

2) High-order Interaction Feature Extraction: The feature
extraction process based on attribute adeptly discerns the
semantic influences exerted by various entities on the target
user, facilitating the mining of the user’s potential high-order
features. Meanwhile, the behavior patterns of users are also an
important aspect in understanding the user’s attributes. Through
the analysis of users’ direct interactions, we can gain initial
insights into their explicit preferences. However, relying solely
on this direct information may not completely reflect the users’
complex preferences.

Further considering that users may exhibit similar behavior
patterns, such as similar purchasing histories, we can explore
high-order connections between users through these shared
behavior patterns.

Specifically, the fact that similar purchasing behaviors among
users imply similar attributes leads us to deduce high-order
connectivity between users from shared service interactions
along multi-hop paths. Formally, a user u is connected to
another user u′ at the L-th order if there exists a path u

eus1−→
s1

eu1s1−→ u1

eu1s2−→ s2
eu2s2−→ · · ·

euL−1sL−→ sL
eu′sL−→ u′, where

ui ∈ U , si ∈ S, and eussi represents the edge between user
and service in E . Similarly, high-order connectivity between
a user and a service is established based on the concept of
User-User connectivity.

Under the definition of high-order connectivity based on
shared interaction patterns, it is obvious that the topology of
the user-service heterogeneous interaction graph intuitively
maps complex interaction patterns, revealing the direct and
indirect connections between users and services. To this end, we
propose a path-augmented structure encoding strategy, which
works by constructing multiple paths from the target user to
different entities (users and services), and focuses on the k-
order shortest paths reachable. By strategically encoding edges
and node pairs in paths, the target user feature reflected by
interaction patterns are finely learned.

a) Edge Attributes Encoding: Within graph’s topology,
the shortest path between two nodes can effectively reflect their
structural correlation. This aspect becomes even more pertinent
in heterogeneous graphs, where it is essential to consider not
just the length of the shortest path, but also the types and
weights of the edges along this path. For instance, in the user-
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service heterogeneous interaction graph depicted in Fig. 2, the
shortest path connecting users u1 and u4 can be represented as
u1

eu1s2→ s2
eu3s2→ u3

eu3s3→ s3
eu4s3→ u4. This particular path not

only encompasses two distinct types of edges, each symbolizing
different user behaviors, but also incorporates three varying
weights, each corresponding to the frequency of actions within
the specific type of interaction. Thus, in order to learn topology
dependencies between node pairs, we construct a shortest path
matrix E(uivj) ∈ R2×spd(ui,vj) for each node pair< ui, vj >,
where vj could represent either a user ujor a service sj . The
matrix:

E(uivj) = [pet;pew] (6)

where ui and vj represent the starting and ending node of the
shortest path, respectively and spd(ui, vj) aims at calculating
the length of the shortest path. Each dimension of the vector
pet represents the type of edge on the shortest path, while each
dimension in the second row pew represents the corresponding
edge weight.

Subsequently, each type and weight of edges is encoded
through a trainable embedding vector with real value, which
is processed by two distinct full-connected embedding layers,
respectively. To achieve this, we define a set of predefined
edge types T and edge weights W , along with corresponding
embedding functions ft : T → Rdt and fw : W → Rdt . These
functions map the edge types and weights to a vector space
of dt dimensions of real value. Given a sequence of edges
(e1, e2, . . . , espd) on the shortest path, where each edge ei has
an edge type ti ∈ T and an edge weight wi ∈ W , we can
obtain two matrices:

Xet = [ft(t1); ft(t2); . . . ; ft(tspd)] (7)
Xew = [fw(t1); fw(t2); . . . ; fw(tspd)] (8)

where Xet denotes the embedding matrix for edge types and
Xew indicates the embedding matrix for edge weights. These
matrices are combined using the Hadamard product, defined
as follows:

Xe = Xet ⊙Xew (9)

where Xe ∈ Rspd(ui,vj)×dt represents the feature matrix for
the shortest path from node ui to vj . Each row in this matrix
corresponds to the feature vector of a specific edge in the
shortest path.

b) Edge Positional Encoding: In addition, following the
standard architecture of the Transformer, we incorporate a
crucial step of identifying the position of each edge on the
shortest path. Positional encoding is crucial because, without
positional information, the model might treat all edges as
if they were interchangeable, potentially leading to incorrect
conclusions about the graph structure. We achieve this by
augmenting each row of Xe with a positional encoding,

calculated as follows:

PE(pos, 2i) = sin
( pos

100002i/dt

)
(10)

PE(pos, 2i+ 1) = cos
( pos

100002i/dt

)
(11)

X ′
e = Xe + PE (12)

where pos refers to the index of an edge within the specified
path and i represents the column index in a row vector. We then
apply a one-dimensional convolutional layer to the matrix X ′

e ,
effectively compressing its column dimensions. Consequently,
this operation yields the final path feature x(ij)e ∈ Rdt ,
which comprehensively encodes the edge information along
the shortest path.

c) Node Interaction Encoding: In the process of extract-
ing high-order features of users based on graph topology, the
role of nodes is as significant as that of edges. Specifically,
the degree of a node is an essential metric that indicates
its importance within the graph. However, focusing solely
on individual nodes may overlook complex relationships,
especially in heterogeneous graphs. Thus, we extend this
concept from individual nodes to pairs of nodes to mine
the relative importance of different entities. For node pairs
< ui, vj >, we construct a real-valued vector x(ij)n to quantify
the correlation between neighboring nodes on the shortest paths
from node ui to vj , which is formulated as follows:

x(ij)n =


[cuiui+1

, cui+1ui+2
, . . . , cuj−1uj

] , for < ui, uj >

[
wuii1

N(ui)
,
wui+1i1

N(ui+1)
, . . . ,

wuj−1ij

N(uj−1)
] , for < ui, ij >

(13)
For user node pairs < ui, uj >, x(ij)n ∈ R

spd(ui,uj)

2 quanti-
fies the number of shared interaction services between adjacent
user nodes along the shortest path, with each dimension
indicates the count of shared interaction services between the
user uk and uk+1.

For user-service node pairs < ui, sj >, x(ij)n ∈ Rspd(ui,sj),
each dimension of this vector reflects the relative frequency
of interaction between the user and a specific service. Where
wumsn represents the interaction intensity between user um

and service sn, and N(um) represents the total frequency of
interactions the user um has with all services they directly
interact with.

The lengths of x(ij)n are respectively half the shortest path
for user-user pairs and equal to the full shortest path distance for
user-service pairs. Subsequently, this vector is projected through
a linear transformation and normalization layer, resulting
in a higher-dimensional representation ˆx(ij)n ∈ Rdt , which
effectively captures the interactions of node pairs on the shortest
path.

3) Attribute-Interaction User Feature Aggregation: To this
point, we have completed the extraction of two key aspects of
user features: the extraction of high-order semantic features
based on attribute information and the extraction of high-order
interaction features based on the graph structure. In order to
build a more comprehensive and in-depth user representation,
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we integrate these two types of features through an effective
fusion strategy. This is achieved through a structure-enhanced
attention mechanism that builds upon the foundation of the
Transformer’s self-attention mechanism. It adjusts the standard
attention coefficients aij in accordance with topological charac-
teristics. Specifically, the final user interaction feature based on
graph structure xij ∈ R2dt are computed first by concatenating
the edge feature vector x(ij)e ∈ Rdt and the node interaction
feature vector ˆx(ij)n ∈ Rdt along the shortest path between the
nodes pairs between ui and vj . Subsequently, the concatenated
vector is subjected to a linear transformation and normalization
to yield the final feature representation:

xij = Normalize
(
Wt(x(ij)e ∥ ˆx(ij)n) + bt

)
(14)

where Wt ∈ R2dt×2dt represents a learnable weight matrix,
bt ∈ R2dt denotes a bias vector, both of which are parameters
to be optimized during training. The resulting structural features
xij informs the adjustment of attention coefficients through an
affine transformation as follows:

αij = ws
T · xij (15)

βij = wb
T · xij (16)

âij = αijaij + βij (17)

Ĥ = Normalize(Â)V (18)

where ws and wb are the trainable vectors. αij and βij

represent the structural scale and structural offset coefficients,
respectively; âij is the refined attention coefficient for nodes
vi and vj . The matrix Ĥ ∈ R(|U |+|S|)×d′

indicates the final
output and embed all the users, capturing the comprehensive
semantic correction and topological dependency.

C. User Profiling and Model Training

The prediction layer predicts the labels of user attributes
based on the learned user representations. We first select the
top |U | rows corresponding to users from the matrix Ĥ , and
then linearly projected to a lower-dimensional space, resulting
in the matrix Z ∈ R|U |×Fc , where Fc is the number of attribute
categories for classification. It can be formalized as:

Z = ĤUWh + bh (19)

Ŷ = softmax(Z) (20)

where Wh is the projection matrix that reduces the dimension
to Fc, and bh is a bias vector. A softmax operation is then
applied row-wise function on the matrix Z to yield a probability
distribution Ŷ over the labels for each user.

Upon obtaining the probability distribution over the labels for
each user, the model employs the cross-entropy loss function
for effective multi-class classification. The loss function is
defined as:

L(θ) = − 1

|U |
∑
i∈U

∑
j∈Fc

yij log(ŷij) + λ∥θ∥22 (21)

here, L(θ) represents the loss function dependent on all the
model parameters θ. The term − 1

|U |
∑

i∈U

∑
j∈Fc

yij log(ŷij)

TABLE I
STATISTICS OF LABEL IN ALIBABA-DATASET.

Gender Age

Male Female 1 2 3 4 5

32765 26601 3989 10681 19157 18332 7207

TABLE II
STATISTICS OF LABEL IN JD-DATASET.

Gender Age

Male Female < 26 26-35 36-55 > 55

21769 13881 6204 26336 2482 628

quantifies the average cross-entropy loss across all users, where
yij is the ground truth label of user i for the j-th category
within a particular attribute, and ŷij ∈ Ŷ is the corresponding
predicted probability. The regularization term λ∥θ∥22 mitigates
overfitting by penalizing large parameter values, with λ being
a pre-defined regularization coefficient.

We optimize the model parameters θ using the mini-batch
AdamW [36] algorithm. This algorithm is a widely used
optimizer, incorporating weight decay regularization to enhance
performance and reduce overfitting.

IV. EXPERIMENTS

A. Experimental Datasets and Setup

1) Datasets Description: We conduct comprehensive ex-
periments using two large-scale public service datasets from
Alibaba and JD.com, the leading e-commerce platforms in
China. These datasets, identified as the Alibaba-dataset1 and
the JD-dataset2, consist of authentic user behavior and profile
data, crucial for reflecting real-world e-commerce interactions.
In both datasets, the heterogeneous graphs are extracted with
multiple relationships among users and services. The Alibaba-
dataset, encompassing data from users on Taobao, includes a
rich history of advertising displays and user behavior logs. It
details user-service interactions like “purchase,” “click,” “add
to shopping cart,” and “favorite,” alongside product attributes
such as categoryID and brandID, as well as user attributes
including gender, age, consumption level, and city tier, etc. In
the JD-dataset, users and services have ‘click’ and ‘purchase’
interactions, with service attributes extending to category, brand,
name, and price. Notably, service names are provided in
Chinese. Additionally, it includes user attributes like age and
gender. Aligning with previous works [7]–[9], we use the user’s
gender and age as the label for our user profiling task. Labels
of users’ age in Alibaba-dataset have been pre-classified in the
original dataset. Additionally, both datasets undergo a filtering
process to refine their structure for enhanced efficacy in model
training and evaluation. Detailed descriptions of the labels
within two datasets are presented in Table I and Table II.

