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Abstract
Social recommendation can effectively improve recommendation performance by leverag-
ing social relationships to alleviate the sparsity of user-item interaction data. Because these 
connections in social recommendation can be easily represented as graph-structured data, 
social recommendation based on graph neural networks has received significant attention. 
However, existing works focus on modeling the long-term preferences of users and rarely 
consider the effect of temporal factors on preferences, resulting in a failure to accurately 
learn the representation of present preferences. Moreover, existing works mainly utilize 
similarity to connect different items. But items in the same category often have more con-
nections and correlations with each other, which can be employed to enhance the learning of 
item representations. Therefore, this work proposes DLREM (Deep Latent Representation 
Enhancement Method for Social Recommendation) to address the above limitations. Spe-
cifically, DLREM exploits dual graph attention networks to learn long-term representations 
of users and items separately and exploits recurrent neural networks to capture the dynamic 
preferences of users. In addition, attention mechanisms are used to model user social rela-
tionships and item correlations, enhancing the learning of user and item representations. 
Combining the enhanced deep latent representations of users and items can improve the 
accuracy of social recommendation. Experimental results on two public datasets show that 
our model achieves competitive performance compared with state-of-the-art models.

Keywords Social recommendation · Graph neural networks · Social network · 
Representation learning

1 Introduction

Recommender systems are being used on a variety of web platforms due to their effectiveness 
in reducing information overload now. For a long time, the core idea of recommender systems 
has been collaborative filtering (Koren et al., 2022, 2009), but it is frequently hampered by 
the problem of data sparsity. With the growth of social media, social recommendation, which 
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exploits social neighbors to capture the preferences of a sparsely interacting user, appears to 
be a promising solution to this problem. Social recommendation methods have been widely 
applied to different recommendation tasks with impressive performance(e.g., product (Du 
et al., 2022; Li et al., 2022a; Liu et al., 2022), location (Chen and Wong, 2021; Yu et al., 
2020; Li et al., 2022b)). According to relevant sociological theories (McPherson et al., 2001; 
Marsden and Friedkin, 1993), social recommendation assumes that the preferences of a user 
may be similar to or influenced by those around him (or those who are connected).

Traditional social recommendation methods (Jamali and Ester, 2010; Li et  al., 2017; 
Ma et  al., 2008, 2011; Yang et  al., 2016) are primarily based on a matrix factorization 
framework, in which social relationships are frequently represented as regular terms or as 
integration terms to affect the matrix factorization framework. In recent years, research-
ers have developed a number of social recommendation methods based on neural network 
techniques (Chen et  al., 2019a, b), which introduce attention mechanisms into the mod-
eling process. Graph neural networks(GNN) have recently demonstrated strong representa-
tional learning capabilities on graph-structured data. Since data in social recommendation 
can be well represented as graph data, researchers (Gao et al., 2022; Wu et al., 2022b) have 
focused on social recommendations based on GNN.

However, existing GNN-based social recommendation methods mainly use historical 
user-item interaction data to model long-term user preferences. In fact, the preferences of 
users can change dynamically over time. For example, a user may develop an interest in 
new sports to which he has never been exposed, and these short-term preferences are also 
influenced by his friends. Figure  1 is an illuminating example where the preferences of 
users are represented as long-term and short-term preferences. The figure shows that User 
A and his friends C and D have been following sports lately. User A may be influenced by 
his friends C and D to follow sports such as badminton or baseball next based on this fact. 
In addition, both user A and D have a long-term preference for electronics. User B may be 
influenced by the long-term preferences of his friends A and D to focus more on electron-
ics such as mobile phones or game consoles next. Thus, the dynamic influence of friends 
on users can contribute to learning the current preferences of the target users. Furthermore, 
item attractiveness is usually related to attribute information such as item category and 
brand. The attractiveness provided by these attribute information is usually consistent over 
time. For example, a loyal iPhone user may be more likely to purchase Apple headphones 
when shopping for electronic products. Thus, there are correlated relationships between 

Fig. 1  An illustration of how long-term and short-term preferences of users are influenced by their friends
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different items in the same category. Learning about the representation of item attractive-
ness can be improved through rational modeling of the correlations between items

