
TEDC: Temporal-aware Edge Data Caching with
Specified Latency Preference

Guobing Zou1, Ya Liu2, 1*, Song Yang1, Shengxiang Hu1, Yanglan Gan3*, Bofeng Zhang4
1School of Computer Engineering and Science, Shanghai University, Shanghai, China
2Department of Computer Science and Technology, Tongji University, Shanghai, China
3School of Computer Science and Technology, Donghua University, Shanghai, China

4School of Computer and Information Engineering, Shanghai Polytechnic University, Shanghai, China
{gbzou, yangsong, shengxianghu}@shu.edu.cn, yaliu0227@tongji.edu.cn, ylgan@dhu.edu.cn, bfzhang@sspu.edu.cn

Abstract—Recently, the edge data caching (EDC) problem
has received much attention. It aims to appropriately cache
data on edge servers. Existing EDC approaches suffer from
a series of limitations. First, they often overlook the diverse
characteristics of data, including caching costs and latency
preferences. In reality, different types of data vary in size and
require different storage resources for caching. The impact of
specified latency preferences of edge users for different data
on the quality of experience should be considered in the EDC
problem. Second, the temporal dynamics of edge users’ data
requests and distributions have been insufficiently addressed.
To overcome these limitations systematically, this paper focuses
on the problem of temporal-aware edge data caching with
specified latency preference (TEDC). We first formulate the
TEDC problem and transform it into an optimization problem
with multiple objectives and global constraints and prove its NP-
hardness. Then, we propose an optimal approach named TEDC-
IP to solve this TEDC problem with the Integer Programming
technique and a heuristic algorithm named TEDC-A for finding
approximate solutions to large-scale TEDC problems efficiently.
Extensive experiments are conducted on two widely-used real-
world datasets to evaluate the performance of our approach.
The results demonstrate that TEDC-IP and TEDC-A significantly
outperform state-of-the-art approaches in finding approximate
solutions in terms of the trade-off among multiple metrics.

Index Terms—Edge Data Caching, Latency Preferences, Tem-
poral Dynamics, Cache Cost, Data Request

I. INTRODUCTION

With pervasive mobile computing and the Internet of
Things, it has witnessed the development of many new
compute-intensive and latency-sensitive applications, such as
cognitive assistance, mobile gaming, and virtual/augmented
reality (VR/AR) [1], [2]. Edge computing has emerged as a
novel distributed computing paradigm, extending the capabil-
ities of the traditional cloud computing model. By deploying
edge servers at the network edge, closer to users’ geographic
locations, various resources such as CPU, RAM, storage,
and bandwidth can be provided. This paradigm is crucial
for enabling the advancement of 5G mobile networks [3]
[4]. Service providers can rent computing resources on edge
servers and host their applications, ensuring low latency for
app users [5]–[7].

*Corresponding author.

In the mobile edge computing environment, every time a
user requests social content or video service, the request needs
to be sent to the remote cloud center through the edge server
to perform data transmission. This process causes tremendous
pressure on the network and triggers a sharp decline in user
experience. To enhance service efficiency and performance,
edge services are deployed on edge servers, providing users
with various services such as content delivery, real-time data
processing, video stream analysis, and more [8], [9]. Through
edge data caching [10], [11], edge services can access the re-
quired data more quickly, thereby enhancing service response
speed and performance. This is particularly crucial for services
such as real-time data processing and content delivery, which
necessitate swift handling and transmission of large volumes of
data. Furthermore, edge data caching reduces the data transfer
volume between edge services and the cloud, lowering network
bandwidth usage and data transmission costs, thus improving
overall system efficiency.

Edge data caching, as a key technology in future mo-
bile communication systems, has attracted a lot of attention
in academia and industry [12]–[15]. Many researchers have
investigated network cache from different perspectives, e.g.,
content popularity, cache allocation and replacement strategies,
and social sense cache [16]–[18]. Halalai et al. [19] proposed
erasure code into data caching techniques to find the optimal
solution to cache data chunks, considering the data popularity
and network latency. In [20], Drolia et al. provided a co-
ordinating mechanism for minimizing data retrieval latency,
balancing the workloads between edge servers and the remote
cloud server. However, existing approaches suffer from a series
of limitations. Firstly, they often overlook edge users’ specified
latency preferences for different types of data and fail to
consider the varying cache costs associated with different
data. Many approaches assume a uniform cache cost for
all data types. In addition, they oversight the relationship
between network latency and user experience for different
data. For example, people have very high latency requirements
for autonomous driving, whereas the network latency require-
ments for entertainment video are much lower. Secondly, most
approaches oversimplify the edge data caching problem by
modeling it as a static global optimization challenge. However,

822

2024 IEEE International Conference on Web Services (ICWS)

2836-3868/24/$31.00 ©2024 IEEE
DOI 10.1109/ICWS62655.2024.00101

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 W

eb
 S

er
vi

ce
s (

IC
W

S)
 |

97
9-

8-
35

03
-6

85
5-

0/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

W
S6

26
55

.2
02

4.
00

10
1

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: A motivating example of the TEDC problem.

in reality, the distribution of edge users and their data requests
change over time, necessitating consideration in the context of
the EDC problem.

In real-world scenarios, from the service provider’s per-
spective, the cost-effective edge data caching problem aims to
minimize the total user latency and minimize the data caching
cost. Taking the above issues into consideration, the problem
is referred to as the temporal-aware edge data caching problem
with specified latency preferences (TEDC). In addition to
server capacity constraint, server coverage constraint, and
server adjacency constraint, we take into account the temporal
dynamics and data characteristics including storage resource
and latency preference. The main contributions of this paper
are summarized as follows:

• We model and formulate the TEDC problem as a con-
strained optimization problem from the app vendor’s
perspective, and prove its NP-hardness.

• We develop an optimal approach, namely TEDC-IP, for
solving the TEDC problem exactly with the Integer
Programming technique. Meanwhile, an approximate ap-
proach named TEDC-A for finding solutions to large-
scale TEDC problems efficiently.

• Extensive experiments are conducted on two widely used
real-world datasets to evaluate the performance of TEDC-
IP and TEDC-A against five representative approaches.
The results demonstrate the superior performance of the
proposed two algorithms on multiple evaluation metrics.

The remainder of the paper is organized as follows. Section
II provides a motivating example for this research. Section
III formulates the TEDC problem. Section IV proposes the
optimal approach TEDC-IP and proves the NP-hardness of
the TEDC problem, then proposes the approximation approach
TEDC-A for solving TEDC problems in large-scale scenarios.
Section V evaluates the proposed approaches based on exten-
sive experiments. Section VI reviews the related work. Section
VII concludes the paper and points out future work.

II. MOTIVATING EXAMPLE

Fig. 1 illustrates a simplified scenario of the edge
data caching problem. There are four edge servers, i.e.,
{v1, v2, v3, v4}, each covering a specific geographic area.
Adjacent edge servers’ coverage usually intersects to avoid

TABLE I: Latency preferences and cache cost of different
popular data.

