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Abstract: As the number of web services continues to increase, it has become a challenging
problem to provide developers with accurate and efficient web services that meet Mashup
requirements. To solve this problem, various methods have been proposed to recommend
APIs to match the needs of Mashups, and have achieved great success. However, due to the
uneven quality of service descriptions, there are some challenges in feature extraction, utilisation
of service meta-information, and textual requirements understanding. Therefore, we propose
a Web API recommendation method (FMA) based on service multiple feature aggregation.
FMA uses the attention mechanism model to mine the semantic features of similar services
and enhance the features of Mashup services and Web API services. The service category is
used as the basis for constructing the graph network, and multiple service features are mined
and integrated through the hierarchical feature aggregation algorithm of the graph convolution
network to further enhance the service features, thereby significantly improving the Web API
recommendation effect. We conduct extensive experiments on a large-scale real-world dataset
called ProgrammableWeb, and the results show that FMA outperforms existing baseline methods
on multiple evaluation metrics.
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1 Introduction

With the rapid development of the internet, Web API
has become an important entrance for global information
transmission and sharing. They are software interfaces
that support communication between networks, enabling
different applications to exchange data and functionality.
These APIs provide developers with standardised ways
to leverage the functionality of other applications or
services without knowing internal implementation details.
In order to make full use of existing Web APIs
and avoid developers from repeatedly implementing the
same functional requirements in different applications,
by creating Mashup services, developers can build new
applications by combining different Web APIs without
developing all functionality from scratch. To support
the construction of Mashups, many service repositories
continuously collect various Web APIs and previous
Mashups. From these repositories, developers can choose
the Web API that suits their needs to aggregate into new
applications. However, due to the large number of existing
Web APIs, it is often difficult for developers to spend
a lot of manpower to find the most suitable Web API
to meet their development needs. Therefore, Web API
recommendations serve as an effective solution to help
developers find their desired Web API for Mashup creation
more easily.

However, with the rapid increase in the number of Web
APIs, Mashup developers are facing increasing challenges
in choosing appropriate Web APIs to build Mashup
services. According to surveys, as of the end of 2023, there
were 22,642 Web APIs registered on ProgrammableWeb,
the largest service sharing platform, covering 499 categories
and spanning many fields such as finance, maps, shopping,
and weather. However, only a small part of the Web API
is used by the Mashup service, and most of the Web
API is not used. Especially for Web APIs with similar
functions, Mashup services tend to use more popular Web
APIs. Therefore, in the face of the explosive growth in the
number of Web APIs, how to accurately provide Mashup
developers with Web APIs that match their functions has
become a hot issue in the field of service computing. The
Web API recommendation algorithm has made a significant
contribution to solving this problem. It can personalisedly
recommend appropriate Web API services to users based on
the demand description information provided by developers
and the interaction records of the service.

In recent years, different Web API recommendation
approaches have been proposed by QoS-aware,
collaborative filtering, content-based, and deep neural
network. QoS-aware (Liang et al., 2024) service
recommendation is designed to help users find services that
meet their QoS requirements among a list of functionally
equivalent candidate services. The investigations based on
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collaborative filtering mainly rely on historical invocations
to predict Web APIs, where there may be data sparsity
problems as the number of Web APIs and Mashup
services exponentially becomes larger. To alleviate the
sparsity of historical invocations, content-based (Li et al.,
2017) Web API recommendation approaches primarily
focus on analysing the description feature of Web APIs
and Mashups, where text mining and machine learning
techniques, such as using topic models (Zhong et al., 2018)
to reconstruct service descriptions in an attempt to remove
redundant information, link prediction (Bianchini et al.,
2017) and text clustering, are applied to extract and match
the content features between API and Mashup services.
Moreover, deep neural network (Liu et al., 2023) have been
leveraged to learn the complex functionality relationships
as well as capture non-functional features between APIs
and Mashup services, leading to more accurate Web API
recommendation.

Although these approachs show certain advantages in
terms of Web API recommendation performance, there
are still two main problems that need to be resolved:
firstly, there are a large number of functionally irrelevant
statements in the service descriptions, and existing
approachs do not consider removing these redundant
descriptions, directly using the original descriptions as a
source of information, which limits the full exploration
of service feature and affects the improvement of Web
API recommendation performance. Secondly, the service
has multiple information such as description and category.
The existing approachs can not make full use of these
information to enhance the service feature together, and
only extract the service feature from the unit information,
resulting in the limited information contained in the
service feature, which limits the improvement of Web API
recommendation performance.

To address the above two issues, we propose a Web
API recommendation method based on the aggregation of
multiple service feature, abbreviated as MFA. it employs
the attention mechanism to extract feature from texts
that are similar to descriptions. These features are then
integrated into service’s semantic feature, effectively
addressing the problem of insufficient feature information
due to poor service description quality. Simultaneously,
relationship between services is supplemented through a
category prediction task, a rich graph network is constructed
in conjunction with service interaction records. Graph
convolutional network is utilised to mine features from
descriptions and categories. The acquired multi-dimensional
features are aggregated through hierarchical feature
aggregation algorithm, resulting in information-rich
and diverse Mashup service features. This significantly
enhances the effectiveness of Web API recommendation.

To demonstrate the effectiveness of MFA, extensive
experiments are conducted on a large-scale real-world
dataset that has been crawled from ProgrammableWeb,
which includes 8484 Mashup services and 22,642 Web
APIs. By comparing with several state-of-the-art baselines,
the experimental results validate the superiority of MFA on
multiple evaluation metrics.

The main contributions of this paper are summarised as
follows:

• We propose a novel framework to improve the
effectiveness of Web API recommendation,
integrating service features and similar text features
through a neural network model based on the
attention mechanism to enrich the functional feature
information of the service. Addresses an issue where
service descriptions of varying quality result in
insufficient information contained in service feature.

