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Abstract
Based on the complex network, the relationship in the real complex system can be modeled,
and the bipartite network is a special complex network, which can describe the complex
system containing two kinds of objects. Although existing bipartite networks can model
complex systems, conventional methods are restricted to a couple of limitations. (1) The
dynamic interaction between nodes cannot be described over time. (2) The implicit features
of nodes in the network cannot be effectively mined. Based on these, this paper proposes a
dynamic bipartite networkmodel (DBN) tomodel the dynamic interaction between two types
of objects in real complex systems, and mine the structure features and preference features of
nodes in the network. First, the dynamic interaction between two types of objects in a complex
system is modeled as a dynamic bipartite network, which can reflect the interaction between
objects in each time slice. Then, the structure features and preference features of each time
slice are mined based on the dynamic bipartite network, where the structure features reflect
the dynamic structural changes of the nodes, and the preference features reflect the potential
preferences of the nodes. Finally, the features of each time slice are fused and input into the
gate recurrent unit model to predict the interaction between nodes. Extensive experiments
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are performed on a large-scale real complex system. The results show that DBN significantly
outperforms state-of-the-art prediction methods in terms of multiple evaluation metrics.

Keywords Complex system · Dynamic bipartite network · Structure feature · Preference
feature

1 Introduction

In recent years, with the rapid development of the Internet and big data, the amount of data has
grown exponentially. These data do not exist in isolation, and there is an intricate relationship
between them. Accurately characterizing complex relationships in data and predicting their
evolution is a major challenge in complex science. Currently, modeling relationships in
data based on complex networks is an effective means of analyzing complex systems. The
nodes of a complex network generally represent the objects in the complex system, and the
edges represent the association or interaction between the objects. Based on the complex
network model, the objective laws existing in the complex system can be explored, and the
behavioral features and social relationship features of human beings can be better recognized
and understood [1–3]. A bipartite network is a special complex network that contains two
different types of nodes. There are only edge relationships between different types of nodes
and no edge relationships between nodes of the same type [4, 5].

Many complex systems can be modeled as bipartite networks, such as user–item purchase
networks, user service recommendation networks, and author–paper citation networks [6,
7]. With the rapid growth in the number and interactions of objects in complex systems,
modeling these complex systems based on bipartite networks becomes a challenging task.
At present, the unweighted bipartite network and the weighted bipartite network are the
two main models of the bipartite network [8–13]. The unweighted bipartite network mod-
els do not consider the weights of interactions between objects when modeling complex
systems. The weighted bipartite network model needs to consider the weight of the inter-
action between objects, which can better reflect the strength of the interaction relationship.
Although the above-mentioned bipartite network models can model the interaction between
two types of objects in complex systems, the edge relationships in the bipartite network are
static and cannot reflect the dynamic changes of the interaction between objects in complex
systems over time. The interactions between two types of objects in real complex systems
will change dynamically over time, and these dynamic interactions will affect the possible
interactions between objects. Therefore, the study of dynamic bipartite network models is of
great significance for predicting the interaction between two types of objects in real complex
systems.

Traditional temporal networks are capable of capturing dynamic relationships between
objects. However, traditional temporal networks primarily involve modeling dynamic rela-
tionships between objects of a single type and cannot conduct a detailed investigation into the
dynamic nature of relationships between two sets of different objects. Currently, many tradi-
tional methods have achieved temporal interaction prediction between two types of objects
in complex systems, such as the methods based on improved collaborative filtering [14, 15],
matrix factorization [16, 17], and latent factor analysis [18, 19]. Although time series is intro-
duced in traditional methods to predict the interaction between two types of objects through
historical information, it still cannot reach the satisfaction of researchers. The underlying
reason is that these methods cannot effectively model the dynamic relationship between two
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types of objects in complex systems to achieve dynamic interaction prediction. Therefore,
how to model the dynamic interactions between two types of objects in complex systems and
predict future interactions is a challenging task. Based on this, this paper proposes a dynamic
bipartite network (DBN) to model the dynamic relationship between two types of objects
in real complex systems. Compared to temporal networks, DBN specifically emphasizes the
temporal evolution of interactions between two types of objects, providing a more refined
understanding of temporal dynamics when dealing with bipartite relationships. DBN excels
in accurately characterizing the dynamic relationships between two sets of objects within
complex systems, dynamically revealing the structure features of networks and the prefer-
ence features of nodes, offering valuable insights that extend beyond the scope of traditional
temporal network analyses. The main contributions of this paper are as follows:

(1) The dynamic bipartite networkmodel is proposed to effectivelymodel the dynamic inter-
actions between two types of objects in real complex systems, and to achieve effective
prediction of future interaction relationships between objects.

(2) The structure feature representationmethod and preference feature miningmethod based
on dynamic bipartite network are proposed, which can not only dynamically represent
the node structure, but also dynamically mine the node preference.

(3) Extensive experiments are conducted on a real complex system. The experimental results
demonstrate that DBN receives superior performance, comparing with competing meth-
ods in MAE and RMSE.