Data latency preferences cache cost
d1 1 2
d2 3 4
d3 0 3
d4 2 5
d5 1 3
.

blank areas not covered by any edge server. Ten users are
denoted by {u1, u2, u3, . . . , u10}, and eight popular data are
denoted by {d1, d2, . . . , d8}. Each user has a list of data
requests in a time slot. Due to the server coverage constraint
and the server adjacency constraint, an app user can retrieve a
piece of app data from its local edge servers or neighbor edge
servers if the app data is cached on these edge servers. From
the service providers’ perspective, caching all popular data on
every edge server in the area can easily accommodate all users
in the area. However, this is not cost-effective nor practical due
to the server capacity constraint. Assume the server adjacency
constraint is one hop. This allows a user to access any edge
servers within 1 hop over the edge server graph for cached
app data. Otherwise, it will have to be retrieved from the
service provider’s remote cloud center. For example, u10 can
only retrieve cached data from either local edge server v4 or
neighbor edge server v2. Apparently, multiple data caching
strategies fulfill all three constraints.

Data Cache Cost and Latency Preferences. Existing stud-
ies neglect the different characteristics of data, including data
cache cost and latency preferences. In real-world scenarios,
different popular data will consume different storage resources
when caching them on edge servers, which is an important
factor that service providers should consider. Assume the
cache cost and latency preference of each data is shown in
Table I. For example, assume that edge server v1 has 8 storage
resources. Since the total storage resources required by data d1
and d2 is 6, it does not exceed the remaining storage resources
on v1. Assume that edge server v1 caches data d1, d3 and d5,
which also does not exceed the remaining storage resources
of v1. As a result, we can find that caching data d1, d3 and d5
on edge server v1 will meet more data requests for edge users
than caching data d1, d2. Additionally, in reality, edge users
have varying requirements for response latency depending on
the type of data. For instance, autonomous driving systems
are highly sensitive to network delays. Any delay in data
transmission could potentially endanger the driver’s life and
safety. Therefore, the latency requirement for data response is
dictated by the nature of the service itself, directly impacting
user satisfaction that app vendors are concerned about.

Temporal Dynamics. Existing studies treat an EDC prob-
lem as a static global optimization problem and aim at finding
an optimal or near-optimal solution. However, they are ineffec-
tive in dynamic EDC scenarios because they cannot handle the
variations in the distribution of users and their data requests

823

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Variations on the data requests of users at different
time slots.

U
T

t1 t2 t3 . . .

u1 {d1, d4, d7} {d1, d4} {d1, d2, d4} . . .
u2 {d3, d4, d8} {d3, d4} {d4, d8} . . .
u3 {d1, d5} {d1, d5} {d1, d3, d5} . . .
u4 {d2, d4, d6, d7} {d4, d6, d7} / . . .
u5 / / {d5, d8} . . .
.

TABLE III: Notations

Notation Description
T = {t1, t2, . . . , tp} a set of time slots
Dt = {d1, d2, . . . , dl} a set of data to be cached in time slot t
dk the k−th data in Dt.
V = {v1, v2, . . . , vm} a set of edge servers
vj the j−th edge server in V

Ut = {u1, u2, . . . , un} a set of edge users in time slot t
ui the i−th user in Ut

Dt(ui)
a set of data which a user ui requests
in time slot t

l(dk) latency preference for a data dk

c(dk)
data caching cost (required storage
resources) for a data dk

a(vj) available capacity of an edge server vj
li,j latency from server vi to vj

Rt

a collection of binary variables rjdk
representing the data caching strategy
at time t

rjdk
a boolean indicator of whether dk is
cached on vj

l
dk
ui

the data delay experienced by user ui

to get data dk

θi,k

a boolean indicator of whether user ui

access data dk with a limit latency

G
a graph of a particular geographical
area

E = {e1, e2, . . . , eq}
a finite set of links between edge
servers

over time. Table II demonstrates the data requests submitted by
edge users, for processing across three time slots, i.e., t1, t2,
and t3. Take u1 for example. It submits three data requests
{d1, d4, d7} in time slot t1, two service requests {d1, d4} in
t2 and three service requests {d1, d2, d4} in t3. Given the
temporal variation in users’ distribution and data requests, it
is essential to consider these factors in the EDC problem to
achieve the optimization objectives of the service provider.

III. PROBLEM FORMULATION

In this section, we first define the concept of multi-data
caching and the server capacity constraint. Then, we model
data retrieval latency and latency preferences. Finally, we
formally model the TEDC problem. Table III summarizes
the important notations and descriptions used in this paper.

A. Multi-data Caching and Capacity Constraint

In this study, we conceptualize the edge server network
within a specific geographical area as a graph, denoted as

G(V,E), where V = {v1, v2, . . . , vm} represents the set of
nodes and E = {e1, e2, . . . , eq} represents the set of edges
within the graph. Each node vi ∈ V signifies an edge server,
while each edge eq ∈ E denotes a connection between
two nodes within the graph. Throughout the remainder of
this paper, we will use the terms edge server and node
interchangeably, both indicated by v.

Definition 1 (Multi-data Caching). Assumed that in time
slot t, a finite set of data Dt = {d1, d2, . . . , dl} is to be cached
on edge servers. A multi-data caching strategy is represented
as Rt =

{〈
r1d1

, . . . , rmd1

〉
, . . . ,

〈
r1dl

, . . . , rmdl

〉}
, where rjdk

∈
{0, 1} denotes whether data dk is cached on edge server vj .

rjdk
=

{
1, if dk is cached on edge server vj
0, otherwise.

(1)

In edge computing, many service providers may need to
hire storage capacities on edge servers in the same area
for caching their data. This causes fierce competition among
service providers and makes it practically impossible for every
service provider to cache all app data on every edge server.
Furthermore, the storage resources on an edge server are
usually limited. Thus, the storage resources of data cached on
each edge server vj cannot violate its available server capacity
constraint in any time slot t.

Definition 2 (Capacity Constraint). The storage resources
on an edge server are usually limited. The total amount of
resources required by all data cached on an edge server must
not exceed its capacity available in time slot t:

|Dt|∑
k=1

c(dk) ∗ rjdk
≤ a(vj),∀j ∈ {1, 2, . . . ,m} (2)

Take Fig. 1 for example. Since the storage resources re-
quired by data d1, d2, d3 and d5 are 2, 4, 3, and 3, respectively,
the total amount of resources required by d1 and d2 is 6. It does
not exceed v1’s available capacity, which is 8. However, if we
continue to cache data d3 or d5 on v1, v1’s capacity will not
suffice to cache all of them because their total storage resource
demand is 9, exceeding v1’s available resource capacity of 8.

B. Data Retrieval Latency and Latency Preferences

The data retrieval latency within the edge server network
comprises two main components: the latency between the
device and its nearby edge server, and the latency between
the local edge server and neighboring edge servers. Given
that the latency between the device and its nearby edge
server is typically negligible in the 5G network and remains
unaffected by the data caching strategy, it is excluded from
the formulation of the caching strategy.

Definition 3 (Data Retrieval Latency). As the hop count
between edge servers is a measure of data retrieval latency,
the network delay in retrieving data dk for the app user ui in
time slot t is calculated as follows:

ldk
ui

= min
{
li,j , r

j
dk

= 1, vj ∈ V
}
,

∀i ∈ {1, 2, . . . , n} , dk ∈ Dt(ui)
(3)

824

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

where vj is the edge server caching data dk and vi is the edge
server covering the edge user ui, and li,j is the number of
hops between vi and vj .