• We use the category of services as the basis for
building graph networks, which greatly enriches the
relationships between services. The hierarchical
feature aggregation algorithm of the graph
convolution network is used to further extract the
functional features of the Mashup service and
improve the accuracy of the Mashup service feature.

• To validate the performance of MFA, we conducted
extensive experiments on a real-world dataset. The
experimental results show that MFA achieve superior
performance of Web API recommendation over
competing baselines.

The remainder of this paper is organised as follows.
Section 2 defines and formulates API service
recommendation problem. Section 3 illustrates the overall
proposed framework. Section 4 presents the approach in
detail. Section 5 shows and analyses the experimental
results. Section 6 reviews the related work. Finally,
Section 7 concludes the paper and discusses the future
work.

2 Problem formulation

In this section, we first give the formal expression of
the Mashup service and Web API service in this article,
which leads to the relevant definition of the Web API
recommendation problem.

Definition 1 (service category): Given a web service library
S. C = {c1, c2, ..., cn} are all service categories in the web
service library S, where each category c is represented by
the word wc.

Definition 2 (Web API): The web service library S
comprises p Web API services, denoted as SA =
{a1, a2, ..., ap}, where each Web API is represented
by a =< Da, Ca >. Da = {w1, w2, ...} stands for the
description of Web API service, elucidating the functional
intricacies of the service, constructed from several words,
with each word denoted by wi; Ca ⊆ C represents the
service categories to which a belongs.
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Figure 1 The framework of MFA
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Figure 2 The neural network model of MFA
(see online version for colours)

Definition 3 (Mashup): The web service repository
S comprises q Mashup services, denoted as SM =
{m1,m2, ...,mq}, where each Mashup is represented by
m = {Dm, Cm, Tm}. Dm = {w1, w2, ...} stands for the
description of a Mashup service, capturing its functional
requirements through a series of words denoted as wi;
Cm ⊆ C signifies the service categories to which m
belongs. Tm ⊆ SA represents the collection of Web API
services invoked by m.

Definition 4 (Web API recommendation problem): Given a
web service repository S, the Web API recommendation
conundrum is delineated as Ω =< C,SA, SM , R >, where
SA denotes a cohort of Web API services, SM denotes
a suite of Mashup services, and R represents a novel
requirement for a Mashup. The resolution to the Web API
recommendation poser Ω may be embodied by a set of
Web API services RA ⊆ SA, wherein each Web API within
RA impeccably aligns with the functional requisites of the
Mashup R.

3 The framework of MFA

Figure 1 illustrates the overall framework of MFA, a
methodology predicated on the learning of multi-element
service features. This approach employs an attention
mechanism to unearth service semantic features, and
uses cosine similarity to locate analogous descriptions of
services, thereby enriching the semantic information of
the service. This process ensures that the service features
pay greater attention to the latent functional features of
similar services, thereby enhancing the service feature. By
treating service category prediction as a preliminary task,
the relationships between services are enriched. A graph
network is constructed using the historical invocation of
services and category inclusion data. The graph convolution
network is then used to mine the Web API service
features and service category features from the graph
network. Utilising the hierarchical feature aggregation
algorithm, these features are integrated into the Mashup
service features, resulting in more accurate Mashup service
features and enabling precise recommendations of Web API
services. The MFA consists of three parts: the service
similar description feature extraction module, the service
multiple feature aggregation module, and the Web API
recommendation module.
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• In the service similarity description feature extraction
module, it uses an attention mechanism-based neural
network model to extract potential features from
service descriptions. It also uses this model to extract
features from similar description texts and combines
them with original service features, emphasising
similar functions to enhance semantic features. The
predicted service category is used as the optimisation
goal, and each service’s features are used as input for
the hierarchical feature aggregation of the graph
convolution network.

• In the service multiple feature aggregation module, it
uses service categories, Mashup services, and Web
API services to create a graph network from historical
and category inclusion data. The Jaccard similarity of
service categories is used as edge weight to show
node relationship closeness. Deep features of nodes
are extracted via a graph convolution network. The
hierarchical feature aggregation algorithm combines
related Web API service features and service category
features into Mashup service features for more
accurate potential feature extraction.

• In the Web API recommendation module, it inputs the
feature of the Mashup service obtained above into the
multi-classifier of the fully connected layer and
normalisation operation to obtain the Web API service
prediction score, which is used as a basis to make
effective Web API recommendation.

4 Approach

Figure 2 shows the Web API recommendation deep
neural network model based on service multiple feature
aggregation. it unfolds in two distinct stages. Firstly, the
model capitalises on the service description and similar
descriptions as the foundational data. It extracts semantic
features via an attention mechanism and the transformer
(Han et al., 2021) separately, and subsequently integrates
these to form enhanced service features. Then, it employs
three tasks to holistically optimise the service feature:
prediction of the Web API category, prediction of the
Mashup category, and prediction of click scores between
Mashup and Web API. Secondly, it uses categories and
service interaction records to construct a graph. It then
extracts the latent feature of each node through the graph
convolution network (Yu et al., 2023), and integrates
the features of the Web API service, category, and
Mashup service. These multiple features are hierarchically
aggregated, culminating in the derivation of deep features
for the Mashup service. Given that the recommendation
task involves computing the probability distribution of
the Mashup service across all Web API services, a
binary cross-entropy loss function is utilised for multi-label
classification during the model’s training phase.

Figure 3 The improved transformer

4.1 Similar description feature extraction

Since there is a large amount of useless information
in the service description, satisfactory results cannot be
achieved if used directly for feature mining. Therefore,
in order to fully obtain the feature of the service,
consider mining relevant feature from description texts
similar to the service description to supplement feature
of the service. It contains three parts: service feature
extraction by attention mechanism. This part uses the
attention mechanism model to extract potential feature
contained in service descriptions and similar description
texts, so that the obtained feature pay more attention to
the functions of the original service. Service description
feature are enhanced. This part is to fuse service semantic
features and similar service semantic feature to solve the
problem of incomplete feature information due to the
existence of useless descriptions in the original service
description feature. Service category prediction. This part
calculates the distribution probability of services for all Web
API categories, with the optimisation goal of predicting
the categories of services, and then enriches the service
relationship graph constructed subsequently.