The content of this paper is primarily divided into seven sections. The first section outlines
the main objectives and contributions of this paper. The second section introduces four
works relevant to our research, encompassing the complex network, bipartite network model,
feature representation method, and attention mechanism. The third section formulates the
problem definition and motivation, presenting the key symbols and their descriptions. The
fourth section mainly introduces the proposed DBN model from three aspects: structure
feature representation, preference feature mining, and dynamic interaction prediction. The
fifth section details the experimental setup, including the dataset, evaluation metrics, and
competing methods. The sixth section conducts an in-depth analysis and discussion of the
experimental results. The seventh section summarizes the work presented in this paper and
provides future recommendations.

2 Related work

In order to facilitate the understanding of our DBN method, this section introduces related
research work on complex network, bipartite network model, feature representation method,
and attention mechanism.

2.1 Complex network

Complex networks serve as mathematical and computational models to characterize the
diverse interactions among entities or individuals within complex systems. These interac-
tions, to a certain extent, can reflect the structure, functionality, and evolutionary patterns
of the system. Based on complex network analysis, the information transmission mecha-
nism of the system can be revealed, the information propagation pathways between entities
can be predicted, and the relationship between the system structure and function can be
explored. With the increasing availability of information, real-world complex networks often
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incorporate attribute information describing nodes and their interconnections. Such net-
works, known as attributed networks, acknowledge the comparable significance of both node
attributes and topological structure. Various algorithms have emerged to integrate network
structure and node attributes for attributed graph clustering. For instance, Berahmand intro-
duced a novel method called depth attribute clustering with high-order proximity preserve
(DAC-HPP), which aims to better capture cluster structures in attributed graphs [20]. The
method integrates structural and attribute node information in a global, simultaneous, and
integrated manner, providing a unique solution for attributed graph clustering and advancing
the potential of research in this domain. Additionally, Berahmand extended the symmetric
nonnegative matrix factorization (SNMF) technique by proposing the weighted symmetric
NMF (WSNMF)method [21]. This approach constructs a similarity matrix based on attribute
vectors and seamlessly integrates it into the objective function using the Hadamard operator.
This method effectively blends topological and attribute information, leading to enhanced
clustering outcomes.

2.2 Bipartite networkmodel

A bipartite network is a network composed of two types of nodes, and there are only edges
between nodes of different types. Bipartite networks usually abstract objects in complex
systems as nodes and the relationship between two different types of objects as edges [22–
24]. Based on the bipartite network model, the objective laws existing in complex systems
can be analyzed, and based on the analysis results, scientific basis for relevant decisions can
be provided. For example, in a complex network based on the interaction between drug and
target, the drug and target are abstracted as nodes in a bipartite network, and the interaction
relationship is abstracted as edges. And based on network analysis methods such as link
prediction and network evolution, new interactions between drugs and targets are predicted
to provide a scientific basis for drug relocation [25, 26]. In recent years, the study of the
information propagation law of complex systems based on the bipartite network model has
attracted the attention. For example, link prediction based on the local structure of a bipartite
network can help to study the law of information propagation in complex systems [27, 28].
Therefore, the bipartite network can effectively model the interaction between two types of
objects in complex systems and conduct related application research.

2.3 Feature representationmethod

Feature representation can formally express and describe the features of things. In complex
networks, the features of nodes are usually initialized based on one-hot encoding techniques.
Taking the feature representation of a node as an example, only the value of the position
indicated by the node ID is assigned as 1, whereas the values of remaining positions are
set by 0. That is, the dimension of a node feature is equal to the number of all nodes of
the same type. For example, the NDMF model initializes the features of users and services
based on one-hot encoding, and then integrates user neighborhood selected by a collaborative
way into an enhanced matrix factorization model via deep neural network (DNN), achieving
excellent service recommendation performance [29]. The RNCF model firstly initializes the
features of users and services based on the one-hot encoding technique, then transforms the
latent features of users and services based on the embedding layer, and finally inputs the latent
features into the gate recurrent unit (GRU)model to implement user service recommendation
[30]. The feature representation based on the one-hotmethod is usually very sparse and cannot
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effectively express the features of nodes. Therefore, this paper represents node features based
on the neighbors of nodes, which can not only represent the structure features of nodes, but
also reflect the dynamic interaction over time.

2.4 Attentionmechanism

The attention mechanism can help the model distinguish important features and pay attention
to local important information to improve the performance of the model [31]. It is generally
reflected in the form of weights and is widely used in many fields such as node embedding,
natural language processing, and image analysis. For example, heterogeneous graph attention
network (HAN) obtains important nodes based on node-level attentions and important meta-
paths based on semantic-level attentions [32]. The node-level attention aims to learn the
importance between a node and its meta-path, while the semantic-level attention can learn
the importance of different meta-paths. The model can capture the complex structures and
rich semantics behind heterogeneous graph. In recommender systems, hierarchical attention
cooperative neural networks (HACN) model users and items separately based on the review
texts, and then enrich the feature representations of users and items from the review texts
based on two hierarchical attention mechanisms, respectively [33]. The model can adaptively
enhance the feature representation of users and items, make full use of effective information,
and reduce the interference of irrelevant information. Therefore, this paper distinguishes the
importance of features in different time slices based on the attention mechanism.

