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Connected vehicles due to the high mobility and dynamic network topologies of connected vehicles require
accurate QoS that includes high throughput and low latency to assess satisfactory QoE. Existing methods
mainly focus on centralized QoS prediction while paying little attention to distributed mobile QoS prediction,
making it challenging to protect user privacy information when invoking Web services. Moreover, even
though some advanced centralized methods can be transformed into federated architectures, they often face
difficulty in capturing latent feature representations of users and services and learning personalized prediction
layers between them due to the heterogeneity of the QoS dataset. To address the above issues, we propose a
novel framework for distributed QoS prediction, called Combining Personalized Federated Hypernetworks and
Shared Residual Learning for Distributed QoS Prediction (FHR-DQP). FHR-DQP adopts the federated averaging
(FedAvg) to aggregate location-aware residual shared feature information across all clients. Additionally, a
hypernetwork is leveraged to generate personalized networks for user-service QoS prediction in each client.
These components are integrated as a hybrid framework that performs training using a federated approach and
makes personalized QoS predictions within each client. Extensive experiments are conducted on a real-world
benchmark QoS dataset called WS-DREAM, containing nearly 2,000,000 historical QoS invocation records.
Compared with both centralized and federated competing baselines, the results demonstrate that FHR-DQP
achieves the highest performance for distributed QoS prediction, when it provides privacy-preserving of users’
QoS invocations.
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1 INTRODUCTION
With the rapid advancement of Web 3.0 and 5G edge artificial intelligence technologies, there has
been a substantial increase in the number of Internet of Things (IoT) applications. These applications
often have strict requirements for high throughput and low latency, where the resourcemanagement
poses substantial challenges due to their highmobility and the dynamic nature of network topologies.
Frequent changes in network topology and connection interruptions complicate the maintenance
of the Quality of Experience (QoE) that users expect [7, 13, 38]. To address the needs of end users,
various standardization bodies and organizations are actively involved in developing frameworks for
immersive content consumption systems and metaverses, particularly in the context of Augmented
Reality (AR) and Virtual Reality (VR). In the realm of AR/VR immersive media consumption,
enhancing the QoE of users’ invoking services is of great importance [2, 29]. Web services, a
fundamental component of Service-Oriented Architecture (SOA), encompass functions such as
service discovery, selection, composition, recommendation, and mashup creation for facilitating
downstream tasks [5, 6, 8, 27, 49]. However, due to different service providers offering a multitude
of similar or functionally equivalent Web services, it makes difficulty in selecting satisfactory Web
services to meet user QoE in practical scenarios for service consumers in real-world scenarios, such
as IoT [1, 18]. To adequately meet user QoE, it is critical to predict vacant QoS value and assess the
user’s QoS expectations when invoking Web services.
Quality of Service (QoS) is commonly used as a critical factor in describing the non-functional

characteristics of network services and plays an important role in selecting Web services with
similar or equivalent functionality. Specifically, QoS includes response time (RT), throughput (TP),
availability, cost, etc. Due to the dynamic network environment and heterogeneous geographical
locations, users may observe diverse QoS values when invoking the same Web service. Moreover, it
is also impractical and time-consuming for users to invoke all Web services in a constantly evolving
network environment and record their corresponding QoS values. Therefore, predicting missing
QoS values based on sparse user-service QoS historical invocation records and applying them to
downstream SOA scenarios has become a research hotspot [4, 23]. Fig. 1 shows an intuitive real-
world example that simplifies the cloud-edge-client computing paradigm for understanding the core
components involved. It illustrates two distinct ways of predicting QoS: centralized (represented
by the red line) and distributed (represented by the yellow line). In scenarios where service users
operate terminal devices such as smart cars, mobile phones, and watches to invoke Web services,
these devices generate QoS invocation records.