4.1.1 Service feature extraction by attention mechanism

A variety of complex information is implicit in the service
description. In order to avoid insufficient information
acquisition in the service due to a simple model,
Transformer is used to mine the functional feature contained
in the description. It uses multi-head attention and fuses the
original word embedding vector with deep feature to ensure
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the generalisation of the model (Ansuini et al., 2019).
Figure 3 shows the improved Transformer model. First,
the vector v

′

d = [e1, e2, ...] is obtained by performing a
word embedding operation on the service description Dd =
{w1, w2, ...}. Then, a multi-head attention network is used
to extract the close layers between each word, which can
focus on different parts of the input sequence in parallel,
thereby better capturing the relationship between each word.
This helps the model more fully understand the semantic
and contextual information in the service description. The
feature vector headki of the ith word learned by the kth

attention head is expressed as follows:
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where ei is the vector of the ith word, W k
Q, W k

K and W k
V

are the linear transformation matrices of the kth attention
head respectively. dk is the dimension of the query vector.
Attention(Qk

i ,K
k
i ) represents the relative importance of

word wi in the entire description. The final feature vector
hi of the ith word is concated from the features learned by
all attention heads. The formula is as follows:

hi = [head1i ;head
2
i ; ...;head

H
i ] (4)

where H is the number of attention heads, and then uses
the word attention network to model the relative importance
between different words, and aggregates them into the
deep feature vector of the service description v

′′

d , which is
expressed as follows:

γw
i =

exp(qTwtanh(Uwhi + uw))∑H
j=1 exp(qTwtanh(Uwhj + uw))

(5)

v
′′

d =

H∑
i=1

γw
i hi (6)

where qTw , Uw and uw are trainable parameters in the
word attention network. Finally, in order to improve
the generalisation ability of the model and avoid losing
information, the word embedding vector v′

d of the service
description and the deep feature vector v

′′

d are concated,
thus forming the final representation of the service
description vd = [v

′

d; v
′′

d ].

4.1.2 Service description feature enhancement

Given that the service description may contain extraneous
information, relying solely on these features cannot fully
encapsulate the service functions. Therefore, we propose
to refine and augment the service features by considering
similar descriptions of the service. Initially, we treat all
service descriptions as a document collection. Using the
BM25 algorithm, we obtain a set of similar descriptions for

each service description and select η similar descriptions.
These are denoted as sd = [sd1, sd2, ..., sdη], where sdi
represents one of the similar descriptions. Subsequently,
these similar descriptions are transformed into continuous
word vectors, which can be represented as follows:
Esd = [ED1;ED2; ...;EDη] (7)

Recognising that different similar descriptions carry varying
degrees of importance for services, we employ an attention
mechanism to aggregate the vectors of similar service
descriptions. Analogously, the attention weight γsd

i of a
similar description sdi is calculated using the following
formula:

γsd
i =

exp(qTn tanh(UnEDi + un))∑η
q=1 exp(qTn tanh(UnEDq + un))

(8)

where qTn , Un and un are trainable parameters that
similarly describe the attention network. The final similarity
description semantic representation vsd is calculated as
vsd =

∑η
i=1 γ

sd
i . After deep feature mining of the original

description and similar description, the respective feature
expressions vd and vsd are obtained respectively. vd and vsd
are concated to obtain the enhanced feature of the service
v = [vd; vsd].

4.1.3 Service category prediction

Having enhanced the features of services using similar
description features, the Mashup service description and
Web API service description have now formed their
respective feature expressions, denoted as vm and va. In
the realm of recommendation systems, the cosine similarity
of two vectors is often calculated to measure the degree
of functional matching of a service (Benard Magara et al.,
2018). In order to bring the vectors of the Web API
service and the Mashup service with similar functions closer
together, thereby ensuring that the feature expressions of
the Mashup service and the Web API service with matching
functions are similar, we can employ cosine similarity.
First, the vectors vm and va are normalised, and then the
cosine similarity of the two vectors is calculated, as outlined
below:
csma =

vmva
∥vm∥∥va∥

(9)

where csma represents the cosine similarity between the
Mashup service and the Web API service. The value range
is between –1 and 1. The closer this value is to 1, the closer
the characteristic expressions of the Web API service and
the Mashup service are to each other.

To refine the parameters of our model and ensure the
proximity of the learned service vector, we employ the
mean variance as our loss function. This approach facilitates
the model’s learning and optimisation processes. Here is the
corresponding formulation:

Lcs = − 1

F

F∑
i=1

(csma log(csma)

+ (1− csma) log(1− csma))
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csma =

{
−1, service m has not used service a

1, service m has used service a
(10)

where F denotes the quantity of sample pairs comprising
Web API service and Mashup service descriptions. The
term csma represents the computed cosine similarity of
the service, while csma signifies the actual degree of
similarity. During the construction of the Web API service
and Mashup service description pair, we perform negative
sampling predicated on whether the Mashup service has
utilised the Web API service. The ratio of positive to
negative samples is maintained at 1:3.

Moreover, we augment the model training process
with a service category prediction task, in addition to
the existing similarity prediction task. This dual-task
approach enables the model to learn from domain-specific
information implicitly embedded within the signal. During
the backpropagation phase, multi-task learning permits
the shared hidden layer features, originally dedicated to
a specific task, to be utilised by the other task. This
results in implicit data augmentation and co-regularisation,
significantly enhancing the training efficiency of deep
neural networks (Ruder, 2017). Concurrently, during
the subsequent hierarchical feature extraction phase of
the graph convolution network, the service category
prediction task enriches the relationships among services.
This enhancement renders the constructed relationship
graph more robust, thereby facilitating the extraction of
multi-dimensional service features.