Take Fig. 1 as an example. Assume edge server v1 is
selected to cache data d5, the latency ld5

u4
in user u4’s retrieval

of data d5 is 0, and the latency ld5
u5

in user u5’s retrieval of
data d5 is 1.

Definition 4 (Latency Preferences). Given a finite set of
data Dt = {d1, d2, . . . , dl} in time slot t, each type of data
has a different data response latency preference l(dk). Once a
user cannot retrieve data dk from edge servers within l(dk),
the user experience will be impacted significantly. Here, θi,k
is denoted to indicate whether user ui access data dk within
a limit latency:

θi,k =

{
1, if data retrieval latency ldk

ui
≤ l(dk)

0, otherwise.
(4)

where ldk
ui

is minimum data retrieval latency form edge servers,
l(dk) is the data response latency limit of data dk.

In the real world, popular app data have different require-
ments for data response latency. For instance, autonomous
driving is particularly sensitive to data response latency. Once
an overtime reaction occurs, it is likely to endanger the driver’s
life and safety. While data response latency requirements for
entertainment video is much lower. Thus, the different data has
different data response latency requirements, which is related
to edge users’ satisfaction.

C. TEDC Problem Formulation

Based on the above definition of multi-data caching, server
capacity constraint, data retrieval latency, and latency prefer-
ences, the TEDC problem can be formally defined as follows:

Definition 5 (Temporal-aware Edge Data Caching with
Specified Latency Preference). An TEDC problem can be
defined as a five-tuple TEDC =< T,Ut, V,Dt, E >, where

(1) T = {t1, t2, . . . , tp} is a set of time slots;
(2) Ut = {u1, u2, ..., un} is a set of users in time slot t and

each user has a set of data requests;
(3) V = {v1, v2, ..., vm} is a set of edge servers;
(4) Dt = {d1, d2, . . . , dl} is a set of data in time slot t;
(5) E = {e1, e2, . . . , eq} is a finite set of links between edge

servers.

From the service providers’ perspective, the first optimiza-
tion objective is to minimize the users’ overall data retrieval
latency produced by its data caching strategy R:

minimize
1

|T |
∑
t∈T

|Ut|∑
i=1

Dt(ui)∑
k=1

ldk
ui
∗ θi,k (5)

the secondary objective is to minimize the total data caching
cost incurred by R:

minimize
1

|T |
∑
t∈T

|V |∑
j=1

|Dt|∑
k=1

c(dk) ∗ rjdk
(6)

IV. APPROACH

In this section, we first model the TEDC problem as a
constrained optimization problem to find its optimal solution.
Then, an approximation algorithm named TEDC-A is pro-
posed for finding approximate solutions to large-scale TEDC
problems efficiently.

A. Optimal Approach

Given a TEDC problem TEDC=⟨T,Ut, V,Dt, E⟩, there are
two optimization objectives: (1) minimizing the users’ overall
data retrieval latency, and (2) minimizing the data caching
cost across multiple time slots in that area. In this section, we
present an approach named TEDC-IP for finding the optimal
solution to a TEDC problem. It model the TEDC problem as a
Lexicographic Goal Programming (LGP) problem as follows:

minimize
1

|T |
∑
t∈T

|Ut|∑
i=1

Dt(ui)∑
k=1

ldk
ui
∗ θi,k (7)

minimize
1

|T |
∑
t∈T

|V |∑
j=1

|Dt|∑
k=1

c(dk) ∗ rjdk
(8)

s.t:
|Dt|∑
k=1

c(dk) ∗ rjdk
≤ a(vj),∀j ∈ {1, 2, . . . ,m} (9)

ldk
ui

= min
{
li,j , r

j
dk

= 1, vj ∈ V
}
,

∀i ∈ {1, 2, . . . , n} , dk ∈ Dt(ui)
(10)

where rjdk
and θi,k are two binary variables indicating that,

rjdk
=

{
1, if data dk is cached on vj in time t
0, otherwise.

(11)

θi,k =

{
1, if data retrieval latency ldk

ui
≤ l(dk)

0, otherwise.
(12)

The objective function (7) minimizes the users’ overall
data retrieval latency across all the time slots. The objective
function (8) minimizes the data caching cost in multiple time
slots. Constraint (9) makes sure that the aggregate storage
resources required for the data cached on the edge server must
not exceed its available upper bound capacity in time slot t.
Constraint (10) ensures that each app user ui retrieves data dk
from the nearest edge server where the data is cached in time
slot t and calculates the network delay. There are two groups
of binary variables, i.e., rjdk

(11) and θi,k (12).

B. TEDC Hardness

Based on the modeled LGP optimization problem, we now
prove that the TEDC problem is NP-hard. First, we introduce
the Knapsack problem, a classic NP-hard problem.

Definition 6 (Knapsack Problem). Given n items with
associated weights and values, the objective of the Knapsack
problem is to choose a subset of items to maximize total value

825

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

while adhering to the constraint of a maximum total weight
W . This problem can be formally represented as follows:

max

n∑
i=1

vixi (13)

s.t.:
n∑

i=1

wixi ≤W (14)

xi ∈ {0, 1} (15)

Here, vi and wi represent the value and weight of item i,
respectively. W denotes the total weight constraint for all
selected items, and xi is a binary variable indicating whether
the i-th item is chosen.

Theorem 1. The NP-hard Knapsack is reducible from the
TEDC problem, i.e., Knapsack ≤p TEDC. Thus, the TEDC
problem is NP-hard.

Based on the definition of the Knapsack problem, we now
prove that the TEDC problem is NP-hard by reducing a
Knapsack problem to a specialization of a TEDC problem.
For ease of exposition, we make the following assumptions:
1) For each user ui, its requirements for different data are
the same, i.e., Dt(u1) = Dt(u2) = . . . = Dt(un); 2) For
each type of data dk, its latency preference is the same, i.e.,
ld1

= ld2
= . . . = ldl

; 3) For any edge server sj , its storage
capacity is equal, i.e., a(v1) = a(v2) = . . . = a(vm); 4) The
coverage of each edge server is infinite, i.e., an edge user can
retrieval of any data from any of the edge servers in the area.
5) All edge servers can communicate with each other.

Based on the above assumptions, the objective function (7)
and constraints (10)(12) can be omitted. Thus, there is no data
retrieval latency and latency preferences in the TEDC problem.
So, the hidden goal in the objective function (7) is to satisfy
more user data requests, e.g., more users can get the cached
data they want from the edge server, which can be defined as
follows:

max
1

|T |
∑
t∈T

|Ut|∑
i=1

Dt(ui)∑
k=1

βi,k (16)

where βi,k is a binary variables indicating that,

βi,k =

{
1, if ui retrieval dk from edge servers
0, otherwise.

(17)

Since the coverage of each edge server is infinite, data acqui-
sition always meets the delay limit, and the objective function
(7) can mean maximizing the number of data requests satisfied.
For the simplified special case, objective (16) can be projected
to (13). Constraints (9)(11) can be combined and projected to
(14)(15) since the storage capacities of all edge servers can
be aggregated as an overall resource limit. Clearly, there is
a solution to the TEDC problem if and only if there is a
solution to the corresponding Knapsack problem. Thus, the
TEDC problem is NP-hard.