1https://tianchi.aliyun.com/dataset/dataDetail?dataId=56
2https://github.com/guyulongcs/IJCAI2019 HGAT
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TABLE III
OVERALL PERFORMANCE COMPARISON OF VARIOUS MODELS ON JD-DATASET AND ALIBABA-DATASET.

Task Age Gender

Model Accuracy Macro-P Macro-R Macro-F1 Accuracy Macro-P Macro-R Macro-F1

JD

LR 62.82 0.24 0.25 31.44 50.12 0.50 0.50 48.10
SVM 63.52 0.25 0.25 32.27 50.51 0.50 0.50 49.92
GCN 62.67 0.25 0.25 31.86 53.29 0.50 0.51 51.36
GAT 63.71 0.26 0.26 32.24 51.82 0.49 0.50 49.39
HGCN 66.29 0.33 0.34 34.65 52.47 0.52 0.51 51.48
HGAT 66.71 0.32 0.34 34.83 52.91 0.52 0.52 51.52
RHGN 68.37 0.33 0.35 36.91 53.48 0.53 0.52 51.91
HIGT 72.24 0.44 0.46 41.24 56.61 0.56 0.55 54.95

Alibaba

LR 22.90 0.18 0.20 18.07 55.93 0.51 0.51 49.16
SVM 23.08 0.19 0.18 20.31 57.82 0.51 0.52 52.59
GCN 24.14 0.20 0.18 20.71 58.40 0.53 0.52 53.48
GAT 24.92 0.21 0.20 21.28 57.38 0.52 0.51 52.22
HGCN 23.25 0.20 0.19 20.73 59.35 0.54 0.53 54.01
HGAT 23.94 0.20 0.21 20.98 58.96 0.53 0.54 53.89
RHGN 43.71 0.28 0.29 29.29 60.82 0.59 0.58 59.46
HIGT 46.36 0.30 0.32 30.73 61.67 0.61 0.62 60.83

2) Experimental Setup: To evaluate the effective of our pro-
posed HIGT, we conduct a series of comprehensive experiments.
These experiments are performed using a workstation furnished
with two NVIDIA GTX 4090 GPUs, an Intel(R) Xeon(R) Gold
6130 processor clocked at 2.60 GHz, and 1024GB of RAM.
The HIGT’s components are implemented using Python 3.8.16
and Pytorch 1.13.0.

In our experiments, following prior works [7], [8], we
randomly divide the labeled users into training, validation,
and test sets in a 75:12.5:12.5 ratio. During the training phase,
we engage all embeddings and labels assigned to users in the
training set. For validation and testing phases, we evaluate
our model using the labels of users in the validation and
test sets respectively. To facilitate calculation, the embedding
dimensions for both users and services are fixed at 128,
i.e., d = 2dt = d′ = 128. Considering both computational
resources and the scale of the dataset, in the process of
extraction of high-order user interaction features by calculating
the shortest paths between node pairs, we focus on up to
third-order neighbors of the user node, i.e., spd(ui, vj) ≤ 3,
employing Dijkstra’s algorithm for shortest path computations.

We adopt a grid-search strategy to find the optimal parameter
combination for the model. The number of Transformer encoder
layers is searched within {1,2,3,4,5}; the number of heads
in multi-head attention is searched within {1,2,4,8,16}. We
employ the early stopping technique for training the model,
achieving optimization within 50 epochs, and set the weight
decay to 0.1. For gender prediction, the learning rate, dropout
rate, and mini-batch size are set to 0.005, 0.6, and 64,
respectively. For age prediction, they are set to 0.1, 0.2, and 32,
respectively. In both the path-augmented structural encoding

module and the attribute-based semantic encoding module,
we use GELU [37] as our activation function. All baseline
implementations follow their respective original papers.