The service category prediction task is reframed as
a multi-label classification problem, with each category
within the category library considered a distinct label. The
objective is to train a classifier capable of determining the
probability distribution of each service across all categories.
Consequently, binary cross-entropy loss is employed as
the loss function. The following presents the calculation
formula:

ŷmc = σ(Wmcvm + bmc), ŷac = σ(Wacva + bac) (11)

Lmc = − 1

|C|

C∑
c∈C

(ymc log(ŷmc)

+ (1− ymc) log(1− ŷmc)) (12)

Lac = − 1

|C|

C∑
c∈C

(yac log(ŷac)

+ (1− yac) log(1− ŷac)) (13)

where Wmc, bmc, Wac, and bac represent the weight matrix
and bias vector in the category prediction task layer for
the Mashup service and Web API service, respectively.
ŷmc and ŷac denote the corresponding category probability
prediction values, whereas ymc and yac are the true labels
for their corresponding categories. If a service belongs to
category c, then ymc = 1 and yac = 1. Otherwise, ymc =
0 and yac = 0. Lmc signifies the category prediction loss

for the Mashup service, and Lac denotes the category
prediction loss for the Web API service. Considering
all these factors, the overall loss of the model during
the feature extraction phase of the attention mechanism
comprises Lcs, Lmc, and Lac. The formula is as follows:

L1 = Lcs + Lmc + Lac + µ∥ϕ∥22 (14)

where L1 denotes the training loss of the neural network
model during the service feature extraction phase of
the service attention mechanism, with ϕ representing its
corresponding model parameter.

4.2 Service multiple feature aggregation

Through the feature mining of service descriptions
by the above-mentioned deep neural network model
based on the attention mechanism, a relatively sufficient
semantic feature vector has been obtained. However, the
semantic information of the service alone cannot further
improve the recommendation performance. Therefore, the
category information of the service is introduced, and the
hierarchical feature aggregation algorithm of the graph
convolution network is used to mine and aggregate category
features. It can alleviate the cold start problem. On the
other hand, it makes the service feature contain more
information to improve the performance of Web API
recommendation. It includes two parts: construction of
service and category graph network. This part is based
on the Mashup service using Web API service historical
data and category containing service data to build a service
category graph network, which is used to represent the
structural relationship between services. Hierarchical feature
aggregation algorithm of graph convolutional network. This
part integrates the multiple feature of services from the
graph network constructed by categories, Web API services
and Mashup services as nodes to promote service semantic
integrity.

4.2.1 Construction of service and category graph
network

To effectively extract the diverse features of both
Mashup and Web API services, and concurrently address
the cold start problem inherent to recommendation
systems, we construct a directed graph network using
historical interaction data from the dataset service and
category-inclusive service data.

Upon analysing the dataset, we identified three entities:
the Mashup service, the Web API service, and the category.
Typically, graph network recommendation approaches only
consider Mashup services and Web API services as basic
nodes. However, in practical applications, the historical
records of Mashup services utilising Web API services
are relatively sparse. This scarcity hampers significant
improvements in recommendation performance. The Web
API service maintains a compositional relationship with
the Mashup service. From certain perspectives, the Web
API service can reflect a portion of the Mashup
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service’s functionalities and can supplement and integrate
additional Mashup functional information. Meanwhile,
the category serves as a service archive and reference
summary. Simultaneously, categories can be considered
an additional attribute of services, ensuring compatibility
between services to some extent and enriching the
inter-service relationships (Hu et al., 2020). Therefore,
when constructing the relationship graph, we consider the
Web API services, Mashup services, and categories as
nodes.

Figure 4 Part of the structure of graph network
(see online version for colours)
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Once the nodes of the graph have been established, the
edges can be determined accordingly. With the three
types of nodes mentioned above, we can divide the edge
set into two parts. One part is the relationship set of
service interactions, denoted as C, and the other part
is the relationship set of categories containing services,
denoted as R. Each Mashup service has employed several
Web API services. Hence, if Mashup service m has used
Web API service a, a directed edge from service m to
service a will be added to C. This relationship can be
expressed as {m, rma, a, wma | m ∈ SM , a ∈ SA}, where
m and a represent Mashup service and Web API service,
respectively. rma signifies that service m has used service
a, and wma = |Cm∩Ca|

|Cm∪Ca| represents the weight of this edge,
calculated using the Jaccard coefficient through the set of
categories owned by the service (Bag et al., 2019).

Each service has its own category set. When service
s belongs to a certain category c, a directed edge from
category c to service s is added to R. This relationship
can be represented as {c, rcs, s, wcs | c ∈ C, s ∈ S}, where
c and s represent categories and services, respectively. rcs
indicates that service s belongs to category c, and wcs

symbolises the weight of the edge, represented by 1
|Cs| ,

which corresponds to the proportion of categories to which
the service pertains.

Figure 4 illustrates a selection of nodes and relationships
within the network graph. It is apparent that the graph
network comprises three types of nodes: Mashup service,
Web API service, and category. The edge from the

category pointing towards the service primarily represents
the category to which the service belongs. Conversely, the
edge from the Mashup service pointing to the Web API
service indicates the usage record of the Web API service
by the Mashup service. Consequently, the graph network
can be represented as G = {V,E}, where the node set V =
SM ∪ SA ∪ C and the edge set is E = C ∪ R.

4.2.2 Hierarchical feature aggregation algorithm of
graph convolutional network

The semantic features of both Mashup and Web API
services have been obtained through the attention
mechanism’s service description feature extraction.
Simultaneously, the category of the new Mashup service
has been predicted. By selecting Q categories as related
categories of the service, we significantly enrich the
relationships between services. Subsequently, a graph
convolution network is employed to further extract complex
features from each node in the graph. The Web API service
features and category features associated with the Mashup
service are aggregated into the Mashup service via a
hierarchical feature aggregation algorithm. This approach
enables us to obtain a more comprehensive and accurate
feature representation of the Mashup service.