However, in a real-world TEDC problem, there are a set of
time slots T = {t1, t2, . . . , tp}. In each time slot t, there is a
set of users Ut = {u1, u2, . . . , un}, where each user delivers

Algorithm 1 TEDC-A algorithm

Input: An TEDC problem ⟨T,Ut, V,Dt, E⟩.
Output: An edge data caching strategy f : dk → vj .
1: C ← ∅
2: M [|V |] [|Dt|] = {0}
3: for each cj ∈ C do
4: av = copy(a(vj))
5: M ← UpdateServerData(cj) # Algorithm 2
6: datas = GetBenefitData(M) # Algorithm 3
7: k = 0
8: while av != 0 & data != null do
9: if datas[k].benefit ≤ β then

10: break
11: end if
12: cj ← cj∪ datas[k].data
13: av = av − a(dk)
14: k = k + 1
15: end while
16: end for
17: return the generated edge data caching strategy f

a set of data requests that always dynamically changes as
time goes by. Simultaneously, the different latency preferences
for different app data are of vital importance to the user
experience. Furthermore, different popular data caches on edge
servers will consume different storage resources, which is
an important factor that service providers should consider
when caching data. Therefore, a TEDC problem is more
complicated than a Knapsack problem, since all the parameters
of a Knapsack problem are known except the optimization
variables. Thus, it is a challenging task to solve a TEDC
problem optimally in polynomial time.

C. Approximation Algorithm

Since the TEDC problem is NP-hard, finding the optimal
solution is intractable in large-scale TEDC scenarios. This
section presents an approximation algorithm, named TEDC-
A, for finding approximate solutions to large-scale TEDC
problems efficiently.

Given V = {v1, v2, . . . , vm}, Ut = {u1, u2, . . . , un} and
Dt = {d1, d2, . . . , dl} at time slot t, TEDC-A comprehen-
sively considers the number of requests for various data in
each edge server, the caching cost of different data, the data
response latency requirement for each data, and the unique
constraints in the edge computing environment, including
the coverage and capacity constraint. Algorithm 1 shows
the pseudo-code of TEDC-A, while the functions used in
Algorithm 1 are presented in Algorithms 2 and 3.

In this algorithm, we select the appropriate data to be cached
for each edge server. It starts with the initialization of an empty
data caching strategy C and an empty matrix M|V |∗|Dt| in
lines 1-2, where the matrix M is used to store the result of
function UpdateServerData and the value mj,k indicates the
number of data requests of dk in the coverage of edge server
vj . Then, TEDC-A always selects the candidate data with the

826

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 UpdateServerData

Input: an server vj ; edge users Ut; data requests Dt(ui)
Output: a server-data Matrix M .
1: A ← U(vj) # get the edge users for vj , satisfying

proximity constraints
2: for each ui ∈ A do
3: for each dk ∈ Dt(ui) do
4: M [vj][dk]←M [vj][dk] + 1
5: end for
6: end for
7: return M

Algorithm 3 getBenefitData

Input: a server-data Matrix M ; data cache cost c(dk); data
latency preference ldk

Output: data.
1: data = null
2: i = 0
3: for each dk ∈M [vj] do
4: datas[i].data = dk
5: datas[i].benefit = M [vj][dk]/c(dk)
6: datas[i].latency = ldk

7: i = i+1
8: end for
9: length ← |datas|

10: for i ← 0 to length-1 do
11: for j ← 0 to length-1-i do
12: if datas[i].benefit < datas[j].benefit then
13: swap(datas[i],datas[j])
14: else if datas[i].benefit = datas[j].benefit then
15: if datas[i].latency > datas[j].latency then
16: swap(datas[i],datas[j])
17: end if
18: end if
19: end for
20: end for
21: return data

maximum benefit for the service provider to be cached in each
edge server (line 3-16), and each cj ∈ C indicates which edge
data is cached on an edge server vj . The pivotal iteration steps
of TEDC include UpdateServerData and GetBenefitData. The
function UpdateServerData calculates the number of requests
for various data by users within the coverage of each edge
server. Using the matrix M obtained by UpdateServerData,
GetBenefitData provides the candidate data list, each element
is a triple (data, benefit, latency), where data is the type of
data, benefit is computed by the number of the requests for
data dk from edge users within the edge server vj divided by
the data cache cost of data dk, and latency is the data response
latency requirement of dk. Furthermore, the candidate data list
will be sorted in descending order by the value of benefit, and
then sorted in ascending order by latency. In this way, the data
with many requests, low cache cost, and high data response

latency requirements will be cached first. Then, based on the
sorted candidate data list, we cache the selected data while
meeting the capacities of edge servers (lines 8-15). Finally, f
is returned as the approximate solution to a TEDC problem
(line 17).

For the computational cost of the TEDC-A algorithm, since
the computation of matrix M and the candidate data list can be
calculated offline, the time complexity of UpdateServerData
and GetBenefitData are bothO(1). Thus, the total time compu-
tational complexity is O(|V |) for caching data on edge servers,
where |V | is the number of edge servers. More specifically,
it consists of calculating the number of requests for various
data within the coverage of each edge server, sorting data
according to the number of requests per unit cost and the data
response latency requirement of each data, and selecting data
to be cached on edge servers under the capacity constraint.
Consequently, TEDC-A can efficiently obtain a solution to the
edge data caching problem in polynomial time.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup and Datasets

In this section, we experimentally evaluate our approaches’
effectiveness and efficiency. All the experiments are conducted
on a machine featuring an Intel(R) Xeon(R) Gold 6130
CPU@2 and 192GB RAM. The LGP model is solved with
Gurobi.

The experiments are conducted on two widely recognized
benchmark datasets in the field of edge computing: the EUA
dataset 1 and the Shanghai-Telecom dataset2. The EUA dataset
comprises 125 edge servers and 816 mobile users situated in
the Melbourne central business district area of Australia, as
depicted in Fig. 2(a). The Shanghai-Telecom dataset consists
of 3,233 base stations located throughout Shanghai, China.
In the experiments, we focused on edge servers within the
Lujiazui Finance and Trade Zone, generating users based on
a Gaussian distribution N(u, σ). This resulted in 345 edge
servers and 1,000 users, as shown in Fig. 2(b). To ensure the
connectivity of the edge servers, we randomly generate links
between them. Additionally, the available storage resources
on each edge server are distributed according to a normal
distribution N(u, σ), where σ is 1.

B. Competing Methods and Evaluation Metrics

In the experiments, we evaluate the performance of TEDC-
IP and TEDC-A against five representative approaches:

• Delay-optimal Cooperative Caching (DCC) [21]: This
approach aims to minimize the total user latency by
serving the most users from the nearest edge servers,
where each edge server caches data with the highest
benefits within its coverage area.

• Genetic Algorithm-based Approach (TEDC-GA): This
approach is a variation of GA [22], using a crossover

1https://sites.google.com/site/heqiang/eua-respository
https://github.com/swinedge/eua-dataset

2http://www.sguangwang.com/TelecomDataset.html

827

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

500 1000 1500 2000
x{m}

200

400

600

800

1000

1200

1400

y{
m}

server
user

(a) EUA Dataset

0 250 500 750 1000 1250 1500 1750 2000
x{m}

0

500

1000

1500

2000

y{
m}

server
user

(b) Shanghai-Telecom Dataset

Fig. 2: EUA dataset and Shanghai-Telecom dataset

operator, a mutation operator, a tournament selection
operator, where the Greedy-Covered-Users approach is
used in the mutation operation.