In the centralized QoS prediction (CQP), client-generated QoS data is typically uploaded directly
to the central cloud center. Here, the cloud aggregates QoS invocation records from all service users
and employs collaborative filtering techniques to learn a QoS prediction model from the collected
dataset. Subsequently, it predicts QoS values for all unknown service invocations. However, this
direct data transmission approach in CQP may lead to data leakage during the transfer process,
compromising users’ privacy. Conversely, in the distributed QoS prediction (DQP), after terminal
devices generate QoS data, each service user trains a QoS prediction model using the collected local
QoS invocation records, and then uploads the trained gradient information to the cloud center. The
cloud center aggregates these gradients, using methods such as averaging or weighted averaging
[30], and propagates the aggregated gradient information back to each service user. By doing so,
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Fig. 1. An intuitive real-world example that illustrates the differences of centralized and distributed QoS
prediction

it helps build a shared bridge for collaborative filtering, enabling continuous parameter updates
for each model until global convergence. Thus, a service user can make local QoS predictions for
unknown service invocations. In addition, techniques such as differential privacy or homomorphic
encryption are often employed to further enhance the security of gradient transmission during the
cloud parameter aggregation.
Collaborative filtering (CF), as the most important technique, has received many research in-

vestigations to predict the vacant QoS values. CF-based QoS prediction can be categorized into
memory-based and model-based approaches. Memory-based CF approaches first calculate similarity
to generate similar neighborhoods of users or services, and then predict the unknown QoS based
on the similar user/service historical QoS invocations [35]. However, these kinds of methods are
highly dependent on data sparsity, and their performance is unsatisfactory when dealing with
low-density QoS datasets in real-world application scenarios. To alleviate the issue of data sparsity,
model-based methods represent the features of users and services in the latent space instead of using
historical QoS invocations directly. Specifically, these kinds of approaches begin by projecting users
and services independently into the latent space and then connecting their latent features using
downstream operations such as dot product in matrix factorization [20, 46], multilayer perceptrons
(MLP) in neural collaborative filtering [12, 41, 53, 54], etc.

Although existing model-based CF methods improve QoS prediction performance, they still
suffer from twofold deficiencies. First, most conventional methods primarily concentrate on cen-
tralized QoS prediction problems, where user-service history QoS invocations are aggregated in a
centralized manner for model training, instead of distributing service records among users. As a
result, distributed QoS prediction has not been considered, making it challenging to protect the QoS
privacy information of users. Second, despite some model-based methods having adopted various
advanced deep learning models for QoS prediction, they have difficulty adapting to federated archi-
tectures and accurately extracting latent features of users and services. Especially in the case of the
non-IID dataset, the local optimization directions of various clients will deviate from the global
optimum, resulting in client drift phenomena [26]. It is observed that the existing models in the
federated environment lack deep shared feature extraction and personalized prediction networks
for data disparities across clients facing the non-IID QoS dataset, reducing the accuracy of QoS
prediction. Therefore, existing model-based CF methods in terms of considering privacy-preserving
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cannot effectively learn latent features and personalized interactions of users and services in the
non-IID QoS dataset for better distributed QoS prediction performance.

To address the above issues, we propose a novel personalized federated learning framework for
distributed QoS prediction named Combining Personalized Federated Hypernetworks and Shared
Residual Learning for Distributed QoS Prediction (FHR-DQP). The framework mainly consists of an
initialization phrase and three mutually cooperating modules. Initially, each client collaboratively
performs model training based on shared and personalized parameters transmitted by the server.
At the beginning, the client uploads the locally trained user-service shared feature extraction layer
to the server, and the server performs federated averaging (FedAvg) on these shared parameters,
where an advanced centralized residual QoS prediction model proposed by us [54] is utilized that
considers the location information of users and services. Subsequently, the client selectively uploads
the locally trained parameter difference of personalized prediction layer to the server, and the server
employs a hypernetwork to generate updated personalized prediction layer parameters individually
for each client. The above processes including shared feature extraction and personalized network
generation are repeated until global convergence. Finally, we apply the co-trained client network
to predict unknown QoS values in a distributed manner, where each client has shared feature
extraction and personalized prediction layers for better non-IID QoS prediction performance.

To evaluate the effectiveness of FHR-DQP for distributed QoS prediction, extensive experiments
have been conducted on a public large-scale dataset called WS-DREAM, which consists of a total
number of 1,974,675 historical user-service QoS invocations [52]. By comparing FHR-DQP with ten
federated and centralized competing baselines, the results validate that our proposed FHR-DQP
receives the best prediction accuracy on both MAE and RMSE.