In the construction of the graph network, categories
are incorporated as nodes. The feature vector vc of each
category is obtained using a word embedding network,
which is dimensionally consistent with the feature vector
of the service description. Subsequently, we define the
adjacency matrix A|V |×|V |, which represents the connection
relationship between nodes in the graph, based on the edge
set. Initially, this matrix is set to zero for all elements.
If a directed edge exists between node x and node y, the
corresponding element Axy in the adjacency matrix is set
to 1. The node feature matrix X is then constructed, which
consists of the concatenated feature vectors of all services
and categories. The ith row of this matrix corresponds to
the feature vector of the ith node. With this setup, the node
features are updated through the graph convolution network
as follows:

H(l+1) = σ(D̂− 1
2 ÂD̂− 1

2H(l)W (l)) (15)

where H(l) is the node representation matrix of the lth layer,
where H(0) = X , Â = A+ I is the adjacency matrix A
plus the self-connection matrix I , ensuring that each node
takes its own feature into account, D̂ is the diagonal degree
matrix of Â, and W (l) is the weight matrix of the lth layer.

Through the feature mining and aggregation of nodes
through the graph convolution network, the features from
the perspective of categories, Web API services and
Mashup services have been further improved. In order
to obtain a better representation of the Mashup service,
the categories involved in the Mashup service and the
information from the Web API service perspective are
used to obtain the final multi-aggregation feature fm.
Specifically, the category feature of the upstream Mashup
service are used to summarise it, and the Web API service
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feature downstream of the Mashup service are used to
extend it. Its formal expression is as follows:

fm =
1

|Tm|
∑
a∈Tm

wmagout(concat(H
l+1
m ,H l+1

a ))

+
1

|Cm|
∑
c∈Cm

wmcgin(concat(H
l+1
m ,H l+1

c )) (16)

where concat represents the concatenation operation, wma

and wmc are the weights corresponding to the edges.
H

(l+1)
m , H

(l+1)
a , and H

(l+1)
c are the Mashup service

feature, Web API service feature, and category feature
obtained through GNN, respectively. gin and gout are two
fully connected networks that map vectors to a specified
dimension.

After hierarchical feature aggregation of the graph
convolution network, the final feature expression fm
of the Mashup service is obtained. For the Web API
recommendation task, it is necessary to calculate the
probability score of use between the Mashup service and
each Web API service, and make service recommendation
based on this score. Therefore, in order to calculate the
probability that the Mashup service uses the Web API
service and use them to measure the Mashup service’s
preference for the Web API service, this paper uses
a multi-label classification task to transform the Web
API service usage probability calculation. The calculation
formula is as follows:
ŝm = σ(mlp(fm)) (17)

where mlp is a plurality of fully connected layers, which
maps the dimensions of fm to the dimensions of the number
of Web APIs. σ is a normalisation function, so that the
value of each dimension is in the range of 0 to 1. The value
of one dimension represents the usage probability of each
Web API service.

In order to optimise the model parameters φ of the
hierarchical feature aggregation algorithm module of graph
convolution network, binary cross-entropy loss is used as
the loss function, which calculates the difference between
the predicted probability of each Web API being used and
the real value, The formula is as follows:

L2 = − 1

|SA|
∑
a∈SA

(sm,a log(ŝm,a)

+ (1− sm,a) log(1− ŝm,a)) + µ∥φ∥22 (18)

where SA is the set of all Web API services, sm,a is the
actual value of Mashup service m using Web API service a.
If m has used a, then sm,a = 1, otherwise sm,a = 0. ŝm,a

is the predicted value of Mashup service m using Web API
service a.

5 Experiments

5.1 Experimental setup and dataset

All experiments were conducted on our workstation, which
is equipped with two NVIDIA GTX 4090 GPUs, two

Intel(R) Xeon(R) Silver 4210R @2.40 GHz CPUs and 1T
RAM. The designed models for Web API recommendation
in the experiments are implemented by Python3.7.1 and
Pytorch1.13.0.

In order to verify the effectiveness of MFA, we crawled
web services from ProgrammableWeb. It contains 8,484
Mashup services and 22,642 Web API services. A Mashup
service contains four metadata attributes, including name,
description, category, and API interaction set; a Web API
service contains three metadata attributes, including name,
description, and category. In the experiments, we have
deleted those Mashup services without source information
and interaction, and finally it has 8,217 Mashup services,
1,648 API services, and 499 categories. Table 1 provides
detailed statistical data on the PW dataset.

For the parameter setting of MFA, the word embedding
dimension of the service description is 200. The service
description feature enhancement module under the
first-stage attention mechanism predicts the number of
service categories selected by the service category Q is 3,
and other models The training parameter settings are shown
in Table 2.

5.2 Evaluation metrics

In the experiments, we apply cross-validation techniques
to evaluate our proposed MFA and competing approaches.
It consists of three experimental stages, including model
training, validation, and performance testing. During model
training and validation, we use a training set and
verification set to evaluate the model convergence, and
a test set to demonstrate the effectiveness MFA (Coates
et al., 2011). After experimental verification, it was
determined that setting the ratio to 8:1:1 results in the best
recommendation performance for MFA.

To validate the effectiveness of MFA, four different
evaluation metrics are used to measure recommendation
performance among multiple competing approaches. The
precision and recall ratio of the top K recommended Web
APIs in the ranking are defined as:

Precision@K =
1

|M |
∑
m∈M

|rcmd(m) ∩ real(m)|
|rcmd(m)|

(19)

Recall@K =
1

|M |
∑
m∈M

|rcmd(m) ∩ real(m)|
|real(m)|

(20)

where M is the Mashup collection in the test set, and |M | is
the size of M . For each Mashup service m ∈ M , rcmd(m)
is the list of recommended Web APIs, and real(m) is the
ground truth of the included Web APIs.