This paper proposes a novel social recommendation method to address the aforemen-
tioned issues. Specifically, our model is divided into three main parts: user modeling, 
item modeling, and rating prediction. In user modeling, users are involved in two different 
views, the user-item graph and the user-user graph. Two graph attention networks(GAT) 
modules are introduced to learn from each of the two graph views, which aims to obtain 
long-term preferences and preferences based on the influence of social relationships. Fur-
thermore, temporal contextual information is introduced in the user-item graph, and short-
term trends in user preferences are captured by using recurrent neural networks. Construct-
ing correlation graphs about the items by item categories is the first step in item modeling. 
Similarly, two GAT modules are introduced to learn from each of the two graph views in 
item modeling. In rating prediction, the possible rating of an item by a given user can be 
obtained by combining the user and item latent factor representations learned by the afore-
mentioned two components. Our main contributions are as follows:

• This paper proposes DLREM that incorporates temporal contextual information into 
the learning of user preference representations, which can enhance deep latent repre-
sentations of users.

• Unlike the existing works on social recommendation, DLREM constructs correlation 
graphs of items from category information and obtains more accurate deep latent repre-
sentations of items by modeling the correlations.

• DLREM can exploit the enhanced deep latent representations of users and items to 
accurately capture the preferences of users for items, thereby improving the perfor-
mance of recommendation.

2  Related work

2.1  Traditional social recommendation methods

As one of the most important collaborative filtering methods, matrix factorization is widely 
used in the field of recommender systems (Koren et  al., 2022, 2009). It maps users and 
items to a low-dimensional latent factor space and predicts user ratings on items based 
on the inner product of low-dimensional feature vectors. However, because of the spar-
sity of the user-item rating matrix, collaborative filtering has inherent drawbacks. Some 
works attempt to alleviate data sparsity and cold-start issues with the assistance of social 
relationships, which is called social recommendation. Traditional social recommendation 
algorithms usually employ a matrix factorization framework to incorporate social informa-
tion into the recommendation process. SoRec (Ma et  al., 2008) integrates trust relation-
ships between users and the ratings of users by sharing a matrix of latent user characteris-
tics and performing a collaborative factorization of the rating matrix and the relationship 
matrix. SocialMF (Jamali and Ester, 2010) incorporates the trust propagation mechanism 
into a matrix factorization framework such that the latent feature vectors of each user and 
their immediate neighbors in the social network are close to each other. SoReg Ma et al. 
(2011) models social information as a regularization term to constrain matrix factorization. 
TrustMF (Yang et al., 2016) is based on matrix factorization, which factors the trust net-
work in terms of trust and the trusted, mapping users into two low-dimensional trustor and 
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trusted spaces separately. SREE (Li et al., 2017) incorporates social trust information into 
a matrix factorization method based on Euclidean embedding to personalize recommenda-
tions for users using the preferences of trusted users. To capture indirect social relations, 
InSRMF (Liu et al., 2019) proposes a joint recommendation model that effectively com-
bines indirect social relation detection and matrix factorization to extract valuable indirect 
relations and improve recommendation performance. To alleviate the limitations of using 
only explicit data, TSSR (Shokeen and Rana, 2021) proposes a method that combines the 
rating matrix and social relations to extract implicit data and thus discover top-k semantic 
friends.

The above traditional social recommendation methods use information from user social 
networks to obtain a better vector representation of user features, which alleviates the data 
sparsity issue of collaborative filtering methods to a certain extent. However, the heteroge-
neity of social relationships and the higher-order nonlinear features of users and items are 
not taken into account in most works.