Themainmotivationof this paper is to accuratelymodel the dynamic relationships between
two types of objects in complex systems and dynamically extract potential features from the
network to achieve predictions of latent relationships among complex objects. Therefore, this
paper proposes a dynamic bipartite network model, aiming to accurately model the dynamic
relationship between two types of objects. The network can dynamically track the network
structure and reflect node preferences in real time, thereby enhancing the dynamics and
precision of feature representation, achieving accurate prediction of potential relationships
between complex objects.

3 Problem formulation

In this section, we first focus on the understanding of dynamic bipartite network model
by a set of formal definitions, which are explained by concrete examples. The main symbols
and descriptions of this paper are detailed in Table 1.

Definition 1 (Complex Network) The complex network can be defined as G = (V , E), where
V represents the set of nodes and E denotes the collection of edges between nodes. Com-
plex networks can effectively characterize various complex systems, including transportation
networks, financial systems, brain neural networks, and more. Complex networks provide a
powerful framework for studying the interactions and relationships between different compo-
nents in various systems, helping to better understand and optimize the structure and behavior
of complex systems.

Definition 2 (Unipartite Network) A unipartite network can be defined as Gun = (V , E),
where V represents the set of nodes of the same type and E represents the set of edges
between nodes. This network primarily characterizes complex systems composed of a single
type of object. For instance, social connections between individuals can be depicted by a
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Table 1 Symbols and their descriptions

Symbol Describe Symbol Describe

u and v Represents two types of nodes x Initialization feature

t Time slices l The type of edge

e The weight of edge q Structure features

W and U Parameter matrix b Bias

Q The structure feature of node pair S Similarity feature

p Preference feature P The preference feature of node pair

T Total feature w Attention weight

f Temporal feature r Forget gates

h Output of the GRU z Update gate

ŷ Prediction weight J Loss value

α Regularization term coefficient N The number of node pairs

⊕ Concatenation operation � Multiplication operation by element

Fig. 1 Examples of bipartite network, dynamic bipartite network, and motivation. In this context, u and v

represent nodes of different types, e denotes the weight of edge, t signifies time slices, and l indicates the type
of edge connecting nodes

unipartite network, where individuals are abstracted as nodes in the network, and social
relationships are abstracted as edges.

Definition 3 (Bipartite Network) A bipartite network is defined as Gbi=(U , V , E), where
U = {u1, u2, . . .} denotes one type of node, V = {v1, v2, . . .} denotes another type of node,
and E = {e1, e2, . . .} represents the edge between nodes in setU and set V . Complex systems
in the real world, composed of two types of objects, can be effectively described by bipartite
networks. For example, the purchase relationship between users and items is described as a
bipartite network, in which users and items are abstracted into different types of nodes in the
network, and the purchase relationship is abstracted into edges. An example of a bipartite
network is shown in Fig. 1a, whereU = {u1, u2}, V = {v1, v2, v3}, and E = {e1, e2, e3, e4}.
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Definition 4 (Dynamic Bipartite Network) A dynamic bipartite network is defined as GT =
(U , V , T , E), whereU = {u1, u2, . . .} denotes a type of node and V = {v1, v2, . . .} denotes
another type of node, T = {t1, t2, . . .} is a set of time slices and Et = {et1, et2, . . .} represents
the edge between U node and V node in different slices. In the real world, complex systems
composed of two types of objects typically evolve dynamically over time. The traditional
bipartite networks are no longer effective in modeling the dynamic relationships between two
types of objects. Therefore, we propose a dynamic bipartite network model to capture this
dynamism. For instance, the dynamic relationships between users and items can be abstracted
into a dynamic bipartite network, where users and items are represented as nodes in the
network, and the dynamic relationships between users and items are abstracted as dynamic
edges. An example of a dynamic bipartite network is shown in Fig. 1b, where U = {u1, u2},
V = {v1, v2, v3}, and Et1 = {et11, et12, et13, et14} in time slice t1. The dynamic bipartite
network can reflect the dynamic change of the edge relationship between nodes in different
time slices.

Definition 5 (Motivation) In a dynamic bipartite network GT , the motivation of this paper
is to extract the features of target node pairs u and v in time slices t1, t2, . . . tn , and predict
the edge relationship between u and v in time slice tn+1 based on these features. As shown
in Fig. 1c, this paper aims to predict the interaction between nodes u and v in time slice tn+1

based on the bipartite network of time slice t1, t2, . . . tn .