The mean average precision (MAP) of the top K
recommended Web APIs in the ranking is defined as:

MAP@K =
1

|M |
∑
m∈M

1

Nm

K∑
i=1

(
Ni

i
Ii

)
(21)

where Ii indicates whether a Web API at position i in
the ranking corresponds to the real Web API of m; Nm
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indicates the real number of Web APIs in m; Ni represents
the number of invocations received by the Web API among
the top i API set in the ranking.

Table 1 Statistics of the experimental dataset

Statistics Value

APIs 1648
Mashups 8217
Categories 499
Average Mashup per APIs 10.432
Average API per Mashups 2.091
Categories per API 2.887
Categories per Mashup 2.997

Table 2 Parameter settings of MFA

Parameter Value

Epoch 50
Batch size 1024
Learning rate 0.01
D (word embedding dimension) 200
η (number of similar services) 5
Q (the predicted number of service categories) 3
H (number of attention heads of multi-head attention) 200

Additionally, the normalised discounted cumulative gain
(NDCG) of the top K recommended Web APIs in the
ranking is applied to evaluate the performance of MFA,
which is defined as:

NDCG@K =
1

|M |
∑
m∈M

1

Sm

K∑
i=1

2Ii − 1

log(1 + i)
(22)

where Sm represents the expected maximum DCG score of
m.

5.3 Competing methods

To evaluate the performance of MFA, we compare
it with eight competitive baselines, including two
conventional approaches based on collaborative filtering,
three content-based probability and statistics approaches,
and three model-based deep neural network aprroaches.
They are described as below.

• CF (Cremonesi et al., 2012): It is a widely used
recommendation algorithm, which calculates the
similarity of target Mashup services according to their
historical invocation records (Cao et al., 2014), and
recommends Web APIs involved in the most similar
Mashup services to the target ones.

• NCF (He et al., 2017b): It utilises deep neural
network models to capture nonlinear relationships
between services instead of relying on traditional
matrix factorisation. At the same time, by using the
collaborative filtering algorithm to calculate the
similarity between services, the accuracy and diversity
of Web API recommendations can be improved.

• AFUP (Jain et al., 2015): It takes into account a
range of factors, including feature information,
historical interactions, and popularity. By aggregating
these factors, the probability that the Mashup service
calls the corresponding Web API is calculated,
thereby recommending the Web API to create the
required Mashup service.

• SFTN (Samanta and Liu, 2017): It is improved by
their previous work AFUP (Jain et al., 2015) by using
hierarchical dirichlet process and probability matrix
factorisation that can effectively process content
information and historic invocation records to perform
better Web APIs recommendation.

• SPR (Zhong et al., 2018): It exploits topic model to
extract the features of Web APIs from Mashup
description, and uses the extracted features to
reconstruct aggregated requirement descriptions that
removes irrelevant information for satisfying
personalised Web API recommendation.

• RWR (Wang et al., 2019): It is a recommendation
approach based on knowledge graph, where each API
is regarded as a node in the graph, and the
relationship between two APIs is represented by
edges. Then, it applies random walk algorithm to
explore the modelled knowledge map that finds the
neighbor information of nodes to recommend the
appropriate Web APIs.

• MTFM (Wu et al., 2022): It takes Mashup service
category prediction as an auxiliary task to enhance
the ability of network feature extraction, and regards
API prediction as a multiple classification problem,
resulting in expected recommendation effectiveness.

• GSR-REC (Fan et al., 2023): It is a service
recommendation approach that can automatically
acquire services based on user requirements, where
GSR employs reinforcement learning to learn the
inter-dependencies among Web APIs and integrate
them into service recommendation.

5.4 Experiment results and analyses

Tables 3 and 4 show the comparison between MFA and
various baseline approachs. It can be seen that MFA has
better recommendation performance than other baseline
approachs in all scenarios where K is. It shows that MFA
is better than other approachs in Web API recommendation.

For the precision, its value continues to decrease as K
increases, but MFA is still 6.9% to 10.6% higher than other
approachs, which intuitively shows that MFA has better
service recommendation performance superiority. As for
the recall, its value increases with the increase of K, but
MFA is 1.4% to 4.9% higher than the optimal approach
among the baseline approachs. This shows that MFA takes
into account the Web API services that Mashup developers
are interested in, and matches the Web API services that
have the same functional requirements as the Mashup
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service as much as possible. Judging from the performance
of MAP, its value slowly becomes smaller as K increases.
However, MFA is still 0.3% to 1.4% higher than other
approachs. This shows that the model is able to effectively
distinguish between positive and negative examples across
multiple categories and performs well for classification
tasks across the entire dataset. Regarding the NDCG, its
value is proportional to K. Compared with other baseline
approachs, MFA outperforms this metric by 0.4% to 3.8%,
This means that the recommended service list performs
better in the ranking task, provides more relevant services,
and these services are ranked higher in the recommended
list.

Both CF and NCF use service history interaction
records as an information source to obtain service feature.
However, the service history interaction record data is
relatively sparse, resulting in mediocre recommendation
performance. AFUP and SFTN use a variety of information
sources, including description information, historical
interaction records and popularity, but are still constrained
by the sparse historical interaction record, so the
service recommendation performance has not been
greatly improved. SPR, MTFM, and GSR-REC use
neural network models to extract features from service
description information, which has a certain improvement
in recommendation performance compared to the approachs
mentioned above. However, the uneven quality of service
descriptions makes it impossible to effectively obtain

service feature, making it impossible to further improve
recommendation performance.

RWR considers using graph networks to mine
relationship features between services. However, the
relationship graph between services is relatively simple
to construct and cannot fully express the relationships
between services, causing recommendation performance
to encounter bottlenecks. On the one hand, MFA uses
similar descriptions of services to optimise and expand
its descriptions, fully capturing its semantic features for
the service category prediction task. On the other hand,
it constructs a graph network with three types of nodes:
categories, Mashup services, and Web API services,
making the graph network more rich and diverse. More
accurate multiple categories of features are obtained
through the expanded graph network. The hierarchical
feature aggregation algorithm aggregates service type
features and Web API service features into Mashup
service features, so that the service features contain a lot
of heterogeneous feature information, thus making the
Web API recommendation performance has been further
improved.