2.2  GNN‑based social recommendation methods

In recent years, graph neural network techniques have demonstrated significant promise 
in the field of recommendation (Wu et al., 2022b; Gao et al., 2022). The key of GNN is to 
aggregate and disseminate information from neighbor nodes, which is naturally associated 
with social recommendation (Sharma et al., 2022). GraphRec (Fan et al., 2019) is the first 
work to apply GNN to social recommendation. It incorporates an attention mechanism into 
user-user graph modeling processes to consider heterogeneous strengths of social relations 
and utilizes GNN aggregate neighbor information to obtain the embedding representations 
of users and items, which are used in rating prediction. In order to leverage information 
from related items to further alleviate the data sparsity problem, DANSER (Wu et  al., 
2019) constructs dual graph attention networks to model the dual social effects of users and 
items. GraphRec+ (Fan et al., 2020) is an enhancement to GraphRec that aims to alleviate 
the data sparsity issue by utilizing the relationships between items. Specifically, it incor-
porates item-item graph modeling during the learning process to improve item representa-
tion learning. To model higher-order information in user-related graphs, DiffNet++ (Wu 
et al., 2020) designs a GNN-based model to simulate social influence diffusion in social 
graphs and interest influence diffusion in interest graphs. DICER (Fu et  al., 2021) aims 
to avoid the limitations of shallow context-aware aggregation. It proposes a novel GNN-
based approach to learn multi-relation and high-order neighbor information effectively that 
can model more precise user side interests and item side attraction. To consider the bias 
offsets of users and items, GDSRec (Chen et al., 2022) designs a decentralized collabora-
tive filtering approach in which the statistics are taken into account in the graph modeling. 
GSFR (Xiao et  al., 2022) proposes a graph social fusion recommendation method that 
captures multiple social information simultaneously. It uses a dynamic attention mecha-
nism to model changes in user interests in heterogeneous networks and uses a mutualistic 
mechanism to learn virtual and actual user-user subgraphs to obtain more precise repre-
sentations of user latent factors. Recently, some works have introduced contrastive learn-
ing as an assistance task in social recommendation, which helps to obtain more precise 
representations of users and items and thus improve recommendation performance. CGL 
(Zhang et al., 2022) utilizes contrastive learning to efficiently combine social information 
and interaction information, and a self-supervised loss and a supervised pointwise loss are 
introduced into the model to further alleviate the data sparsity. DISGCN (Li et al., 2022a) 
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designs a GCN-based embedding propagation mechanism to capture higher-order informa-
tion in social-network graphs in two aspects: social homophily and social influence, and 
introduces a contrastive learning framework to assist in disentangling the effect of social 
influence. DcRec (Wu et  al., 2022a) designs a disentangled contrastive learning frame-
work to model the heterogeneous behavior patterns of users in the social domain and item 
domain. It can learn user representations from the two domains separately to obtain more 
precise representations of users and items, thus improving recommendation performance.

Although these methods have shown strong performance, they still have shortcomings. 
On the one hand, the above methods do not take into account the fact that user preferences 
in social recommendation may change dynamically. Capturing the dynamic trend of user 
preferences helps to better provide personalized recommendation services to users. On the 
other hand, constructing item implicit networks to capture the potential information and 
effects between items contributes to learning more precise representations of item latent 
factors. Some works calculate the similarity between items by using interactions or ratings 
and then connect items with high similarity. But we believe that item-item graphs con-
structed using extra attributes have more valuable information.

3  Deep latent representation enhancement method

This section gives the definition of social recommendation and describes DLREM model 
in detail. Figure 2 depicts the model framework. Our model can be divided into four parts: 
the embedding layer, the user modeling, the item modeling, and the rating prediction. 
Firstly, the embedding layer generates opinion-aware embeddings of interactions based on 
the original embeddings of users, items, and ratings. The outputs of the embedding layer 
are used as initial inputs for the user modeling and the item modeling, separately. Specifi-
cally, DLREM learns the long-term preferences of users using a GAT and the short-term 

Fig. 2  The overview framework of the proposed model
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preferences of users using gated recurrent unit (GRU) . And the output of the GRU and 
the first GAT is used as the input to the second GAT. Then, DLREM learns the influence 
of social relationships on the preferences of the target user by using a GAT. Similarly, 
DLREM uses two GATs to learn the long-term attractiveness of items and the influence 
of same-category items on the target item, respectively. The output of the first GAT is the 
input of the second GAT, which is similar to user modeling. Secondly, the outputs of two 
parts are input to a MLP to get the latent factor representations of the target user and the 
target item. Lastly, the predicted rating is output through a MLP.