• Greedy-Covered-Users (GU): This approach always se-
lects the edge server that covers the most app users to
cache data until the capacity constraint (2) is fulfilled.

• Greedy-Connection (GC): This approach always selects
the edge server that has the most neighbor edge servers
to cache data under Constraint (2).

• Random: This approach always selects the edge server
randomly to cache data under Constraint (2).

In our experiments, four metrics are employed to compare
and analyze the results: three for assessing effectiveness and
one for evaluating efficiency.

• Data Caching Cost (cost), measured by the storage re-
sources utilized for caching data, aiming for minimal
expenditure.

• Benefit per Cache Cost (bpc), measured by the ratio of
total hops reduced to data cache cost, striving for maximal
efficiency.

• Served Request Ratio per Cache Cost (SRRpc), measured
by the proportion of served data requests to allocated data
cache cost, seeking optimal utilization.

• Computational Overhead (time), measured by the dura-
tion required to derive the solution, with a preference for
minimal processing time.

C. Experiment Results and Analyses

In the experiments, the coverage radius of edge servers
obeys a Gaussian distribution with u = 50 and the number
of data per user required follows a Gaussian distribution with
u = 3. Moreover, an edge server’s available storage capacities
follow a Gaussian distribution N(10, 1) in both EUA datasets
and Shanghai-Telecom datasets. The total number of time slots
is 200 in the experiments.

Fig. 3 and Table IV present the experimental results on four
evaluation metrics on the EUA dataset, where we compare
TEDC-IP and TEDC-A with five competing methods. In

Fig. 3(a), the results demonstrate that TEDC-IP achieves the
lowest data caching cost, and TEDC-A achieves the second
lowest data caching cost. It is a pretty good performance,
take Time Slot #1 in Table IV as an example, TEDC-IP is
superior to Random, GC, GU, DCC, and TEDC-GA with an
advantage of 40.62%, 38.70%, 39.36%, 31.32%, and 36.66%,
respectively, while TEDC-A is superior to Random, GC, GU,
DCC, and TEDC-GA with an advantage of 26.04%, 23.56%,
24.46%, 14.45%, and 21.11%, respectively. Fig. 3(b) demon-
strates the benefit per cache cost of the seven approaches
over individual time slots. Note that TEDC-IP achieves the
highest benefit per cache cost, followed by TEDC-A. Take
Time Slot #2 for instance, the benefit per cache cost of all
the approaches is 1.96 for TEDC-IP, 1.43 for TEDC-A, 1.07
for TEDC-GA, 1.18 for DCC, 1.05 for GU, 1.07 for GC and
1.05 for Random. TEDC-IP focuses on covering the maximum
number of users with minimal cache cost. Thus, it achieves
the highest benefit per cache cost. TEDC-A decides whether to
cache certain data according to the popularity of the data and
the cache cost of the data. In Fig. 3(c), the served request ratio
per cache cost of TEDC-IP is again the highest, and TEDC-A
is the second highest. Note that methods have the same trend
in the benefit per cache cost and the served request ratio per
cache cost. The reason is that the higher the data response rate,
the higher the revenue of data caching. Regarding CPU time,
TEDC-GA takes the most time to find a solution, followed by
TEDC-IP. Considering the NP-hard of the TEDC problem
and the multi-objective optimization of TEDC-IP, its solution
is not unique and it needs to compromise among multiple
optimization objectives. The computation time of TEDC-A is
similar to that of Random, GC, GU, and DCC. Thus, TEDC-
A can accommodate TEDC scenarios on a large scale. In
general, TEDC-IP and TEDC-A outperform other methods
and achieve superior performance in the data cache cost, the
benefit per cache cost, and the served request ratio per cache
cost. However, TEDC-IP takes more time to find a solution
than Random, GC, GU, and DCC.

Fig. 4 and Table V show the experimental results on the
Shanghai-Telecom dataset among TEDC-IP, TEDC-A, and

828

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Experimental results of data caching among competing approaches on EUA datasets.

Methods
Time Slot t1 Time Slot t2 Time Slot t3

cost bpc SRRpc CPU Time cost bpc SRRpc CPU Time cost bpc SRRpc CPU Time

Random 96 1.03 30.19 0.0003 95 1.05 29.87 0.0002 95 1.00 29.24 0.0002

GC 93 1.07 31.32 0.0009 93 1.07 30.64 0.0010 94 1.06 31.08 0.0009

GU 94 1.06 30.94 0.0002 94 1.05 30.08 0.0001 93 1.06 31.30 0.0002

DCC 83 1.19 34.95 0.0002 83 1.18 33.97 0.0002 83 1.19 34.97 0.0002

TPEDC-GA 90 1.10 32.20 0.1022 92 1.07 30.64 0.1884 90 1.10 32.13 0.2487

TPEDC-A 71 1.39 40.80 0.0003 68 1.43 41.01 0.0002 71 1.39 40.83 0.0002

TPEDC-IP 57 1.75 51.15 0.0315 51 1.96 55.84 0.0307 59 1.69 49.57 0.0313

TABLE V: Experimental results of data caching among competing approaches on Shanghai-Telecom datasets.

Methods
Time Slot #1 Time Slot #2 Time Slot #3

cost bpc SRRpc CPU Time cost bpc SRRpc CPU Time cost bpc SRRpc CPU Time

Random 131 0.65 49.24 0.0003 128 0.67 51.92 0.0003 132 0.64 49.35 0.0003

GC 128 0.66 50.21 0.0018 128 0.66 50.81 0.0017 125 0.68 52.96 0.0017

GU 127 0.69 52.39 0.0002 127 0.69 53.10 0.0002 130 0.66 51.20 0.0002

DCC 137 0.63 47.72 0.0002 137 0.62 47.56 0.0002 136 0.62 47.99 0.0002

TPEDC-GA 121 0.71 54.26 0.4981 117 0.73 55.88 0.6196 120 0.72 56.03 0.5848

TPEDC-A 97 0.90 68.25 0.0003 99 0.87 66.72 0.0004 99 0.87 68.80 0.0003

TPEDC-IP 95 0.94 71.08 0.2297 103 0.87 66.54 0.2284 97 0.92 71.00 0.2265

other five representative approaches, including TEDC-GA,
DCC, GU, GC and Random. As can be seen from Table V,
TEDC-IP and TEDC-A outperform the other methods in terms
of data cache cost, benefit per cache cost, and served request
ratio per cache cost. Take Time Slot #1 as an example,
TEDC-IP outperforms Random, GC, GU, DCC, and TEDC-
GA with an advantage of 27.48%, 25.78%, 25.19%, 30.65%,
and 21.48%, respectively. TEDC-A achieves data caching cost
with an advantage of 25.95% over Random, 24.21% over GC,
23.62% over GU, 29.19% over DCC, and 19.83% over TEDC-
GA. In terms of benefit per cache cost, TEDC-IP, TEDC-A,
TEDC-GA, DCC, GU, GC, and Random achieve 0.94, 0.90,
0.71, 0.63, 0.69, 0.66 and 0.65, respectively. In terms of served
request ratio per cache cost, TEDC-IP performed the best,
followed by TEDC-A, and the worst was DCC. From Fig. 4,
it is worth noting that the performance of TEDC-A has caught
up with the performance of TEDC-IP. This is because TEDC-
A weighs the two indicators of data latency and cache cost
to choose the right edge server to cache data. Whereas other
approaches will cache as much data as possible on edge servers
to approach the capacity limit of edge servers, regardless of
whether the data caching is reasonable. Therefore, TEDC-A
will perform better in large-scale edge data caching scenarios.
Except for TEDC-IP and TEDC-A, the performance of TEDC-
GA, DCC, GU, GC, and Random was approximately the same.