4 DBNmodel

The overall framework of DBN is illustrated in Fig. 2. The motivation of DBN is to predict
the interaction between nodes based on historical features. DBN consists of three indepen-
dent components, including structure feature representation, preference feature mining, and
dynamic interaction prediction. In structure feature representation, the structure features of
nodes are characterized based on the neighbors of each time slice, which can reflect the
dynamic structural information of nodes. In preference feature mining, the potential inter-
action preference of nodes is mined based on similarity, which can represent the potential
preference features of nodes. In dynamic interaction prediction, the structure features and
preference features are firstly concatenated, then the concatenated features are multiplied
by the attention weight of each time slice, and finally, these features are fed into the gate
recurrent unit (GRU) model to predict the interaction of node pairs in the next time slice.

4.1 Structure feature representation

The most intuitive feature of a node in a bipartite network is its connected neighbors. There-
fore, the initialization feature of the node in this paper is represented by the neighbors. Taking
the initialization feature representation of the u node as an example, the values of the positions
where the node has neighbors are assigned as 1, whereas the values of remaining positions
are set by 0. That is, the dimension of the u node feature is equal to the number of all v nodes.
Table 2 shows the initialization feature representation of u1 node in time slice t1, where the
number of v nodes is 6 and the feature dimension of u is 6. The u1 node is connected to v1,
v2, and v6, respectively, then the first position, the second position, and the sixth position
of the u1 feature are assigned as 1, and the other positions are 0. Based on this method, the
initialization feature xtu of node u and the initialization feature xtv of node v are obtained
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Fig. 2 Overall framework of DBN. First, a DBN is constructed based on different time slices. Then, structure
feature representation and preference feature mining are performed. Finally, dynamic interaction prediction
is performed based on temporal features and GRU model

Table 2 Feature representation of nodes

U V Temporal slice Initialization feature (xu ) Weight (eu ) Structure features (qu )

u1 v1, v2, v6 t1 110,001 0.2,0.8,0,0,0,0.5 0.2 0.8 0 0 0 0.5

u1 v1, v3, v6 t2 101,001 0.1,0,0.2,0,0,0.1 0.1 0 0.2 0 0 0.1

u2 v4, v5 t1 000,110 0,0,0,0.2,0.1,0 0 0 0 0.2 0.1 0

u2 v1, v3, v6 t2 101,001 0.5,0,0.3,0,0,0.6 0.5 0 0.3 0 0 0.6

in time slice t . This method can not only represent the interaction information of nodes in a
certain time slice, but also reflect the dynamic interaction changes of nodes over time.

To further represent the structure features of nodes, this paper introduces the weight
feature et based on the initialization feature. Specifically, etu represents the weight of the
edge between node u and its neighbors in time slice t , and the weight of no edge is 0. Based
on the product of the initialization feature xtu and the weight etu , the structure feature qtu of
u is obtained in the time slice t . Similarly, the structure feature qtv of v can be obtained. The
specific formulas are shown in (1)–(2).

qtu = xtu � etu (1)

qtv = xtv � etv (2)
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where � means that each corresponding entry in the two feature vectors is multiplied. As
shown in Table 2, there are edges between u1 and v1, v2, v6 in the time slice t1, and the
corresponding weights are 0.2, 0.8, 0, 0, 0, 0.5, respectively. Based on the product, the
structure feature qt1u1 of u1 is obtained.

Since nodes in real bipartite networks have fewer neighbors, the structure features of nodes
are relatively sparse. To transform a high-dimensional and sparse structure feature vector into
a densely low-dimensional one, a fully connected network is used to perform dimensionality
reduction, which is formalized as (3)–(4).

q ′
tu = σ

(
Wq

tuqtu + bqtu
)

(3)

q ′
tv = σ

(
Wq

tvqtv + bq
tv

)
(4)

where σ is the activation function based on Relu, Wq is the learning parameters, and bq is
the bias. After performing the dimensionality reduction, the features of u node and v node
are concatenated to obtain the structure feature Qtuv of the node pair u-v in time slice t .
Specifically, it is formalized as (5).

Qtuv = q ′
tu ⊕ q ′

tv (5)

where⊕ represents the concatenation operation of two feature vectors. The structure features
can not only represent the structural information of nodes, but also reflect the dynamic
structural changes of nodes in different times.

4.2 Preference feature mining

In a bipartite network, the similarity between nodes of the same type may have an impact
on the interactions between nodes of different types. For example, there is an interaction
between node u1 and node v1, while node v1 and node v2 are similar, and there may be
potential interactions between node u1 and node v2. Based on this, this paper proposes
a preference feature mining method based on the similarity of nodes. First, the similarity
between nodes of the same type is measured based on structure features. Then, the preference
relationship between nodes is established based on similarity, where the weights correspond
to the similarity coefficients. Finally, based on the structure feature representation method,
the preference features Ptu and Ptv of node u and node v in time slice t are represented.