3.1  Formulation of social recommendation

Let U =
{
u1, u2,… , uM

}
 and V =

{
v1, v2,… , vN

}
 denote the set of users and items 

separately, where M denotes the number of users and N denotes the number of items. 
R =

[
rij
]
M×N

 is assumed to be the user-item interaction matrix, which is also called the 
user-item interaction graph. Moreover, T =

{
< i, j >∣ rij ≠ 0

}
 is used to denote the set of 

observed ratings and F =
{
< i, j >∣ rij = 0

}
 is used to denote the set of unobserved ratings.

In addition, we use RU(i) to denote the set of items that user i has interacted with and 
RV (j) to denote the set of users that have interacted with item j. Meanwhile, the interaction 
record of user i with item j at time t is denoted as a triplet (i, j, t), where t is the timestamp. 
The triplet of interaction records of each user i is ordered by the timestamp in ascending 
order as Rt

U
(i) . For the item correlation graph GV =

(
V ,EV

)
 , where V is the set of items 

and EV is the set of edges connecting two items that have an correlation. NV (j) is denoted 
as the set of items directly connected by item j in the item correlation graph GV . For the 
user social relationship graph GU =

(
U,EU

)
 , where U is the set of users and EU is the set 

of edges connecting two users with social relationships. NU(i) is denoted as the set of users 
directly connected by user i in the social relation graph GU.

So the social recommendation task is defined as: given the observed interaction records 
in the user-item interaction graph R and the user social relationship graph GU , the goal of 
the task is to predict the unobserved interaction records in R, i.e., the possible rating values 
of the target user for the item.

3.2  Embedding layer

The user-item interaction diagram R includes information not only about the interac-
tion between the user and the item, but also about the user’s rating or opinion of the item 
(denoted by r). The rating reflects not only the user’s preference for the item, but also the 
item’s attractiveness to the user. As a result, incorporating rating information into the pro-
cess of modeling latent user and item factors can lead to a more accurate representation of 
users and items. In general, ratings are discrete values. Rating value rij ∈ {1, 2, 3, 4, 5} in a 
five-level rating platform.

In these works (Fan et al., 2019, 2020), they provide enlightening methods for capturing 
interactions and ratings. Our approach defines user representation matrix as P =

{
pi
}
D×M

 , 
where D is the embedding dimension and pi denotes the embedding vector of user i. Simi-
larly, Q =

{
qj
}
D×N

 denotes item representation matrix, where qj denotes the embedding 
vector of item j. In addition, each rating is mapped into the corresponding D dimensional 
vector separately and eij is used to denote the embedding vector of rij . The computing 
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process for the opinion-aware embedding of the interaction between user i and item j is 
given below:

where xij denotes the embedding of the opinion-aware interaction from user i to item j for 
user modeling. Similarly, yji represents the embedding of the opinion-aware interaction 
from item j to user i for item modeling. f is a multi-layer perceptron (MLP) and ⊕ denotes 
the concatenation operation.

3.3  User modeling

The target of user modeling is to model the representation of user preferences from differ-
ent graph views. DLREM first learns about the long-term and short-term preferences of 
users from the user-item interaction graph and then learns about the influence of relation-
ships on user preferences from the user-user relationship graph.

3.3.1  Long‑term preferences modeling

In the user space, the long-term preference representation of users is learned by aggregat-
ing the items that user u interacts with and their opinions on these items. Considering that 
each interaction between a user and an item contributes differently to the long-term prefer-
ence representation of users, our method designs a user level GAT to learn the long-term 
preference representation hL

i
 of user i, the specific calculation procedure is as follows:

where � is the nonlinear activation function of user level GAT, W0 and b0 denote the weight 
and bias of user level GAT, separately. �ij denotes the attention weight of the interaction 
between user i and item j, which is computed by a two layer neural network as follows:

where 
(
W1, b1

)
 and 

(
W2, b2

)
 correspond to the weights and biases of the first and second 

layer of the neural network, separately.