B. Competing Methods and Evaluation Metrics

To evaluate the performance of the proposed HIGT, we
compared it with classical and state-of-the-art graph-based
methods for user profiling task. The details of these comparative
methods are outlined below.

• LR [38]: It is widely used for its efficiency and inter-
pretability, often serving as an initial benchmark for user
profiling.

• SVM [39]: It excels in classification tasks by constructing
a hyperplane in a high-dimensional space that maximizes
the margin between different classes of nodes.

• GCN [40]: It is specifically designed for graph-structured
data and stands out in node classification tasks through
its semi-supervised learning algorithm.

• GAT [41]: It refines the process of node classification
through an attention-based mechanism that assigns varying
levels of significance to the nodes in a neighborhood.
While GCN and GAT serve as representative and strong
baselines for numerous tasks centered around homoge-
neous graphs, they do not inherently account for multiple
types of relations and entities.

• HGCN [7]: It extends traditional graph convolutional
networks to better handle heterogeneous graphs for semi-
supervised user profiling. It utilizes the graph convo-
lutional operation to effectively capture complex user
features from diverse types of nodes and edges.
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(a) JD-dataset (b) Alibaba-dataset

Fig. 3. Performance of HIGT and variants on two datasets.

• HGAT [7]: It is a variant of HGCN, employs an atten-
tion mechanism and focuses on dynamically allocating
significance to various node interactions.

• RHGN [8]: It is a state-of-the-art method in the field
of user profiling on heterogeneous graphs. It integrates
a relation-aware strategy, specifically designed to handle
the intricate dynamics between diverse node types.

User profiling is essentially a classification task. In our
experiments, which involve the classification tasks of gender
prediction and age prediction, we employ four key metrics
to measure the accuracy of user attributes prediction among
the competing approaches: Accuracy, Macro-Precision, Macro-
Recall, and Macro-F1 Score [42]. These metrics are widely
used in classification and user profiling problems.

C. Experimental Results and Analyses

Comparison with Competing Methods. In this study, we
evaluate the performance of our HIGT model against baseline
models on the JD-dataset and Alibaba-dataset, specifically
focusing on gender and age prediction tasks. The experimental
outcomes, as illustrated in Tables III, clearly demonstrate the
superiority of our HIGT model over baseline models. It can be
observed from the results that traditional machine learning
methods like LR and SVM show limited performance on
both datasets. This performance gap is attributed to their
limited capacity to incorporate the rich network structure
and complex node interrelations into the predictive modeling
process, relying solely on initial node attributes for user
representation. Graph neural network-based methods, such
as GCN and GAT, outperform traditional methods, with GAT
showing better results because of its attention mechanism,
which accounts for varying node importances. Additionally,
models specifically tailored for heterogeneous graphs, including
HGAT, HGCN, and RHGN, nearly exhibit superior performance
in age and gender prediction tasks compared to techniques
intended for homogeneous graphs. This highlights the critical
role of heterogeneous graphs in deriving diverse semantic
representations from varied data sources, offering a richer
contextual understanding of users.

Most notably, HIGT not only achieves the highest ac-
curacy across both tasks and datasets but also excels in
Macro-Precision, Macro-Recall, and Macro-F1 score metrics.
Specifically, HIGT’s accuracy and Macro-F1 score for gender
prediction are elevated by 5.85% and 5.86% on the JD-dataset

and by 1.40% and 2.30% on the Alibaba-dataset, respectively.
For age prediction, these metrics increase by 5.66% and
11.73% on the JD-dataset, and by 6.06% and 4.92% on
the Alibaba-dataset, respectively. Our model exhibits superior
performance on the JD dataset compared to its performance on
the Alibaba-dataset. The variations could be attributed to the
differing intensity and nature of high-order interactions within
these datasets. One possible explanation is that the high-order
interactions between users and other entities are not as obvious
in the Alibaba-dataset as in the JD-dataset, which weakens the
functionality of the path-enhanced structure encoding module
and limits its capacity to leverage these shared interaction
patterns. Another possible reason could be that in the Alibaba-
dataset, the number of services with few interactions surpasses
the number of services that are frequently interacted with. the
JD-dataset demonstrates a more uniform distribution in the
intensity of user interactions.