An example of preference feature mining in time slice t is shown in Fig. 3. First, the
similarity feature Stu1 of u1 is obtained based on the feature similarity between u1, u2, and
u3. Then, the similarity feature Stv1 of v1 is obtained based on the feature similarity between
v1, v2, v3, and v4. Due to the interaction between u1 and v1 in the original data, there may
be preference relationships between u1 and v2, v3, v4 (v2, v3, v4 are similar nodes of v1),
and there may be preference relationships between v1 and u2, u3 (u2, u3 are similar nodes of
u1). The weights of the preference relationships in this paper correspond to the elements of
the similarity feature. The similarity between u1 and u2, u3 is 0.4, 0.2, respectively, and the
weight of preference relationship between v1 and u2, u3 is 0.4, 0.2. The similarity between
v1 and v2, v3, v4 is 0.5, 0.1, 03, and the weight of the preference relationship between u1
and v2, v3, v4 is 0.5, 0.1, 03. There is an interaction between u1 and v1 in the original data.
Therefore, the weight of the preference relationship between them is 1. Finally, based on
the structural feature representation method, the preference feature Ptu1 of node u1 and the
preference feature Ptv1 of node v1 are represented in time slice t , where Ptu1 is equal to Stv1,
and Ptv1 is equal to Stu1.
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Fig. 3 An example of preference feature mining in time slice t . In this context, u and v denote nodes of distinct
types; S represents similarity features, P represents preference features, and t signifies the time slice

The similarity between nodes of the same type is calculated based on structure features
and Pearson correlation coefficient (PCC), as shown in formula (6).

sim(x, y) =
∑n

i=1 (xi − x̄) (yi − ȳ)
√∑n

i=1 (xi − x̄)
∑n

i=1 (yi − ȳ)
(6)

where x and y represent two nodes of the same type, i represent the position of the feature,
and x̄ and ȳ represent the feature mean. Based on similarity calculation, the similarity feature
Stu of u node in time slice t and the similarity feature Stv of v node in time slice t are obtained.
Based on the similarity feature Stv , the preference feature ptu of the node u in the time slice
t is represented, as shown in formula (7). Similarly, the preference feature ptv of node v in
time slice t can be obtained, as shown in formula (8).

ptu = Stv (7)

ptv = Stu (8)

Due to the large number of nodes in a real bipartite network, the preference feature vector
is high-dimensional. To transform a high-dimensional feature vector of a preference feature
into a densely low-dimensional one, a fully connected network is used for dimensionality
reduction, as shown in formula (9)–(10). The preference features of u and v are concatenated
to obtain the preference feature Ptuv for node pair u-v in time slice t , as shown in formula
(11).

p′
tu = σ

(
W p

tu ptu + bp
tu

)
(9)

p′
tv = σ

(
W p

tv ptv + bp
tv

)
(10)

Ptuv = p′
tu ⊕ p′

tv (11)

where σ is the activation function based on Relu, WP is the learning parameters, bP is the
bias, and ⊕ represents the concatenation operation of two feature vectors. The preference
features can reflect the interaction preferences of nodes and provide personalized information
for potential interactions.
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4.3 Dynamic interaction prediction

Based on the structure feature Qtuv and the preference feature Ptuv of the node pair u–v
in the time slice t , the total feature Ttuv of the time slice t is obtained by concatenation, as
shown in formula (12).

Ttuv = Qtuv ⊕ Ptuv (12)

This paper predicts the interaction based on the features of node pairs in different time
slices. The features of different time slices have different effects on the interaction predic-
tion. Therefore, an attention mechanism is introduced to learn the importance of features in
different time slices. Based on the adaptation of the neural network, the attention weights
of features in different time slice are automatically learned. The attention weight wt in the
time slice t is obtained by learning, and the temporal feature ftuv is obtained based on the
attention weight wt and the total feature Ttuv , as shown in formula (13).

ftuv = wt Ttuv (13)

In this paper, the temporal feature ftuv is fed into the gate recurrent unit (GRU) model to
mine implicit information. Given a time slice t , the extraction process of implicit information
is expressed as formula (14).

rt = σ (Wr ftuv +Urht−1) (14)

where ftuv represents the temporal feature of the time slice t , σ is the activation function,
and the forget gates rt are calculated by the current input ftuv , the weight coefficients Wr

and Ur , and the output ht−1 of the previous time slice. At the starting time slice t0, ht−1 is a
randomly initialized feature vector. Based on the rt in the above formula, h̃t of the time slice
t can be calculated, and the formula is shown in formula (15).

h̃t = tanh (W ftuv +U (rt � ht−1)) (15)

where� representsmultiplication operation by element.When rt is close to 0, the information
of the current state is the main; when rt is close to 1, the information in the historical data
needs to be retained, and the input information at the current state is ignored. A weighting
factor zt is learned based on h̃t of the above state, and the features of the current output are
updated according to the weight, as shown in formula (16) and (17).

zt = σ (Wz ftuv +Uzht−1) (16)

ht = (1 − zt ) � ht−1 + zt � h̃t (17)

where zt is the updating weight to be learned in model training and ht is the output result
of the GRU in time slice t . The final feature vector hk is output based on a set of GRUs.
Then the edge weight ŷ between node u and node v is obtained based on the fully connected
network, as shown in formula (18).