The main contributions of this paper are summarized as follows:
• We propose a novel federated personalized framework for distributed QoS prediction. It
independently generates personalized network parameters on the server, which protects the
privacy information of QoS invocations.
• To improve the accuracy of distributed QoS prediction, we extract shared features by federated
aggregation with residual learning to more effectively reveal the QoS characteristics, and
leverage a hypernetwork to yield personalized network parameters on the server to alleviate
the heterogeneity of QoS invocations across multiple users.
• Extensive experiments are conducted on a large-scale real-world QoS dataset. The experimen-
tal results demonstrate that the proposed FHR-DQP remarkably outperforms state-of-the-art
federated approaches for distributed QoS prediction, even surpassing centralized baselines in
the low-density QoS dataset.

The remainder of this paper is organized as follows. Section 2 defines and formulates the
distributed QoS prediction problem. Section 3 illustrates the overall framework of FHR-DQP and
elaborates on its components. Section 4 shows and analyses the experimental results. Section 5
reviews the related work. Section 6 discusses the computational complexity, limitations and future
works. Finally, we conclude the paper in Section 7.

2 PROBLEM FORMULATION
In this section, we focus primarily on the understanding of distributed QoS prediction problem by
giving a set of formal definitions, clarifying what the solution is to a distributed QoS prediction
problem.

Definition 1 (Web Service). We focus on evaluating the non-functional properties of each Web
service for QoS prediction. Let 𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑚} be a set of Web services where 𝑠 is described by
a five-tuple 𝑠 =< 𝐼𝐷, 𝑅𝐺,𝐴𝑆, 𝐿𝑎𝑡, 𝐿𝑜𝑛 >. In this tuple, 𝐼𝐷 identifies the service, while the other
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attributes collectively represent the location information, including region (RG), autonomous
system (AS), latitude (Lat), and longitude (Lon).
Definition 2 (Service User (Client)). A service user is someone who has used one or more

Web services. Let𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑛} be a set of users where each 𝑢 is characterized by a five-tuple
𝑢 =< 𝐼𝐷, 𝑅𝐺,𝐴𝑆, 𝐿𝑎𝑡, 𝐿𝑜𝑛 >. Here, 𝐼𝐷 identifies the user and the remaining attributes can be
collectively regarded as representing the location information.

Definition 3 (User-Service Invocation Record). A user-service invocation record is defined as
a three-tuple < 𝑢, 𝑠,𝑦𝑢,𝑠 >, where 𝑢 ∈ 𝑈 has invoked a Web service 𝑠 ∈ 𝑆 , with 𝑦𝑢,𝑠 representing the
QoS value. A user-service invocation set𝑌 can be obtained by aggregating all the invocation records
among users, where each row represents a user’s QoS values for Web service invocations, and each
column represents the QoS values of a service invoked by service users. A tuple < 𝑢, 𝑠,𝑦𝑢,𝑠 > is an
element of 𝑌 if the user 𝑢 has invoked the service 𝑠 , otherwise < 𝑢, 𝑠,𝑦𝑢,𝑠 >∉ 𝑌 .

Definition 4 (Centralized QoS Prediction Problem). Given a set of users𝑈 , a set of services
𝑆 , and observed QoS invocation matrix 𝑌 , the centralized QoS prediction problem can be expressed
as a five-tuple 𝐶𝑄𝑃 =< 𝑈 , 𝑆,𝑌 ,𝑢, 𝑠 >, where 𝑢 is the target user, 𝑠 is the target service, and
< 𝑢, 𝑠,𝑦𝑢,𝑠 >∉ 𝑅. The target of this problem is to predict the missing QoS value 𝑦𝑢,𝑠 based on a
centralized QoS prediction model. Therefore, a corresponding solution to 𝐶𝑄𝑃 can be denoted as
< 𝑢, 𝑠,𝑦𝑢,𝑠 >.
Definition 5 (Distributed QoS Prediction Problem). Given a set of user-service invocation

submatrices 𝑌 ′ = {𝑌1, 𝑌2, ..., 𝑌𝑛}, where 𝑛 is the number of users, a distributed QoS prediction
problem is defined as a five tuple 𝐷𝑄𝑃 =< 𝑈 , 𝑆,𝑌 ′, 𝑢, 𝑠 >, where 𝑢 is a target user and 𝑠 is a target
service. The solution to a 𝐷𝑄𝑃 problem is represented by < 𝑢, 𝑠,𝑦𝑢,𝑠 > of the target user 𝑢 invoking
𝑠 .