3.3.2  Short‑term preferences modeling

The rating opinion information is also introduced into the modeling of short-term prefer-
ences of users. Recurrent neural networks are used to model sequence Rt

U
(i) in order to 

capture the short-term preferences of users. Specifically, a GRU is used in our model to 
learn the sequence as follows:

(1)xij = f
([
qj ⊕ eij

])
,

(2)yji = f
([
pi ⊕ eij

])
,

(3)hL
i
= �

(
W0

∑

j∈RU (i)

�ijxij + b0

)
,

(4)𝛼ij =
exp

�
W2 ⋅ 𝜎

�
W1 ⋅

�
pi ⊕ xij

�
+ b1

�
+ b2

�

∑
j∈RU (i)

exp
�
W2 ⋅ 𝜎

�
W1 ⋅

�
pi ⊕ xij

�
+ b1

�
+ b2

� ,
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where GRU denotes a multi-layer gated recurrent unit. Since our model only tries to 
capture the dynamic trend of user preferences in the short term, which is denoted as hS

i
 , 

DLREM only uses the output of GRU of the last hidden layer. Longer sequences of items 
are truncated to save memory and time overhead.

Long-term and short-term preferences are fused to obtain the overall preference representa-
tions of the users. The calculation is given as follows:

where hI
i
 denotes the overall preference representations of user i and ⊙ is the Hadamard 

product, which denotes the product of the elements of two vectors.

3.3.3  Relationship‑influenced preferences modeling

On the one hand, the preferences of users are usually similar to or influenced by those of their 
direct social friends. On the other hand, social relationships have varying degrees of strength, 
which means that different friends have different levels of influence over users. The social 
relationship-based preferences hR

i
 of users i are computed as follows:

where hI
u
 denotes the overall preference representation of user u and user u is a friend of 

user i. �iu represents the degree of influence among users.

3.4  Item modeling

Item modeling aims to model the representation of item attractiveness from two graph views. 
In this section, we will detail how to learn the long-term attractiveness representation of items 
from the user-item interaction graph and how to use the item correlation graph to enhance the 
representation of items.

3.4.1  Long‑term attractiveness modeling

In the item space, the long-term attractiveness representation of items is modeled by aggregat-
ing the users who interact with item j and the opinions of users on items. Similarly, DLREM 
designs an item level GAT to learn the long-term attractiveness representation hL

j
 of item j, 

specifically as follows:

(5)hS
i
= GRU

(
Rt
U
(i)
)
,

(6)hI
i
= hL

i
⊙ hS

i
,

(7)hR
i
= �

(
W0

∑

u∈NU (i)

�iu h
I
u
+ b0

)
,

(8)�iu =
exp

�
W2 ⋅ �

�
W1 ⋅

�
pi, h

I
u

�
+ b1

�
+ b2

�

∑
u∈NU (i)

exp
�
W2 ⋅ �

�
W1 ⋅

�
pi, h

I
u

�
+ b1

�
+ b2

� ,

(9)hL
j
= �

(
W0

∑

i∈RV (j)

�jiyji + b0

)
,
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where �ji denotes the attention weight of the interaction between item j and user i.

3.4.2  Relationship‑influenced attractiveness modeling

There are usually many similarities between items in the same category, and these similari-
ties are a reflection of the attractiveness of the items. Therefore, it is reasonable to further 
enrich the representation of item from the item correlation graph.

Construct its corresponding correlation graph GV for each item is the first step. Specifi-
cally, different items in the same category are picked as direct neighbors of the target item. 
Considering the large number of items in the same category, this work uses the simplest 
method of random sampling, which is to randomly select K items from the same category. 
This paper discusses the effect of parameter K on the performance of model in the Sec-
tion  4.4.1. We will explore better selection methods in our future work. Then, DLREM 
learns the relationship-influenced attractiveness hR

j
 of item j as follows:

where hR
j
 denotes the attractiveness representation of item j based on the influence of o of 

the associated item. �jo denotes the influence weight between items.

3.5  Rating prediction and model training

This section firstly describes how to obtain latent factor representations from user modeling 
and item modeling and then introduces rating prediction and the model training method.