ŷ = Relu (Whk + b) (18)

where W and b are the learned parameters from model training, respectively.
Since the weight prediction between node u and node v is a regression problem, mean

squared error (MSE) is taken as the optimization objective, and its objective function is as
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formula (19).

J = α∗ 1

N

N∑

i=1

(
yi − ŷi

)2 + (1 − α)∗
∑

j

w2
j (19)

where ŷi is the model prediction weight between node u and node v, yi is the real weight
between node pairs, N is the number of node pairs, w j is a parameter value in the model;∑

j w
2
j is the regularization term of the model, which is used to avoid overfitting in model

training; α is used to balance the importance of the regularization term and is generally set
to a value approximately close to 1 after iterative validation in experiments.

5 Experimental setup

This paper performs experiments on aworkstation equippedwith Intel XeonGold 6132CPU,
NVIDIA GeForce GTX 1080Ti GPU, and 192 GB RAM. The DBN module is implemented
by Python 3.8.3 with PyTorch 1.11.0.

5.1 Dataset

This paper conducts experiments based on the Rtdata dataset in WS-Dream [34], which is a
real-world service invocation dataset including 27,392,643 invocation records for 142 users
and 4,500 web services. The invocation records between users and services are divided into
64 different time slices. The divided training datasets span from 5 to 20% with a density
interval of 5%. Because the invocations between users and services in the real world are very
sparse, this kind of partitioning on dataset can simulate the realistic application situation as
much as possible.

5.2 Evaluationmetrics

The weight prediction of edges between nodes in this paper is a regression problem. Mean
absolute error (MAE) and root mean square error (RMSE) were used as evaluation metrics
to measure the accuracy of predictions in the experiments. MAE is defined as formula (20).

MAE =
∑

uv

∣∣yuv − ŷuv

∣∣

N
(20)

where yuv represents the true weight of edge between node u and node v, ŷuv is the predicted
value, and N is the number of samples. The MAE is linear to the deviation of prediction
value, and all individual differences are weighted equally in the average. Therefore, MAE
cannot well reveal outliers with large deviations between the predicted value and the true
value. To this end, outliers with large deviations between the predicted and true values are
measured based on RMSE. RMSE is defined as formula (21).

RMSE =
√∑

uv

(
yuv − ŷuv

)2

N
(21)

In the experiments, MAE reflects the overall accuracy of prediction, which averages
absolute deviations to the original values. Compared with MAE, RMSE is more sensitive to
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individual outliers by representing a relatively higher weighting to large errors on predicted
values.

5.3 Competingmethods

To evaluate the effectiveness of DBN, eight state-of-the-art methods are used, including
CLUS, TMF, PLMF, RTF, K-SLOPE, NRCF, TUIPCC, and DeepTSQP. They are described
as below.

CLUS [35]: CLUS excels in predicting the reliability of atomic web services, serving as a
dedicated reliability prediction model for such services. It estimates the reliability of ongoing
service invocations based on data collected from previous invocations. In comparison with
othermethods, CLUS strength lies in addressing unique challenges related to the reliability of
individual web services by combining the user, service, and environment specific parameters
of the invocation context.

TMF [36]: TMF, based on the integration of QoS time series, offers a two-phase QoS
prediction for cloud service recommendations. This approach is a time-aware matrix factor-
ization model that takes service invocation time as a dynamic factor in the model, and then
predicts missing QoS values based on adaptive matrix factorization, thereby recommending
high-quality services to target users. In comparison with other methods, TMF integrates time
awareness into QoS prediction for cloud services, enhancing the accuracy of recommenda-
tions in dynamic cloud environments.

PLMF [37]: PLMF is a matrix factorization method based on personalized LSTM,
designed for predicting online service recommendations, particularly suitable for real-time
and personalized prediction scenarios. This approach can capture the dynamic latent feature
representations of multiple users and services, and predictionmodel can be updated in time to
handle emerging data. In comparison with other methods, PLMF dynamically updates latent
features based on current observations, limited historical data, and some long-term retained
information, enabling personalized and customized online QoS prediction services.

RTF [38]: RTF is a novel time-aware recommendation method based on deep learning,
capable of capturing both long-term and short-term dependency patterns between users and
services. Its primary focus is on addressing challenges related to the processing of new data
and the difficulty in capturing dynamic long-term dependency patterns. The approach is based
on personalized gated recurrent unit (PGRU) and generalized tensor factorization (GTF)
to memorize long-term and short-term dependency patterns between users and services,
and through comprehensive analysis predict unknown invocation. In comparison with other
methods, RTF can integrate tensor factorization with deep learning to deliver time-aware
service recommendations, effectively memorizing the dynamic temporal behavior of users
and significantly alleviating the problem of data sparsity in real world.