Although the HIGT model performed best on both tasks for
both datasets, it is important to note that all models generally
performed poorly on the age prediction task. Age prediction,
unlike the binary classification of gender, is a multi-class
challenge with subtle indicators that are often intertwined with
various demographic and behavioral factors, making it slightly
challenging for models to treat it as a classification task only.

In general, HIGT achieves the best results primarily for
the following reasons. Firstly, HIGT utilizes heterogeneous
information from different data sources and meticulously
reconstructs the real interactions between users and services
using a user-service heterogeneous interaction graph, thereby
gaining a deeper understanding of user behavior. Furthermore,
HIGT introduces a dual self-attention mechanism to aggregate
structural and attribute information to extract high-order
features of the target users, thereby obtaining high-quality
user representations.

Ablation Study. To evaluate the effectiveness of the path-
augmented structural encoding module within HIGT, we
conduct experiments with modified versions of the full HIGT
model, each lacking different components of the module. The
performance of these variants was evaluated in comparison to
the original HIGT model, with the findings depicted in Figure
3. These variants include:

• HIGT-ew: It is a variant of HIGT, but it only uses the
edge type encoding and the node interaction encoding in
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Fig. 4. Parameter sensitivity of HIGT on JD-dataset.

the path-augmented structural encoding module(i.e., no
edge weight encoding module). The modified structural
encoding module will be fused with the original global
attribute-based semantic encoding module to extract user
features, ensuring a focused adaptation while maintaining
the integrity of semantic analysis. Comparing its perfor-
mance with the standard HIGT highlights the role of edge
weight information in understanding user interactions and
preferences.

• HIGT-et: It is a variant of HIGT, but it only uses the edge
weight encoding and the node interaction encoding in the
path-augmented structural encoding module(i.e., no edge
type encoding module). This comparison can reveal the
importance of considering edge type information for the
model’s accuracy and efficiency.

• HIGT-ni: It is a variant of HIGT, but it only uses the
edge type encoding and the node weight encoding in the
path-augmented structural encoding module(i.e., no node
interaction encoding module). This setup provides insights
into the significance of quantifying interactions between
neighbors along the shortest paths.

From the results, it is clear that HIGT outperforms other
model structures in both datasets, underscoring the efficacy of
its comprehensive path-augmented structural encoding module.
The comparison with its variants—HIGT-ew lacking edge
weight encoding, HIGT-et without edge type encoding, and
HIGT-ni missing node interaction encoding—emphasizes the
significance of each component in the model. Specifically,
edge weight encoding enhances the model’s understanding of
interaction strengths, making it a more critical factor than edge
type in our model, as it provides a deeper insight into the

intensity and significance of user interactions. This finding
suggests that the quantitative aspect of user interactions plays
a more pivotal role than the qualitative aspect in understanding
user behavior. Furthermore, edge type encoding offers insights
into the nature of these interactions, making the model’s
predictions more relevant to actual user behaviors. Additionally,
the node interaction encoding capitalizes on graph topology to
infer user-user similarities based on shared neighbors and user-
service similarities from the relative importance of services
to different users, effectively using high-order connectivity to
augment the understanding of user behavior. This approach
implies that users with similar behaviors are likely to share
similar attributes, thereby enhancing the model’s accuracy in
user profiling.

D. Performance Impact of Parameters
In this section, we explore how four crucial parameters

affect our model’s effectiveness: the number of encoding layers
Nlayer, the number of attention heads Nhead, the shortest path
distance spd, and the embedding dimension d. We display the
results from the JD-dataset in Fig.4.