Latent factor representations of users and items are taken as input for the rating predic-
tion module. The latent factor representations of users are obtained by fusing long-term 
and short-term preferences and preferences based on relational influences. Similarly, the 
latent factor representations of items are obtained by fusing long-term attractiveness and 
relationship-influence-based attractiveness. The latent factor representations huser

i
 for user i 

and hitem
j

 for item j are calculated separately as follows:

where ⊕ denotes the concatenation operation. DLREM is applied to the rating prediction 
task of social recommendation. The possible rating r̂ij for item j by user i is calculated as 
follows:

(10)�ji =
exp

�
W2 ⋅ �

�
W1 ⋅

�
qj, yji

�
+ b1

�
+ b2

�

∑
i∈RV (j)

exp
�
W2 ⋅ �

�
W1 ⋅

�
qj, yji

�
+ b1

�
+ b2

� ,

(11)hR
j
= �

(
W0

∑

o∈NV (j)

�jo h
L
o
+ b0

)
,

(12)�jo =
exp

�
W2 ⋅ �

�
W1 ⋅

�
qj, h

L
o

�
+ b1

�
+ b2

�

∑
o∈NV (j)

exp
�
W2 ⋅ �

�
W1 ⋅

�
qj, h

L
o

�
+ b1

�
+ b2

� ,

(13)huser
i

= f
([

hI
i
⊕ hR

i

])
,

(14)hitem
j

= f
([

hL
j
⊕ hR

j

])
,
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where g is a MLP. The target training function for this work is given as follows:

where rij is the true rating of item j by user i.

4  Experiments

This section will firstly describe the experimental setup in detail, then analyze the overall 
performance comparison, and finally conduct ablation experiments and parameter sensitiv-
ity studies.

4.1  Experiment settings

4.1.1  Datasets

DLREM is evaluated on two real-world datasets, Ciao and Epinions1, which have been 
widely used as benchmark datasets for social recommendation. These two datasets contain 
users, items and item categories, ratings and timestamps of when the ratings occurred, and 
social relationships, where the ratings are from 1 to 5. The statistics of Ciao and Epinions 
are shown in the Table 1. In addition, the users and items with fewer than five interactions 
in both datasets, as well as users without social friends, are removed.

4.1.2  Evaluation metrics

To evaluate the performance of DLREM in the rating prediction task, this paper uses two 
widely used metrics (Sharma et al., 2022; Shokeen and Rana, 2020), MAE and RMSE, to 
evaluate the prediction accuracy of the model. Smaller values of MAE and RMSE indicate 
higher prediction accuracy for the model, specifically defined as follows:

(15)r̂ij = g
([

huser
i

⊕ hitem
j

])
,

(16)L =
1

2|T|
∑

(i,j)∈T

(
r̂ij − rij

)2
,

(17)MAE =
1

|T|
∑

(i,j)∈T

|r̂ij − rij|,

Table 1  Statistics of the two 
datasets

Dataset Users Items Ratings Category Social Links

Ciao 2379 16861 36065 6 57544
Epinions 22167 296277 922267 27 355813

1 Ciao and Epinions available from http:// www. cse. msu. edu/ ~tangj ili/ trust. html.

http://www.cse.msu.edu/%7etangjili/trust.html
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4.1.3  Baselines

To compare the performance, a comparison is made with two representative groups of 
methods. For the fairness of the experiments, the methods we chose were proposed for 
application to the rating prediction task.

Traditional Social Recommendation Methods:

• SoRec (CIKM2008) (Ma et  al., 2008): performs a collaborative factorization of the 
user-item rating matrix and the user-user social relationship matrix.

• SoReg (WSDM2011) (Ma et al., 2011): introduces social network information into the 
traditional matrix factorization framework and models it as a regularized term to cap-
ture strong dependencies.

• SocialMF (RecSys2010) (Jamali and Ester, 2010): introduces a trust propagation mech-
anism in the matrix factorization framework.

• SREE (IJCNN2017) (Li et  al., 2017): adds social network information to the matrix 
factorization method based on the Euclidean embedding.

GNN-based Social Recommendation Methods:

• Graphrec (WWW2019) (Fan et al., 2019): utilizes GNN to model the representation of 
users and items in social recommendation for rating prediction.

• Danser (WWW2019) (Wu et al., 2019): proposes a dual graph attention network model 
to learn the representation of dual social effects in users and items.

• Graphrec+ (TKDE2020) (Fan et  al., 2020): is an improvement of Graphrec to better 
learn the representation of items in social recommendation by adding the modeling of 
item-item graph.

• GDSRec (TKDE2022) (Chen et al., 2022): treats rating bias as a vector and takes it into 
account in the process of modeling user- and item-related graph structure data.