D. Performance Impact of Parameters
To evaluate the performance of our approaches compre-

hensively, we vary the following three parameters in the

experiments to observe their performance in different TEDC
scenarios. In each set of simulations, we change one setting
parameter and fix the other two. This way, we observe how
the changes in the setting parameters impact the performance
of methods on the EUA dataset. Each time a setting parameter
varies as follows, the simulation is repeated 100 times and the
results are averaged:

• Number of edge servers (m). This parameter impacts the
size of graph G and varies from 4 to 9.

• Capacity of edge servers (a(vj)). Edge servers’ capacity
is generated following a Gaussian distribution with σ = 1.
The storage capacity of each edge server ranges from u
= 2, 4, . . . , to 12 in steps of 2.

• Number of data request (|Dt(ui)|). The number of data
required by edge users follows a Gaussian distribution
with σ = 1. The u is set from 1 to 6.

1) Impact of number of edge servers: Fig.5 shows the
performance comparison of each method in the experiments,
where the number of edge servers m varies from 4 to 9. From
Fig.5(a), it can be seen that as m increases, the total data
caching cost required by different methods also increases. In
the beginning, there is little difference in the data caching cost
among the seven methods because each edge server must cache
popular data to satisfy user data requests. As m increases,
the data caching costs of Random, GC, GU, and TEDC-GA
increase significantly. Comparatively, TEDC-IP and TEDC-
A have less increase in data caching cost, especially TEDC-
A gets the minimum caching cost in all methods. This is

829

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

0 25 50 75 100 125 150 175 200
Time(minute)

50

60

70

80

90

100
Da

ta
 c

ac
he

 c
os

t
TPEDC-IP
Random

GC
GU

DCC
TPEDC-A

TPEDC-GA

(a) Data cache cost

0 25 50 75 100 125 150 175 200
Time(minute)

25

30

35

40

45

50

55

Be
ne
fit
 p
er
 c
ac
he
 c
os
t

TPEDC-IP
Random

GC
GU

DCC
TPEDC-A

TPEDC-GA

(b) Benefit per cache cost

0 25 50 75 100 125 150 175 200
Time(minute)

1.0

1.2

1.4

1.6

1.8

2.0

SR
R
pe

r c
ac
he

 c
os
t

TPEDC-IP
Random

GC
GU

DCC
TPEDC-A

TPEDC-GA

(c) SRR per cache cost

0 25 50 75 100 125 150 175 200
Time(minute)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

CP
U

Ti
m

e

TPEDC-IP
Random

GC
GU

DCC
TPEDC-A

TPEDC-GA

(d) CPU Time

Fig. 3: Experimental results of data cache among competing approaches on EUA datasets.

0 25 50 75 100 125 150 175 200
Time(minute)

90

100

110

120

130

140

Da
ta

 c
ac

he
 c

os
t

TPEDC-IP
Random

GC
GU

DCC
TPEDC-A

TPEDC-GA

(a) Data cache cost

0 25 50 75 100 125 150 175 200
Time(minute)

50

55

60

65

70

75

80

Be
ne
fit
 p
er
 c
ac
he
 c
os
t

TPEDC-IP
Random

GC
GU

DCC
TPEDC-A

TPEDC-GA

(b) Benefit per cache cost

0 25 50 75 100 125 150 175 200
Time(minute)

0.6

0.7

0.8

0.9

1.0

SR
R
pe

r c
ac
he

 c
os
t

TPEDC-IP
Random

GC
GU

DCC
TPEDC-A

TPEDC-GA

(c) SRR per cache cost

0 25 50 75 100 125 150 175 200
Time(minute)

0.0

0.2

0.4

0.6

0.8

CP
U

Ti
m

e

TPEDC-IP
Random

GC
GU

DCC
TPEDC-A

TPEDC-GA

(d) CPU Time

Fig. 4: Experimental results of data cache among competing approaches on Shanghai-Telecom datasets.

4 5 6 7 8 9
Number of edge servers

0

10

20

30

40

50

60

70

80

Da
ta
 c
ac
he
 c
os
t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(a) Data cache cost

4 5 6 7 8 9
Number of edge servers

0

1

2

3

4

5

6

7

SR
R
pe
r c
ac
he
 c
os
t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(b) SRR per cache cost

4 5 6 7 8 9
Number of edge servers

0

25

50

75

100

125

150

175

200

Be
ne
fit
 p
er
 c
ac
he
 c
os
t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(c) Benefit per cache cost

Fig. 5: Performance comparisons on the variations of edge servers.

2 4 6 8 10 12
Capacity of edge servers

0

20

40

60

80

100

Da
ta

 c
ac

he
 c

os
t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(a) Data cache cost

2 4 6 8 10 12
Capacity of edge servers

0

2

4

6

8

SR
R
pe

r c
ac

he
 c
os

t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(b) SRR per cache cost

2 4 6 8 10 12
Capacity of edge servers

0

25

50

75

100

125

150

175

200

Be
ne
fit
 p
er
 c
ac
he
 c
os
t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(c) Benefit per cache cost

Fig. 6: Performance comparisons on the variations of server’s available capacity.

100 200 300 400 500 600
Number of data request

0

10

20

30

40

50

Da
ta
 c
ac

he
 c
os

t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(a) Data cache cost

100 200 300 400 500 600
Number of data request

0

1

2

3

4

SR
R
pe
r c

ac
he
 c
os
t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(b) SRR per cache cost

100 200 300 400 500 600
Number of data request

0

20

40

60

80

100

120

Be
ne

fit
 p
er
 c
ac
he

 c
os
t

TPEDC-IP
Random
GC
GU
DCC
TPEDC-A
TPEDC-GA

(c) Benefit per cache cost

Fig. 7: Performance comparisons on the variations of data request.

because TEDC-A weighs the data latency and caching cost to
choose the right edge server, instead of exhausting the server’s
storage capacity as much as possible. Therefore, TEDC-A is
a good choice for large-scale EDC problems. In Fig.5(b), as

the number of edge servers increases, the service request rate
per cache cost achieved by all methods decreases. The reason
is that when the number of users is fixed, the total number
of requests is also fixed. Therefore, with a fixed number of

830

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

users, the service request rate per cache cost decreases when
the service provider rents more cache storage resources. The
benefit per unit cache cost for all methods has the same trend
in Fig.5(c) as in Fig.5(b).

2) Impact of edge server capacities: Fig.6 shows the per-
formance comparison of each method in the experiments with
different server storage capacities. As the server’s available
storage capacity a(vj) varies from 2 to 12, the costs spent
on data caching of all methods increase in Fig.6(a). It is
worth noting that the caching cost for TEDC-IP and TEDC-
A increases slowly compared to the other methods. Because
TEDC-IP and TEDC-A select only the necessary edge servers
to cache data, whereas the other algorithms cache as much data
as possible on the edge servers if the edge servers have storage
resources. Fig.6(b) shows the trend that the served request ratio
per cache cost of all methods decreases as a(vj) increases.
This is because as the storage capacity of the servers increases,
these methods still cache more data on the edge servers with
no change in user requests, resulting in higher data caching
costs. As for the benefit per cache cost in Fig.6(c), it shows
the same trend as Fig.6(b).