Based on Fig.4 (a), we can observe that there is a positive
correlation between the model’s performance and the number
of layers in the encoding layer within a certain range. A larger
Nlayer is beneficial for enhancing the model’s performance,
but it incurs additional computational costs and increases the
risk of overfitting. In our experimental scenario, Nlayer is
set to 3 to achieve a balance between computational resource
utilization and model performance. Furthermore, it can be seen
from Fig.4 (b) that the multi-head self-attention mechanism
in the Transformer works well in our task, as the model’s
performance improves with the increase of Nhead. However,

277

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 15:00:11 UTC from IEEE Xplore.  Restrictions apply. 



too many heads can decrease performance. Therefore, we set
Nhead = 4. For the shortest path distance spd, from Fig.4
(c), due to limited computational resources, we only consider
the maximum distance of 3. Within this range, age prediction
remains mostly stable, while gender prediction shows marked
improvement, suggesting that gender prediction benefits from
a broader structural information captured by a higher spd.
The analysis of Fig.4 (d) shows that the performance metrics
improve as the embedding dimension d increases for both age
and gender prediction, peaking at d = 128, except for Accuracy.
The final choice of 128 is guided by the peak Macro-F1 score at
this dimension, which balances precision and recall effectively.

V. RELATED WORK

User profiling, defined as the process of labeling user,
has attracted widespread attention and research from both
academia and industry over the past decades. Initially, user
profiling predominantly served as an intermediary step in
service recommendation system tasks. For instance, He et
al. [43] employed matrix factorization (MF) strategies for user
analysis based on user ratings or click behaviors. With the rapid
development of the Internet, the significance of user profiling
has increasingly come to the forefront, leading researchers
to focus on it as a distinct field of study. In this context,
the methods used for extracting user features have evolved
significantly. Existing research on these methodologies can
be broadly divided into two categories: single-source based
methods and fusion-based methods.

A. Single-source based User Profiling

Existing methods for user profiling typically first extract
features from text, behavior, relationships, etc., and then apply
machine learning or deep learning techniques to infer user
attributes.

Considering mining user characteristics from texts, Flekova
et al. [5] employed linear and nonlinear machine learning
regression methods to explore the relationship between stylistic
and syntactic features and users’ age and income; Zamal
et al. [44] employed SVM and GBDT models using the
homophily principle to derive features from Twitter profiles
and friends’ posts to enhance user characteristics, improving
the performance of attributes with moderate to high combi-
natoriality. Beyond basic user attributes, Preoţiuc-Pietro et
al. [45] developed models for user-level race and ethnicity
predictions based on Twitter text, using logistic regression to
predict membership in the four largest racial and ethnic groups.

Besides text, user behavior also reflects attributes to some
extent, as indicated by [6], which inferred users’ age and
gender based on patterns in daily mobile communication; Wang
et al. [46] proposed a novel Structured Neural Embedding
(SNE) model to automatically learn representations from user
purchase data, thus predicting multiple demographic attributes
simultaneously.

Additionally, scholars have focused on identifying user
dependency relationships across social networks to help infer
user attributes. Ding et al. [47] devised different strategies

to calculate relational weights between users, applying graph-
based semi-supervised learning algorithms for attribute predic-
tion; Mislove et al. [48] discovered that users with common
attributes are more likely to become friends, leading to a novel
community detection method that can infer the attributes of
the remaining users with only 20% of them providing their
attributes.

B. Fusion-based User Profiling

In recent years, scholars have placed greater emphasis on how
to model heterogeneous information from multiple user data
sources automatically to learn user representations, overcoming
the limitations of traditional methods that often involve single
data types and relationships and require manual feature design.