• GNNDSR (DASFAA2022) (Lin et al., 2022): proposes GNN-based social models with 
dynamic and static representations to learn representations of users and items.

4.1.4  Parameter settings

This work uses RMSprop as an optimizer to optimize the objective function and the 
Dropout strategy to alleviate the overfitting problem during the model training. In this 
paper, 80% and 60% of the dataset are selected as the training datasets to train the model 
parameters, separately, and the rest of dataset is equally divided into a validation dataset 
for adjusting the hyperparameters and a test dataset for the final performance compari-
son. The learning rate and batch size are searched in 

{
10−5, 10−4, 10−3, 5 × 10−3

}
 and 

{64, 128, 256} , separately. The embedding size D is tested in {16, 32, 64, 128, 256} and 
the number of sample neighbors K is manually set in {10, 20, 30, 40, 50, 60} . The number 
of hidden layers of GRU is experimentally set to 4. DLREM will stop training if the 
sum of MAE and RMSE increases by 5 epochs in a row on the validation set.

(18)RMSE =

√
1

|T|
∑

(i,j)∈T

(
r̂ij − rij

)2
.
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4.2  Overall performance

Table 2 shows the performance comparison of the different methods for the rating predic-
tion task. Our observations from comparison and analysis are as follows.

• In the baseline methods, the GNN-based methods perform significantly better than the 
matrix factorization-based methods. This suggests that graph neural networks have 
very good learning abilities for graph-structural data representation.

• When the training set accounts for 80% of the dataset, DLREM outperforms all other 
baseline methods, proving the effectiveness of our model. Compared to the best base-
line model, our method improves the MAE and RMSE by 2.23% and 2.01% , sepa-
rately, on the Ciao dataset and by 1.02% and 0.47% , separately, on the Epinions dataset. 
Despite the small relative percentages of improvement, (Koren, 2008) points out that 
even minor improvements in MAE and RMSE can have a significant effect on recom-
mendation results in practice. The performance improvement is mainly attributed to 
the fact that our approach provides advanced components for modeling short-term user 
preferences and a novel method for constructing item correlation graphs.

• When the training set accounts for 60% of the dataset, in the baseline approach, 
DLREM is not optimal in the RMSE metric but still optimal in the MAE metric, which 
improves by 1.05% and 1.61% on the two datasets, separately. On the one hand, this is 
because noise may be introduced when capturing short-term preferences of users when 
the training data is small, RMSE is sensitive to outliers. On the other hand, this vali-
dates the effectiveness of our approach to capturing the short-term preferences of users. 
When the dataset is large enough, our method can accurately capture dynamic trends in 
user preferences and better learn latent factor representations of users, resulting in bet-
ter prediction results.

4.3  Ablation study

4.3.1  The effect of main components

To investigate the effectiveness of the different components of our model, it is com-
pared with the following variants. We only conduct ablation experiments when the 
training set comprises 80% of the dataset. 1) DLREM(Similarity): Replace the item 
graph construction strategy in our model with the similarity-based strategy in Gra-
phrec+ and GNNDSR. 2) DLREM-GRU: Only the long-term preferences of users are 
modeled. 3) DLREM-I: Remove the modeling of item attractiveness based on the effect 
of correlation relationships. 4) DLREM-U: Remove the modeling of user preferences 

Table 3  Effect of item graph 
construction strategy on Ciao and 
Epinions datasets

Comparison methods Ciao(80%) Epinions(80%)

MAE ↓ RMSE ↓ MAE ↓ RMSE ↓

DLREM(Similarity) 0.694 0.9653 0.8025 1.0693
DLREM 0.6681 0.9248 0.7946 1.058
Improv. 3.73% 4.19% 0.98% 1.05%
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based on social relationship influence. 5) DLREM-IU: Remove the modeling of rela-
tionship-based effect representations of users and items.