K-SLOPE [39]: K-SLOPE is a time-aware web service recommendation system designed
to address the impact of time effects on user choices. Thismethod combines the k-means clus-
tering algorithm with Slope-One collaborative filtering prediction technology to effectively
provide service recommendations for the target user. In comparison with other methods, K-
SLOPE excels in integrating time-aware user clustering with multi-valued QoS prediction
for web service recommendations, thereby enhancing the quality of recommendations.

NRCF [30]: RNCF is a recurrent neural network based collaborative filtering for QoS
prediction in the Internet of Vehicles (IoV). It primarily addresses the dynamic variations in
QoS values within the context of the Internet of Vehicles (IoV), stemming from objective
factors like changes in the physical environment and network conditions. This method adds a
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multilayer GRU structure to the framework of neural collaborative filtering, which canmodel
the dynamic state of the physical environment or network conditions. At the same time,
this method can share invocation records in different time slices. In comparison with other
methods, RNCF excels in mitigating data sparsity issues by leveraging historical invocation
records from different time slices. It also demonstrates robust feature mining capabilities in
capturing the latent representations of multiple users and services.

TUIPCC [15]: TUIPCC is an improved collaborative filter based missing QoS prediction
approach, designed to cope with the timeliness characteristics of QoS values. This method
can not only filter out historical QoS values with good timeliness to accurately represent the
current network environment, but also consider valuable information from time historical
QoS values. This method achieves accurate missing QoS prediction based on a time-aware
collaborative filtering mechanism. In comparison with other methods, TUIPCC minimizes
the impact of dynamic application environments to the greatest extent possible and selects
genuinely similar users (or services).

DeepTSQP [40]: DeepTSQP is a QoS predictionmethod based on deep learning, designed
to address the issue of temporal-aware service QoS prediction by dynamic feature represen-
tations of users and services. This method can reflect the dynamic temporal feature of a
user and a service along with the variations of interactive invocations over time. Moreover,
GRU is applied to mine temporal aggregated features across multiple time slices, which
can more effectively capture the implicit nonlinear relationship between users and services,
thereby improving the performance of service QoS prediction. In comparison with other
methods, DeepTSQP excels in precisely represent the features of users and services at each
time slice, enabling comprehensive temporal-aware service QoS prediction based on deep
neural networks.

6 Results and discussion

In this section, we verify the prediction performance of our proposed method. Compared
with existing prediction methods, our proposed method has better performance.

6.1 Comparison of model performance

After the model training is completed, the test samples are input into the model to obtain
the prediction results, and then compared with the state-of-the-art method in terms of MAE
and RMSE, whereMAE represents the prediction accuracy and RMSE represents the predic-
tion stability. Table 3 shows the experimental results compared with state-of-the-art methods
in terms of MAE and RMSE. At a specific density of 0.1, TUIPCC achieves excellent perfor-
mance on both MAE and RMSE, but does not hold well at the remaining densities. Overall,
among all state-of-the-art competing methods, DeepTSQP performs the best at different
densities in terms of MAE and RMSE. However, it can be observed that our proposed DBN
method outperforms the most effective one DeepTSQP, which has the highest prediction
accuracy among all competing methods. The main reason can be explained by the follow-
ing two aspects. First, structure features and preference features can reflect the changes of
interaction and the preference of interaction. The latent features of nodes can be effectively
mined based on structural features and preference features. Second, an attention mechanism
is introduced to distinguish feature importance in different time slices, providing important
features for the model.
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Table 3 Experimental results compared to competing methods

Methods Density = 5% Density = 10% Density = 15% Density = 20%
MAE RMSE MAE RMSE MAE RMSE MAE RMSE

CLUS 0.7842 1.8921 0.7542 1.903 0.735 1.9046 0.7185 1.8948

TMF 0.7801 1.7698 0.5802 1.4079 0.8315 2.1847 0.7132 1.6593

PLMF 0.7267 1.7059 0.6786 1.6126 0.6582 1.5749 0.6444 1.5525

RTF 0.7896 1.8613 0.5772 1.2218 0.8253 2.0935 0.6917 1.6419

K-SLOPE 0.8127 1.9363 0.6082 1.3394 0.8581 2.3516 0.7536 1.7115

NRCF 1.048 1.616 1.010 1.546 0.974 1.503 0.958 1.470

TUIPCC 0.7814 1.7761 0.5767 1.2076 0.8196 2.0595 0.6970 1.6358

DeepTSQP 0.6980 1.5937 0.5794 1.4572 0.5202 1.3366 0.4526 1.2140

DBN 0.5483 0.7407 0.4845 0.7621 0.4161 0.6794 0.4222 0.7316

Fig. 4 Importance analysis of structure feature and preference feature. The three lines, respectively, represent
the performance of preference features, structure features, and temporal features as input under different
density conditions. The results show that temporal features based on the concatenation of structure features
and preference features can achieve the best prediction performance