3) Impact of number of data requests: Fig.7 shows the
performance comparison of the various methods in the experi-
ments with variations of data request. As shown in Fig.7(a) and
Fig.7(b), when the number of data requests per user increased
from 1 to 6, the performance of methods in terms of data
caching cost and service request rate per unit caching cost
does not change significantly. In Fig.7(c), the benefit per unit
caching cost increases with the number of data requests. The
reason is that when the edge server capacity is fixed, the more
data requests from users, the higher the gain per unit cost.

VI. RELATED WORK

With the widespread use of the Internet, network congestion
is becoming a major issue when handling a large number
of user requests [23]–[25]. In recent years, researchers have
begun to focus on edge computing’s caching architecture as
a solution to this challenge [26]–[29]. Edge data caching
can effectively alleviate network load, improve data access
speed, and provide users with a more stable and faster service
experience.

Existing research has explored various methods for deploy-
ing and distributing edge data, including minimizing cache
costs, maximizing data hit ratio, minimizing data latency, and
reducing energy consumption [30]–[32]. Zhang et al. [33]
focused on enhancing the overall energy efficiency of base
stations by devising a caching strategy that incorporates user
association and power allocation within the cellular network.
Cao et al. [34] addressed the expenses incurred during data
delivery by proposing an auction mechanism aimed at identi-
fying the most efficient data caching solution. The authors
of [35] introduced a novel edge caching framework that
integrates caches on intelligent vehicles into the network cache
infrastructure. This innovative approach notably enhanced both
the resource utilization and the overall effectiveness. Zhang
et al. [36] proposed a hierarchical caching mechanism in the

edge computing environment to maximize the hitting rate,
with consideration of wireless communication. In [30], the
authors proposed a Lyapunov-based algorithm to minimize
the overall data retrieval latency for the budgeted service
placement problem. Deng et al. [37] provided a primal-
dual algorithm named IDA4ReE to solve service deployment
problems. Yang et al. in [38] formulated the cost-aware energy-
efficient data offloading problem as a discrete-time optimal
control problem from an energy-efficiency perspective. In [39],
Yu et al. integrated social relationships into multi-access edge
computing and proposed a Monte-Carlo-based method named
TA-MCTS to minimize energy consumption. Zhang et al.
[40] jointly considered the interference between mobile nodes,
caching state, link scheduling, and routing, and proposed an
online algorithm based on the Lyapunov drift-plus-penalty
theory to minimize energy consumption. In [21], Xia et al.
addressed the unique server capacity constraint and edge
servers’ communication capabilities in the Constrained Edge
Data Caching (CEDC) problem.

However, these studies failed to consider the characteristics
of different types of application data, including the varying
storage resource requirements and latency preferences asso-
ciated with each data type. Specifically, users have distinct
latency demands for different types of data, which directly
influence the quality of their app usage experience. Fur-
thermore, real-world edge computing environments exhibit
temporal dynamics, particularly in the fluctuations of user
distribution and data requests over time. Therefore, we address
these practical challenges by introducing a temporal-aware
edge data caching problem with specified latency preferences.

VII. CONCLUSION

In this paper, we formulated the problem of temporal-aware
data caching with specified latency preference (TEDC) in
edge computing. We first proved that the TEDC problem is
NP-hard. To solve this problem, an optimal approach named
TEDC-IP based on integer programming is proposed to mini-
mize the users’ overall data retrieval latency and minimize the
data caching cost in multiple time slots. Then, an approximate
approach named TEDC-A is proposed for finding approximate
solutions to large-scale TEDC problems efficiently. Extensive
experiments were conducted on two widely-used real-world
data sets, e.g. EUA-dataset and Shanghai-Telecom datasets,
to evaluate the performance of the proposed approaches. The
results showed that our approaches significantly outperformed
the state-of-the-art approaches in various TEDC scenarios.

In future work, we will consider the mobility of edge
users, data sharing between users, security constraints on data
regulation, and social information.

ACKNOWLEDGMENT

This work was supported by National Natural Science
Foundation of China (No. 61772128, 62172088), and Shanghai
Natural Science Foundation (No. 21ZR1400400).

831

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Beheshti, “Empowering generative ai with knowledge base 4.0:
Towards linking analytical, cognitive, and generative intelligence,” in
IEEE International Conference on Web Services (ICWS). IEEE, 2023,
pp. 763–771.

[2] J. Peng, Q. Li, X. Ma, Y. Jiang, Y. Dong, C. Hu, and M. Chen,
“Magnet: cooperative edge caching by automatic content congregating,”
in Proceedings of the ACM Web Conference, 2022, pp. 3280–3288.

[3] T. X. Tran, M.-P. Hosseini, and D. Pompili, “Mobile edge computing:
Recent efforts and five key research directions,” IEEE COMSOC MMTC
Communications - Frontiers, 2017.

[4] J. Yang, A. K. Bashir, Z. Guo, K. Yu, and M. Guizani, “Intelligent cache
and buffer optimization for mobile vr adaptive transmission in 5G edge
computing networks,” Digital Communications and Networks, 2023.

[5] L. Chen, S. Zhou, and J. Xu, “Computation peer offloading for energy-
constrained mobile edge computing in small-cell networks,” IEEE/ACM
Transactions on Networking, vol. 26, no. 4, pp. 1619–1632, 2018.

[6] S. Wu, C. Niu, J. Rao, H. Jin, and X. Dai, “Container-based cloud
platform for mobile computation offloading,” in IEEE international
parallel and distributed processing symposium (IPDPS). IEEE, 2017,
pp. 123–132.

[7] G. Zou, Y. Liu, Z. Qin, J. Chen, Z. Xu, Y. Gan, B. Zhang, and Q. He,
“TD-EUA: Task-decomposable edge user allocation with QoE opti-
mization,” in International Conference on Service-Oriented Computing
(ICSOC). Springer, 2020, pp. 215–231.

[8] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge
services leveraging container layered storage,” IEEE Transactions on
Mobile Computing, vol. 18, no. 9, pp. 2020–2033, 2018.

[9] T. Shi, Z. Cai, J. Li, H. Gao, J. Chen, and M. Yang, “Services
management and distributed multihop requests routing in mobile edge
networks,” IEEE/ACM Transactions on Networking, vol. 31, no. 2, pp.
497–510, 2022.

[10] Z. Xue, C. Liu, C. Liao, G. Han, and Z. Sheng, “Joint service caching
and computation offloading scheme based on deep reinforcement learn-
ing in vehicular edge computing systems,” IEEE Transactions on Vehic-
ular Technology, 2023.

[11] H. Zhao, S. Deng, Z. Liu, J. Yin, and S. Dustdar, “Distributed redun-
dant placement for microservice-based applications at the edge,” IEEE
Transactions on Services Computing, vol. 15, no. 3, pp. 1732–1745,
2020.

[12] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE International Conference on Computer
Communications (IEEE INFOCOM). IEEE, 2019, pp. 10–18.