5.5 Performance impact of parameters

The API recommendation performance of MFA
predominantly hinges upon the quantity of attention heads
within the multi-head attention, denoted as H, and the
projected count of service categories, symbolised as Q.

Table 3 Experimental results of different competing approaches under the settings of K = 5 and 10

Methods K = 5 K = 10
Precision Recall MAP NDCG Precision Recall MAP NDCG

CF 0.117 0.327 0.241 0.303 0.100 0.557 0.263 0.380
NCF 0.141 0.415 0.421 0.463 0.091 0.513 0.427 0.494
AFUP 0.142 0.421 0.423 0.466 0.092 0.522 0.429 0.497
SFTN 0.153 0.474 0.503 0.533 0.087 0.543 0.501 0.561
SPR 0.187 0.543 0.549 0.595 0.123 0.645 0.544 0.616
RWR 0.198 0.592 0.581 0.633 0.117 0.682 0.574 0.648
MTFM 0.219 0.602 0.676 0.705 0.121 0.664 0.662 0.710
GSR-REC 0.214 0.658 0.723 0.734 0.120 0.712 0.713 0.735
MFA 0.237 0.676 0.728 0.757 0.136 0.742 0.715 0.763
Gains 8.2% 2.7% 0.7% 3.1% 10.6% 4.2% 0.3% 3.8%

Table 4 Experimental results of different competing approaches under the settings of K = 15 and 20

Methods K = 15 K = 20
Precision Recall MAP NDCG Precision Recall MAP NDCG

CF 0.076 0.619 0.261 0.392 0.061 0.650 0.259 0.396
NCF 0.068 0.562 0.423 0.502 0.055 0.590 0.421 0.506
AFUP 0.071 0.570 0.414 0.524 0.052 0.625 0.405 0.576
SFTN 0.082 0.611 0.489 0.573 0.070 0.653 0.478 0.598
SPR 0.090 0.716 0.530 0.621 0.072 0.784 0.518 0.625
RWR 0.088 0.729 0.567 0.653 0.070 0.768 0.555 0.652
MTFM 0.084 0.696 0.652 0.710 0.067 0.728 0.641 0.708
GSR-REC 0.089 0.734 0.706 0.747 0.071 0.766 0.700 0.757
MFA 0.097 0.770 0.710 0.762 0.077 0.795 0.705 0.760
Gains 7.8% 4.9% 0.6% 2.0% 6.9% 1.4% 0.7% 0.4%
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Figure 5 Performance impact with the number of attention heads of multi-head attention, (a) precision (b) recall (c) MAP (d) NDCG
(see online version for colours)

(a) (b) (c) (d)

Figure 6 Performance impact with the predicted number of service categories, (a) precision (b) recall (c) MAP (d) NDCG
(see online version for colours)

(a) (b) (c) (d)

5.5.1 Impact of number of attention heads of multi-head
attention

Figure 5 shows the line chart of evaluation metrics changing
with H when the number of recommended Web API
services is 5, 10, 15 and 20. H is a parameter of the
neural network model, which mainly controls the model’s
ability to express service feature. As the number of attention
heads of multi-head attention increases, the four evaluation
metrics gradually increases. When the number of attention
heads is 200, the values of the four evaluation metrics
are the highest. After 200, the recommended performance
begins to decline. This is because as the number of attention
heads increases, the expressive ability of MFA gradually
improves. More attention heads mean that the model can
better capture different relationships and feature between
services, thereby improving recommendation performance.
The multi-head attention mechanism allows the model
to focus on different parts of the input simultaneously,
which helps to fuse information more comprehensively. In
recommendation tasks, this may lead to more accurate and
comprehensive Mashup service interest modelling, which
is beneficial to improving recommendation performance.
When the number of attention heads is 200, the values
of the four evaluation metrics are the highest. This is
because the model has been able to capture the complex
relationships between services very well at this point, and
continuing to increase the number of attention heads does
not significantly improve model performance.

5.5.2 Impact of predicted number of service categories

Figure 6 shows the histogram of evaluation metrics
changing with Q in scenarios where the number of
recommended Web API services is 5, 10, 15 and 20.

Q is a non-model parameter, similar to the number of
Web API recommendation recommended by Web API. It
controls the number of categories to which each service
belongs. Since categories are introduced when building a
graph network to enrich the relationship between services,
Therefore, it can greatly affect the extraction of various
heterogeneous features of services. It can be seen from
the figure that when the number of predicted service
categories Q increases from 1 to 3, the four evaluation
metrics also increase, and when Q increases from 3 to 5,
the four evaluation metrics become smaller and smaller.
It can be analysed from the distribution of the dataset
that each service belongs to three categories on average.
Therefore, when the number of predicted service categories
is less than 3, the accuracy of service category prediction
is gradually improving, making the construction of graph
networks more and more complex. It is close to reality,
thus ensuring that the service multi-aggregation features
obtained by the hierarchical feature aggregation algorithm
of the graph convolution network are more accurate.
The performance of service recommendation is also
improved. When the number of predicted service categories
exceeds 3, the accuracy of service category prediction
decreases, there are more and more inaccurate edges in the
graph network, and the Mashup service aggregates more
irrelevant features, resulting in reduced recommendation
performance. Therefore, setting the number of predicted
service categories to 3 enables MFA to obtain the best Web
API recommendation performance.

6 Related work

Recently, Web API recommendation has received
much attention, existing approaches can be mainly
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divided into three categories, including collaborative
filtering approaches, content-based approaches, and deep
learning-based approaches.