Here, the significant difference between a 𝐶𝑄𝑃 and 𝐷𝑄𝑃 problem is that the former can learn
the complex non-linear invocation features from the aggregated invocation matrix 𝑌 , while dis-
tributed QoS prediction models is limited to collaboration by their independent submatrices
𝑌 ′ = {𝑌1, 𝑌2, ..., 𝑌𝑛}.

3 APPROACH
3.1 The Framework of FHR-DQP
Fig. 2 is the overall framework of FHR-DQP for distributed QoS prediction. It consists of three
crucial components: shared feature extraction, personalized network generation and federated QoS
prediction. The process of each component in FHR-DQP is described as below.
• In the stage of shared feature extraction, a two-tower deep residual network in the NCRL
model [54] is used to extract shared features of users and services. The residual network
parameters are transmitted to the server for federated averaging aggregation. Subsequently,
the client receives global average residual network parameters from the server to facilitate
local feature extraction layer updates.
• In the stage of personalized network generation, it aims to learn the personalized user-
service prediction layer parameters by applying a federated hypernetwork. The personalized
prediction network parameters for distributed QoS prediction are also uploaded to the server,
while federated aggregation is not performed. Instead, they are employed to update the
hypernetwork to generate personalized network parameters for individual clients, achieving
a personalized update strategy in a targeted QoS manner.
• In the stage of federated QoS prediction, the converged parameters of the user-service shared
feature extraction and personalized prediction layers are integrated into each client model
for personalized QoS prediction in distributed service-oriented systems.
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Fig. 2. The overall framework of FHR-DQP for distributed QoS prediction

3.2 Shared Feature Extraction
3.2.1 Local Feature Extraction with Residual Learning. In this section, we present the forward
propagation process with residual learning in a centralized manner, whose parameters can be
divided into the shared parameter 𝜙 and the personalized parameter 𝜃 for further distributed QoS
prediction. First, we transform the initial features for the user’s and service’s ID, region, and AS into
their corresponding embedded feature vectors: 𝐸𝑢𝐼𝐷 , 𝐸𝑢𝑅𝐺 , 𝐸𝑢𝐴𝑆

, 𝐸𝑠𝐼𝐷 , 𝐸𝑠𝑅𝐺 , 𝐸𝑠𝐴𝑆
. After embedding

the initial features, we combine the above embedded features and the latitude & longitude features
to obtain a user’s and a service’s embedded feature vectors (denoted as 𝑥𝑢 and 𝑥𝑠 ). The concatenation
can be expressed as follows:

𝑥𝑢 = Φ(𝐸𝑢𝐼𝐷 , 𝐸𝑢𝑅𝐺 , 𝐸𝑢𝐴𝑆
, 𝑢𝐿𝑎𝑡 , 𝑢𝐿𝑜𝑛) =


𝐸𝑢𝐼𝐷
𝐸𝑢𝑅𝐺
𝐸𝑢𝐴𝑆

𝑢𝐿𝑎𝑡&𝐿𝑜𝑛

 (1)
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𝑥𝑠 = Φ(𝐸𝑠𝐼𝐷 , 𝐸𝑠𝑅𝐺 , 𝐸𝑠𝐴𝑆
, 𝑠𝐿𝑎𝑡 , 𝑠𝐿𝑜𝑛) =


𝐸𝑠𝐼𝐷
𝐸𝑠𝑅𝐺
𝐸𝑠𝐴𝑆

𝑠𝐿𝑎𝑡&𝐿𝑜𝑛

 (2)

where Φ denotes the concatenation operation; 𝑥𝑢 and 𝑥𝑠 represent a user’s and a service’s embedded
feature vectors, respectively. These embedded feature vectors are fed into the feature extraction
layer, where residual networks are leveraged to extract latent features of the user and service,
solving the problem of neural network performance degradation caused by increasing layers.
Inspired by NCRL [54], we replace the convolution kernel with a modified MLP residual unit
to learn the latent feature representation of the user and service, instead of using conventional
convolutional layers [10] in the residual network. The residual feature extraction layer consists of
a set of residual units for both the user and service. Each of these residual units is composed of two
non-linear layers and an identity shortcut. The input feature vector of the residual unit is added
back after being passed through the two non-linear layers. Formally, the feature propagation and
aggregation of the residual unit for the user or service is given by:

𝑌ℎ = Wℎ
0𝑔𝑎 (𝑥ℎ) + bℎ0 (3)

𝑍ℎ = Wℎ
1𝑔𝑎 (𝑌ℎ) + bℎ1 (4)

𝑥ℎ+1 = 𝑍ℎ + 𝑥ℎ (5)

where 𝑥ℎ is the input of the ℎ-th residual unit and 𝑥ℎ+1 is the output of the ℎ-th residual unit; 𝑔𝑎
represents the GELU activation function [14], Wℎ

{0,1} ∈ 𝜙 and bℎ{0,1} ∈ 𝜙 are the parameters in the
ℎ-th residual layer.

Consequently, given the embedding vector 𝑥𝑢 and 𝑥𝑠 , the latent features can be extracted and
representeded as follows:

𝑥 ′𝑢 = 𝑅𝐿𝐻𝑢 (𝑥𝑢) (6)

𝑥 ′𝑠 = 𝑅𝐿
𝐻
𝑠 (𝑥𝑠 ) (7)

where 𝑅𝐿𝐻𝑢 and 𝑅𝐿𝐻𝑠 represent the functions of residual layers with 𝐻 Residual Units in user-tower
network and service-tower network, respectively. 𝑥 ′𝑢 and 𝑥 ′𝑠 are the extracted latent features of
a user and a service at the last residual unit. In shared residual learning, the user tower network
and service tower network are designed with the same multi-layer architecture to extract latent
features of users and services, and they can be trained independently and in parallel through
specific network hyperparameter optimization. These features are concatenated and fed into an
MLP transformation, as shown below:

𝑋𝑢,𝑠 = Φ(𝑥 ′𝑢, 𝑥 ′𝑠 ) =
[
𝑥 ′𝑢
𝑥 ′𝑠

]
(8)

𝑦𝑢,𝑠 = W𝑂𝑋𝑢,𝑠 + b𝑂 (9)

where Φ represents the concatenation operation.W𝑂 ∈ 𝜃 and b𝑂 ∈ 𝜃 are weight matrix and bias
vector of user-service prediction layer, and 𝑦𝑢,𝑠 is predicted QoS when a target user 𝑢 invokes a
target service 𝑠 .
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Algorithm 1: Shared Feature Extraction based on Federated Aggregation
Input: 𝑟 is the fraction of clients, 𝑛 is the number of clients, 𝑇 is the federated training

rounds; 𝑥𝑢 is the privacy data of client 𝑢, 𝐸 is the client training epochs, 𝜂 is the
client learning rate

Output: Shared Feature Global Residual Network 𝜙𝑇
1 Initialize 𝜙0

2 for 𝑡 = 1, ...,𝑇 do
3 Z𝑡 ←− random set of 𝑟𝑛 clients
4 foreach client 𝑢(𝑢 ∈ Z𝑡 ) do
5 𝑢 receive 𝜙𝑡 from Server: 𝜙𝑡𝑢 ←− 𝜙𝑡
6 for local epoch 𝑒 = 1, 2, ..., 𝐸 do
7 ClientUpdate: 𝜙𝑡𝑢 ←− G(𝜙𝑡𝑢, 𝜂, 𝑥𝑢)
8 end
9 Δ𝜙𝑡𝑢 ←− 𝜙𝑡𝑢 − 𝜙𝑡

10 𝑢 upload Δ𝜙𝑡𝑢 to Server
11 end
12 𝜙𝑡+1 ←− 𝜙𝑡 − 1

𝑟𝑛

∑
𝑢∈Z𝑡 Δ𝜙𝑡𝑢

13 end
14 return 𝜙𝑇

3.2.2 Federated Shared Residual Learning. In this section, we utilize federated learning to jointly
train the shared feature extraction layer of users and services while preserving local data privacy. In
the edge computing environment, services are deployed near mobile users on edge nodes through
distributed computing mode. Furthermore, the privacy information of both users and service
invocation records are securely stored on edge nodes or terminal devices [28]. Since users and
services have similar location information such as regions, autonomous systems and latitude &
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longitude, all clients have the shared feature space. Therefore, we share the feature extraction layer
across clients to represent user and service features, enabling more efficient extraction of shared
user-service invocation features.