6.2 Analysis of structure feature and preference feature

In this paper, based on the concatenation of structure feature and preference feature as
temporal feature, we analyze the impact of structure feature and preference feature on the
prediction performance of DBN. There are mainly three situations: (1) based on structure
feature as temporal feature; (2) based on preference feature as temporal feature; and (3)
the concatenation of structure feature and preference feature proposed in this paper is used
as temporal feature. The results are shown in Fig. 4. The temporal feature based on the
concatenation of structure feature and preference feature can achieve the best prediction
performance. The main reason is that the method can not only extract the structure feature
of node pair in each time slice, but also mine the preference feature of node pair. Compared
with the preference feature, the structure feature can effectively mine the change law of the
interaction between nodes in a bipartite network. The preference feature only considers the
similarity between nodes and cannot capture the dynamic changes of interactions. Therefore,
the structure features and preference features are concatenated as temporal features.
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Fig. 5 Impact of attention on performance. The four lines, respectively, represent the performance of adaptive
attention, linear attention, nonlinear attention, and non-attention in weighting temporal features under dif-
ferent density conditions. The results show that adaptive attention weighting can achieve the best prediction
performance

6.3 Analysis of attention

In this paper, we analyze the impact of attention on prediction performance by comparing
non-attention and three kinds of attention, where the three kinds of attention are: (1) the adap-
tive attention based on model learning; (2) the linear attention 1

t based on manual definition;
and (3) the nonlinear attention 1

et based on manual definition, where t represents the time
slice. As shown in Fig. 5, the adaptive attention can achieve the best prediction performance
compared to the other two kinds of attention and non-attention. The main reason is that the
adaptive attention can automatically learn the importance of features in different time slices.
The self-defined attention mechanism measures the importance of features based on the dis-
tance of historical time slices and cannot automatically learn the importance of features in
each time slice. The DBN model without attention mechanism shows the worst prediction
performance, which shows that the introduction of attention in this paper is reasonable.

6.4 Performance impact of time slices and density

To analyze the performance impact of the proposed method DBN on MAE and RMSE,
a set of experiments are carried out by sampling the density and time slices of the dataset.
The data density spans from 5 to 20%, and the interval is set by 5%. Meanwhile, the size of
the time slice is set from 1 to 64, where the interval is set by 8. The performance impact of
time slice and density on MAE and RMSE is shown in Fig. 6. It is observed from the results
that DBN can achieve excellent prediction performance in the case of high data density and
short time slice as well as in the case of low data density and long time slice. The main
reason can be explained by the following two aspects. On the one hand, in case of low
sample data density, prediction cannot be effectively performed by the current time slice due
to the insufficient provision of invocation records between users and services. Therefore, the
influence of a larger time slice is beneficial to positively provide more feature information
for mining the implicit potential relationship between users and services, yielding to better
prediction accuracy. On the other hand, when the sample data density is high enough, there is
adequate information in the current time slice for accurate prediction, where the incorporation
of temporal features may conversely reduce the prediction accuracy.
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Fig. 6 Performance impact of time slice and density in terms ofMAE andRMSE. This experiment analyzes the
trend of model performance as the density increases from 5 to 20% over time slices. The two curves represent
two evaluation metrics: MAE and RMSE. The results show that DBN consistently achieves outstanding
prediction performance, whether in scenarios with high data density and short time slices or in situations with
low data density and long time slices

7 Conclusion

In this paper, we propose a dynamic bipartite network to model the dynamic interaction
between two types of objects in a complex system, and predict the interaction based on
the structure features and preference features of nodes in different time slices. This method
mainly has the following innovations:

(1) The dynamic bipartite networkmodel (DBN) is proposed to describe the dynamic interac-
tion between two types of objects, and to realize the dynamic modeling of the interaction
over time.

(2) The structural feature representation method and preference feature mining method are
proposed, which can represent implicit features of nodes.

(3) The importance of features in different time slices is distinguished based on the attention
mechanism, which provides important feature information for model prediction.

Specifically, the model can describe the dynamic interaction between two types of objects
in complex systems. At the same time, structure features can reflect the dynamic structural
changes of nodes, and preference features can reflect the potential interaction preferences
of nodes. The concatenation of structure features and preference features can effectively
represent the implicit features of nodes in bipartite networks. In addition, the importance of
features in different time slices can be distinguished based on attention, and the nonlinear
relationship implicit in the features can be captured based on the GRU model to achieve
effective prediction of node interactions. Extensive experiments have been conducted on a
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real complex system consisting of users and services. The results show that DBN can receive
superior accuracy of prediction comparedwith state-of-the-art benchmarkingmethods. Based
on the research in this paper, the following future suggestions are proposed: 1. A dynamic
bipartite network modeling method that more accurately characterizes complex systems will
be proposed to effectively capture and model the complexity and dynamics of the system.
2. Data augmentation and model pre-training methods that combine specialized domain
knowledge will be explored to develop a more general and powerful prediction framework.
3. Personalized predictionmodelswill be studied basedonuser behavior, personal preferences
and contextual information to improve the overall service recommendation experience for
users. 4. Real-time adaptation strategies of the model in response to dynamic changes will
be explored to construct a more resilient and responsive service recommendation prediction
system.
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