6.1 CF-based Web API recommendation

Collaborative filtering technique has been widely applied
in recommender systems that can be used to make
Web API recommendation. Sang et al. (2023) propose a
Bayesian matrix factorisation model with text similarity
and adversarial training. By utilising natural language
processing and collaborative filtering, the model effectively
leverages contextual information and historical data,
thereby improving recommendation accuracy. However,
there is a sparsity issue in the interaction data between
Mashup services and Web APIs, which may hinder
the matrix factorisation model from accurately capturing
implicit service features. Based on the neural graph
collaborative filtering technique, Lian and Tang (2022)
propose an API recommendation approach that exploits
the high-order connectivity between Web APIs and their
users. Ke et al. (2019) proposed a hybrid collaborative
filtering and attention-based CNN model for web service
recommendation, where the hybrid service invocation
matrix and attention-based CNN are seamlessly integrated
into a deep neural network for better capturing complex
relationships among hybrid services.

While CF-based recommendation methodologies exhibit
considerable adaptability in the realm of Web API
recommendation, they are notably hindered by difficulties
in extracting semantic information from Mashup services
and Web APIs. This constraint underscores the necessity for
future investigations to delve into hybrid recommendation
systems. Such systems would amalgamate CF with
content-based approaches or semantic technologies, thereby
circumventing the limitations inherent in relying exclusively
on CF for Web API recommendation. This proposed
integrative approach promises to enhance the robustness
and accuracy of Web API recommendations, opening new
avenues for enriching user experiences.

6.2 Content-based Web API recommendation

This kind of recommendation approach necessitates the
extraction of salient features through the comparison of
similarities between Mashup services and Web APIs. These
features typically encompass service descriptions, service
tags, and the interrelationships between Mashup services
and Web APIs. Text-matching-based approaches compute
the correlation between Mashup requirements and Web
API descriptions, generally employing TF-IDF statistical
techniques to recommend pertinent Web APIs (He et al.,
2017a). Nevertheless, these methods often fail to generate a
satisfactory recommendation list, as they lack the capability
to semantically extract the defining characteristics of both
Mashup services and Web APIs.

In order to overcome the limitations of Web API
recommendation based on text matching, semantic-based

approaches have been investigated for Web API
recommendation, which can be divided into two categories.
One is based on knowledge mapping (Wang et al., 2019),
which leverages entities, attributes, and relationships to
link Mashup services with Web APIs. It builds a rich and
accurate Mashup knowledge system, where logic reasoning
is performed to calculate the semantic similarity between
Mashup services and Web APIs. However, due to the
lack of domain knowledge and the high cost of manual
annotation, it is difficult to extend to large-scale datasets.
The other is based on latent semantics, which usually
exploits the topic model to extract semantic features, and
measures the relevance between Mashup requirements and
Web APIs by feature similarity. Shi et al. (2019) employed
a probabilistic topic model to extend sentence-level
service descriptions, aiming to optimise the original
service descriptions. The primary objective is to eliminate
redundant elements from the descriptions with the goal
of enhancing the extraction of service features. However,
content-based Web API recommendation approaches mainly
extract shallow semantic information, which may lead to
the loss of hidden feature among Mashup services and
Web APIs, thus resulting in a decrease of recommendation
performance.

6.3 Deep learning-based Web API recommendation

With the rapid development of deep learning, more
recent investigations apply deep neural networks to learn
complex interactions between Mashup services and Web
APIs for better Web API recommendation. By combining
multilayer perceptron and collaborative filtering algorithm,
it can precisely learn the nonlinear relationships that can
effectively recommend Web APIs. Ma et al. (2021) have
introduced DNN for cold-start service recommendation by
integrating multiple interactions between Mashup services
and Web APIs and their content similarities.

In recent years, with the continuous developments of
graph neural networks (Cai et al., 2023; Wang et al.,
2023), they have been widely investigated and used to
mine complex interactive features. Liu et al. (2023) have
proposed a novel approach for creating a Mashup service
by designing a service bundle recommendation model based
on dynamic graph neural network to learn the interactions
between Mashups and Web APIs. Yu et al. (2023) propose
a web service recommendation approach called SRMG,
which utilises Transformers and GraphGAN for intelligent
Mashup creation recommendation by calculating functional
similarities. The preferences of a new Mashup service are
guided by its resemblance to existing ones, offering an
effective strategy for Mashup creation. The model of graph
convolution neural network (Hu et al., 2023) can be used
to learn the relationship between Mashup services and Web
APIs, and simultaneously attention mechanism can also
be fused to more accurately calculate the similarity for
promoting the performance of API recommendation.

However, Mashup developers or service vendors are not
always able to provide accurate descriptions of aggregated
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demands or service functionalities. As a result, existing
deep learning-based approaches still face challenges in
effectively uncovering the latent features from service
functionalities for Web API recommendation. To this end,
we design a novel framework for Web API recommendation
by Mashup description reduction and deep feature learning,
which can optimise the representation of original Mashup
services and extract the features from the reduced blocks
and their corresponding positions.

7 Conclusions and future work

In this paper, we propose a new Web API recommendation
framework called MFA. It uses an attention mechanism
to extract and integrate features from similar service
descriptions, addressing the issue of poor service
description quality. It also predicts categories of service
to reveal hidden service relationships, constructs a
detailed graph network by interaction record of services,
and uses graph convolutional networks for feature
extraction. A hierarchical feature aggregation algorithm
is used to combine these features, enhancing Web API
recommendation performance and compatibility. The
effectiveness of MFA was confirmed through experiments
comparing it with other Web API recommendation
methods on a large real dataset. The experimental
results fully proved the superiority of MFA in Web API
recommendation. At the same time, we apply this method
to practical applications, which reduces developers’ time
and energy in finding and selecting APIs, thereby reducing
development costs.

In the future, we plan to explore novel prompt
engineering and investigate fine-tuning of LLMs with the
consideration of embedding the invocation relationships
among Mashup and Web APIs, further advancing the
reduction of original Mashup description and hidden feature
learning for better Web API recommendation.
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