Fig. 3 illustrates the process of shared feature extraction based on federated averaging aggregation.
For client 𝑢, the shared feature extraction layer parameters are trained using local data 𝑥𝑢 on the
client and averaged on the server to learn the global parameter 𝜙 . The pseudocode involved in
the training and federated averaging aggregation is detailed in Algorithm 1. At the start of each
training round, the server sets the client participation rate 𝑟 and then selects 𝑟𝑛 clients from all
available clients to participate in the current round. First, the server sends the initialized parameters
to each of the selected clients 𝑢 ∈ Z𝑡 . Each client 𝑢 ∈ Z𝑡 initializes its local model using the global
parameters and then performs local training on the user-service feature extraction layer. The local
training process for each epoch is expressed as follows:

𝜙𝑡𝑢 ←− G(𝜙𝑡𝑢, 𝜂, 𝑥𝑢) (10)

where G denotes the optimization algorithm used for gradient descent during model training and
we use Adam optimizer [19] to update all the parameters that need to be optimized in FHR-DQP.
𝜙𝑡𝑢 refers to the model parameter of client 𝑢 in the 𝑡-th round, 𝜂 is the learning rate for model
training, and 𝑥𝑢 represents the local data of client𝑢. After completing the local training, the updated
parameter difference denoted as Δ𝜙𝑡𝑢 is uploaded to the server for a single update of the global
model.

After receiving model parameters from the selected clients, the federated averaging aggregation
performs on these model parameters in the server is expressed as:

𝜙𝑡+1 ←− 𝜙𝑡 − 1
𝑟𝑛

∑︁
𝑢∈Z𝑡

Δ𝜙𝑡𝑢 (11)

where the updated global model parameter 𝜙𝑡+1 is returned to the clients who participated in the
current round. These clients use the updated parameter for further model training in subsequent
iterations.

3.3 Personalized Network Generation
Although the federated aggregation algorithm in shared feature extraction discussed in the last
section combines client-side user and service features, enabling feature sharing among clients
without exposing local data and improving model efficiency, the global update based on federated
aggregation remains inadequate for the personalized QoS prediction layer between users and
services. The primary reason is the large variance in service invocation records among clients,
which undermines the convergence of the federated aggregation model. Specifically, in the WS-
DREAM dataset, user 1 contains 573 service invocation records while user 228 only has 353. In
addition, the average response time for service invocations from user 1 is 2.95 seconds, compared
to only 0.47 seconds for user 316. The disparity in service invocation records among clients is
considerable in terms of both data quantity and distribution. Therefore, adopting federated averaging
aggregation on the non-IID QoS dataset is highly likely to result in client drift, which ultimately
hampers the stable convergence of the global model [17].
In this section, hypernetworks (HNs) are employed to personalize the parameters of the user

and service feature prediction layer. HNs are neural network models that generate parameters for
another neural network [9], whose weights can dynamically change based on input conditions,
thus producing personalized model parameters for each client. HNs are well-suited to learning a
set of personalized models with the same structure, generating desired target networks based on
input conditions to optimize personalized federated aggregation in non-IID scenarios [34].
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Fig. 4. Personalized network generation based on hypernetworks

Algorithm 2: Personalized Network Generation based on Hypernetworks
Input: 𝑇 is the federated training rounds, 𝛾 is the hypernetworks learning rate; X𝑢 is the

personalized feature of client 𝑢, 𝐸 is the client training epochs, 𝜂 is the client
learning rate

Output: The Parameters of Personalized Prediction Layer {𝜃1, 𝜃2, ..., 𝜃𝑛}
1 Initialize model parameter𝜓 of hypernetworks
2 for 𝑡 = 1, ...,𝑇 do
3 foreach client 𝑢 ∈ Z𝑡 do
4 𝜃𝑢 ←− H(𝝊𝑢 ;𝜓 )
5 𝜃𝑢 ←− 𝜃𝑢
6 for 𝑒 = 1, 2, ..., 𝐸 do
7 foreach training batch B ⊆ {X𝑢, y𝑢} do
8 𝜃𝑢 ←− 𝜃𝑢 − 𝜂∇𝜃𝑢L(𝜃𝑢 ;B)
9 end