Table  3 shows that DLREM has better performance than DLREM(Similarity), 
which proves that the strategy of constructing the item graph in our method is more 
reasonable. Moreover, Fig. 3 shows that DLREM always outperforms DLREM-GRU, 
which suggests that capturing short-term preferences of users is meaningful. It is inter-
esting to note that we observe that DLREM-I consistently outperforms DLREM-U on 
both datasets. This suggests that the influence of the relationship between users has a 
bigger influence on the recommendations than the relationship between items. Mean-
while, DLREM-I and DLREM-U consistently outperform DLREM-IU, indicating that 
reasonably modeling the influence of user-side and item-side relationships can improve 
recommendation performance nicely. In conclusion, DLREM consistently and signifi-
cantly outperforms all variants, demonstrating the importance of capturing dynamic 
trends in user preferences as well as the efficacy of our approach in modeling the effect 
of item-to-item relationships.

4.3.2  The effect of attention mechanisms

To better understand our model, this section further evaluates the effect of attention 
mechanisms on modeling user and item representations based on relational influences. 
DLREM is compared with the following variants. 1) DLREM-� : Remove the learn-
ing module on user relationship heterogeneity and model the effect from user friends 
equally.2) DLREM-� : Remove the learning module on the heterogeneity of item rela-
tionships and model the effect from linked items equally. 3) DLREM-�&� : Remove 
both user-side and item-side relational heterogeneity learning modules.

The results in Fig.  4 show that all variants are less effective than the original 
model. This not only indicates that social relationships between users are heterogene-
ous, with different social friends having different influence weights on preferences of 
users, but also indicates that the influence of relationships between items is equally 
heterogeneous.

Fig. 3  Effect of different components on Ciao and Epinions datasets
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4.4  Parameter study

This section performs parameter sensitivity experiments on DLREM for key hyperparam-
eters. The number K of item neighbors is explored for its effect on performance, which is 
a key parameter in item correlation graph construction. In addition, the effect of parameter 
D on the performance is also investigated, which is the embedding dimension of users and 
items. We only conduct parameter sensitivity experiments when the training set comprises 
80% of the dataset.

4.4.1  The effect of parameter K

The results of the study about the parameter K are shown in Fig. 5. As the value of K grad-
ually increases, the performance of our model on both datasets first gradually improves, 
which indicates that a reasonable use of the influence of the relationship between items 
facilitates learning a better latent factor representation of the items, thus improving the 

Fig. 4  Effect of attention mechanisms on Ciao and Epinions datasets

Fig. 5  Effect of parameter K on Ciao and Epinions datasets, where K is the number of item neighbors in the 
item correlation graph
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performance of our model. However, when the value of K increases to a certain value, the 
performance of the model starts to degrade, probably because introducing too many item 
neighbors in the relationship graph introduces noise to the model. It is interesting to note 
that in the Ciao dataset, the turning point of K is 30, while in the Epinions dataset, the 
turning point of K is 50. This may be due to the fact that Epinions contains more items and 
interaction records, and therefore the influence of relationships with more associated items 
needs to be considered when modeling item latent factors.

4.4.2  The effect of embedding dimension

The embedding size D is also a key parameter that affects the performance and complex-
ity of the model, which is searched in {16, 32, 64, 128, 256} . As the experimental results in 
Fig. 6 show, it can be observed that as the embedding size gradually increases, both MAE 
and RMSE decrease to different degrees, and the model performance gradually improves, 
reaching a peak when the embedding size is taken as 128. However, as the embedding 
size increases further, the performance decreases, which indicates an overfitting situation. 
Therefore, we need to find a suitable embedding size D to balance the performance and 
complexity of the model.

5  Conclusion

This paper proposes DLREM that can enhance deep latent representations of users and 
items in social recommendation. Specifically, DLREM employs GAT to learn long-term 
and relationship-influence-based preferences of users from user-item and user-user graphs, 
separately, and employs gated recurrent units to capture short-term preference trends of 
users in user modeling, and finally fuses the preference representations from the three 
aspects to obtain the final latent factor representation of users. Moreover, DLREM con-
structs item-item graphs based on item category information and models user-item graphs 
and item-item graphs using GAT to obtain the final latent factor representation of items 
in item modeling. Extensive experiments on two public datasets show that our model out-
performs mainstream social recommendation models on the rating prediction task. In the 

Fig. 6  Effect of parameter D on Ciao and Epinions datasets, where D is the embedding dimension of users 
and items
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future, we will investigate the incorporation of more auxiliary information in the user and 
item learning processes to alleviate the issue of sparse data and improve the interpretability 
of recommendation results.
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