Specifically, the model proposed by Miura et al. [11]
integrates text, metadata, and user network representations with
an attention mechanism to predict user geolocation. Similarly,
the deep learning approach in [10] is capable of extracting and
fusing information from different modalities, utilizing shared
representations across these modalities to infer age, gender,
and personality traits of social media users. However, these
methods still face challenges with manual feature design or
fusion techniques. Consequently, some scholars have begun
to apply the advantageous properties of graphs, which are
adept at handling unstructured data, to the combination of
multi-typed user data related to user attributes. For instance,
HGAT [7] learns representations for each entity through
the constructed heterogeneous graph and used an attention
mechanism to differentiate the importance of each neighboring
entity, utilizing unsupervised information and limited user
labels to build predictors for users’ age and gender. RHGN [8]
further emphasizes the distinctions among different types of
interactions, employing a relation-aware heterogeneous graph
approach for user analysis. IHNN [9] adopts the idea of
heterogeneous attention mechanisms and designs hypergraph
convolutional operations to mine interactions beyond pairwise
relations among users from multiple views, thereby enhancing
the performance of user analysis.

However, these methods all overlook the differences within
the same interaction type, and more importantly, the high-order
interactions between different entities in heterogeneous graphs
are also ignored, which may limit the generalizability of these
methods in different application scenarios.

VI. CONCLUSION AND FUTURE WORK

In this paper, we leverage graph structure to model users’
historical interactions on web services, aiming to enhance user
profiling for personalized service recommendation. For this
purpose, we propose an innovative framework named Hetero-
geneous Interaction Graph Transformer (HIGT) to extract user
dual high-order feature. By constructing a weighted user-service
heterogeneous interaction graph, we employ a self-attention
mechanism and path-augmented encoding strategy within
Transformer architecture, efficiently capturing global semantics
feature and high-order interactions features. Experiments on
real-world large service datasets reveal that this dual strategy
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significantly enhances the model’s understanding of user behav-
iors and improves the accuracy of user profiling, outperforming
the most advanced baseline methods. Furthermore, we validate
the effectiveness of each component in HIGT.

In the future, we plan to further explore how to apply the
HIGT framework to dynamic heterogeneous graphs effectively.
Additionally, we will also investigate how to further optimize
the computational efficiency and scalability of the model to
accommodate larger datasets.
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Y. Bengio, “Graph attention networks,” vol. abs/1710.10903, 2017.

[42] C. Wu, F. Wu, J. Liu, S. He, Y. Huang, and X. Xie, “Neural demographic
prediction using search query,” in ACM International Conference on Web
Search and Data Mining (WSDM), 2019, pp. 654–662.

[43] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization
for online recommendation with implicit feedback,” in International
ACM SIGIR conference on Research and Development in Information
Retrieval (SIGIR), 2016, pp. 549–558.

[44] F. Al Zamal, W. Liu, and D. Ruths, “Homophily and latent attribute
inference: Inferring latent attributes of twitter users from neighbors,” in
International AAAI Conference on Web and Social Media (ICWSM),
vol. 6, no. 1, 2012, pp. 387–390.

[45] D. Preoţiuc-Pietro and L. Ungar, “User-level race and ethnicity predictors
from twitter text,” in Annual Meeting of the Association for Computational
Linguistics (ACL), 2018, pp. 1534–1545.

[46] P. Wang, J. Guo, Y. Lan, J. Xu, and X. Cheng, “Your cart tells
you: Inferring demographic attributes from purchase data,” in ACM
International Conference on Web Search and Data Mining (WSDM),
2016, pp. 173–182.

[47] Y. Ding, S. Yan, Y. Zhang, W. Dai, and L. Dong, “Predicting the attributes
of social network users using a graph-based machine learning method,”
Computer Communications, vol. 73, pp. 3–11, 2016.

[48] A. Mislove, B. Viswanath, K. P. Gummadi, and P. Druschel, “You are
who you know: inferring user profiles in online social networks,” in ACM
International Conference on Web Search and Data Mining (WSDM),
2010, pp. 251–260.

280

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 15:00:11 UTC from IEEE Xplore.  Restrictions apply. 