[13] X. Xia, F. Chen, Q. He, G. Cui, P. Lai, M. Abdelrazek, J. Grundy,
and H. Jin, “Graph-based optimal data caching in edge computing,” in
International Conference on Service-Oriented Computing. Springer,
2019, pp. 477–493.

[14] Y. Liu, Y. Han, A. Zhang, X. Xia, F. Chen, M. Zhang, and Q. He,
“Qoe-aware data caching optimization with budget in edge computing,”
in IEEE International Conference on Web Services (ICWS). IEEE,
2021, pp. 324–334.

[15] Z. Ni, M. Yuan, and H. Tang, “Qoe-aware data caching optimization
in edge computing environment,” in IEEE International Conference on
Services Computing (SCC). IEEE, 2022, pp. 65–73.

[16] S. Deng, Z. Xiang, P. Zhao, J. Taheri, H. Gao, J. Yin, and A. Y. Zomaya,
“Dynamical resource allocation in edge for trustable internet-of-things
systems: A reinforcement learning method,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 9, pp. 6103–6113, 2020.

[17] J. Wu, Z. Chen, and M. Zhao, “Information cache management and
data transmission algorithm in opportunistic social networks,” Wireless
Networks, vol. 25, no. 6, pp. 2977–2988, 2019.

[18] Z. Li, C. Yang, X. Huang, W. Zeng, and S. Xie, “Coor: collaborative
task offloading and service caching replacement for vehicular edge
computing networks,” IEEE Transactions on Vehicular Technology,
2023.

[19] R. Halalai, P. Felber, A.-M. Kermarrec, and F. Taı̈ani, “Agar: A caching
system for erasure-coded data,” in International Conference on Dis-
tributed Computing Systems (ICDCS). IEEE, 2017, pp. 23–33.

[20] U. Drolia, K. Guo, J. Tan, R. Gandhi, and P. Narasimhan, “Cachier:
Edge-caching for recognition applications,” in 2017 IEEE 37th interna-
tional conference on distributed computing systems (ICDCS). IEEE,
2017, pp. 276–286.

[21] X. Xia, F. Chen, J. Grundy, M. Abdelrazek, H. Jin, and Q. He, “Con-
strained app data caching over edge server graphs in edge computing
environment,” IEEE Transactions on Services Computing, vol. 15, no. 5,
pp. 2635–2647, 2021.

[22] H. Song, B. Gu, K. Son, and W. Choi, “Joint optimization of edge com-
puting server deployment and user offloading associations in wireless
edge network via a genetic algorithm,” IEEE Transactions on Network
Science and Engineering, vol. 9, no. 4, pp. 2535–2548, 2022.

[23] D. S. Berger, R. K. Sitaraman, and M. Harchol-Balter, “Adaptsize:
Orchestrating the hot object memory cache in a content delivery
network,” in USENIX Symposium on Networked Systems Design and
Implementation), 2017, pp. 483–498.

[24] A. S. Ali, K. R. Mahmoud, and K. M. Naguib, “Optimal caching policy
for wireless content delivery in D2D networks,” Journal of Network and
Computer Applications, vol. 150, p. 102467, 2020.

[25] P. Zhang, M. Sun, Y. Tu, X. Li, Z. Yang, and R. Wang, “Device-edge
collaborative differentiated data caching strategy towards aiot,” IEEE
Internet of Things Journal, 2023.

[26] K. Ma, B. Yang, Z. Yang, and Z. Yu, “Segment access-aware dynamic
semantic cache in cloud computing environment,” Journal of Parallel
and Distributed Computing, vol. 110, pp. 42–51, 2017.

[27] M. Reiss-Mirzaei, M. Ghobaei-Arani, and L. Esmaeili, “A review on the
edge caching mechanisms in the mobile edge computing: A social-aware
perspective,” Internet of Things, vol. 22, p. 100690, 2023.

[28] S. Tamoor-ul Hassan, S. Samarakoon, M. Bennis, M. Latva-Aho, and
C. S. Hong, “Learning-based caching in cloud-aided wireless networks,”
IEEE Communications Letters, vol. 22, no. 1, pp. 137–140, 2017.

[29] Y. Wang, Y. Zhang, X. Han, P. Wang, C. Xu, J. Horton, and J. Culberson,
“Cost-driven data caching in the cloud: an algorithmic approach,” in
IEEE International Conference on Computer Communications (IEEE
INFOCOM). IEEE, 2021, pp. 1–10.

[30] J. Zhou, J. Fan, J. Wang, and J. Jia, “Dynamic service deployment for
budget-constrained mobile edge computing,” Concurrency and Compu-
tation: Practice and Experience, vol. 31, no. 24, p. e5436, 2019.

[31] J. Zhou, F. Chen, Q. He, X. Xia, R. Wang, and Y. Xiang, “Data
caching optimization with fairness in mobile edge computing,” IEEE
Transactions on Services Computing, vol. 16, no. 3, pp. 1750–1762,
2023.

[32] J. Yang, Z. Guo, J. Luo, Y. Shen, and K. Yu, “Cloud-edge-end collabora-
tive caching based on graph learning for cyber-physical virtual reality,”
IEEE Systems Journal, 2023.

[33] H. Zhang, S. Huang, C. Jiang, K. Long, V. C. Leung, and H. V. Poor,
“Energy efficient user association and power allocation in millimeter-
wave-based ultra dense networks with energy harvesting base stations,”
IEEE Journal on Selected Areas in Communications, vol. 35, no. 9, pp.
1936–1947, 2017.

[34] X. Cao, J. Zhang, and H. V. Poor, “An optimal auction mechanism
for mobile edge caching,” in International Conference on Distributed
Computing Systems (ICDCS). IEEE, 2018, pp. 388–399.

[35] K. Zhang, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Cooperative
content caching in 5G networks with mobile edge computing,” IEEE
Wireless Communications, vol. 25, no. 3, pp. 80–87, 2018.

[36] X. Zhang and Q. Zhu, “Collaborative hierarchical caching over 5G edge
computing mobile wireless networks,” in IEEE International Conference
on Communications (ICC). IEEE, 2018, pp. 1–6.

[37] S. Deng, Z. Xiang, J. Taheri, M. A. Khoshkholghi, J. Yin, A. Y. Zomaya,
and S. Dustdar, “Optimal application deployment in resource constrained
distributed edges,” IEEE Transactions on Mobile Computing, vol. 20,
no. 5, pp. 1907–1923, 2020.

[38] C. Yang and R. Stoleru, “Ceo: cost-aware energy efficient mobile
data offloading via opportunistic communication,” in 2020 International
Conference on Computing, Networking and Communications (ICNC).
IEEE, 2020, pp. 548–554.

[39] S. Yu, B. Dab, Z. Movahedi, R. Langar, and L. Wang, “A socially-
aware hybrid computation offloading framework for multi-access edge
computing,” IEEE Transactions on Mobile Computing, vol. 19, no. 6,
pp. 1247–1259, 2019.

[40] X. Zhang, P. Huang, L. Guo, and Y. Fang, “Social-aware energy-
efficient data offloading with strong stability,” IEEE/ACM Transactions
on Networking, vol. 27, no. 4, pp. 1515–1528, 2019.

832

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on October 20,2024 at 14:59:23 UTC from IEEE Xplore. Restrictions apply.