10 end
11 Δ𝜃𝑢 ←− 𝜃𝑢 − 𝜃𝑢
12 𝑢 upload Δ𝜃𝑢 to Server
13 Server update𝜓 and 𝝊𝑢 :
14 𝜓 ←− 𝜓 − 𝛾∇𝜓𝜃⊤𝑢 Δ𝜃𝑢
15 𝝊𝑢 ←− 𝝊𝑢 − 𝛾∇𝝊𝑢𝜓⊤∇𝜓𝜃⊤𝑢 Δ𝜃𝑢
16 end
17 end

The process of personalized network generation based on hypernetworks is summarized in Fig. 4.
For each client𝑢, the user-service invocation features X𝑢 can be obtained by the process in Fig. 3 (or
section 3.2.2). After training the personalized prediction layer locally, the difference in parameter
update Δ𝜃𝑢 is uploaded to the hypernetwork, which can dynamically output personalized model
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parameters 𝜃𝑢 for different clients. The process consists of three steps and the pseudocode detailed
in this process is given in Algorithm 2. Begins with the initialization of the hypernetwork model
parameters, the personalized parameters for client 𝑢 are generated as follows:

𝜃𝑢 = H(𝝊𝒖 ;𝜓 ) (12)

where𝝊𝒖 is the embedding vector of client𝑢 in the server, and 𝜃𝑢 represents the model parameters of
user and service personalized prediction layer in client 𝑢. Subsequently, the personalized prediction
layer of the client is initialized using the parameters 𝜃𝑢 to generate 𝑓𝑢 (· ;𝜃𝑢), which represents the
user-service personalized prediction neural network. The predicted QoS value is derived by the
personalized prediction layer, by the following expression:

ŷ𝑢,𝑠 = 𝑓𝑢 (x𝑢,𝑠 ;𝜃𝑢) (13)

where x𝑢,𝑠 denotes the invocation features when user 𝑢 invokes service 𝑠 , and ŷ𝑢,𝑠 is the corre-
sponding QoS prediction value; 𝑓𝑢 represents the identity function. During local training, the mean
absolute error (MAE) is utilized to calculate the loss function.

L𝑢 =
1
𝐾

𝐾∑︁
𝑠=1

��ŷ𝑢,𝑠 − y𝑢,𝑠 �� (14)

After completing the local training process, the parameter difference Δ𝜃𝑢 between these new
parameters 𝜃𝑢 and the previous ones 𝜃𝑢 are uploaded to the server. At the server-side, the parameters
of the hypernetwork𝜓 and the embedding vectors 𝝊𝑢 are updated based on equations (16) and (17),
respectively:

Δ𝜃𝑢 ←− 𝜃𝑢 − 𝜃𝑢 (15)

𝜓 ←− 𝜓 − 𝛾∇𝜓𝜃⊤𝑢 Δ𝜃𝑢 (16)

𝝊𝑢 ←− 𝝊𝑢 − 𝛾∇𝝊𝑢𝜓⊤∇𝜓𝜃⊤𝑢 Δ𝜃𝑢 (17)

where 𝛾 represents the learning rate of the hypernetwork, and 𝛾∇𝜓𝜃⊤𝑢 Δ𝜃𝑢 and 𝛾∇𝝊𝑢𝜓⊤∇𝜓𝜃⊤𝑢 Δ𝜃𝑢
indicate the gradient calculated by the chain rule in back propagation. Therefore, the hypernetwork
parameters including parameters𝜓,𝝊1, · · · ,𝝊𝑛 are updated according to Algorithm 2.

3.4 Federated QoS Prediction
FHR-DQP employs federated averaging aggregation to optimize residual layer parameters of
user and service feature extraction globally and utilizes hypernetworks to generate personalized
parameters of the user and service prediction layer, enabling personalized QoS prediction in
distributed scenarios. As mentioned in section 3.2.2 and 3.3, FHR-DQP requires learning two sets
of model parameters for federated QoS prediction: the shared parameter 𝜙 of the user and service
feature extraction layer and the personalized parameter 𝜃𝑢 of the user and service prediction layer.
The above federated QoS prediction process for a given client 𝑢 can be represented as follows:

ŷ𝑢 = F𝑢 (x𝑢 ;𝜙 ;𝜃𝑢) (18)

where F𝑢 represents the federated QoS prediction model of client 𝑢. Each client has its IID data
distribution in the federated QoS prediction scenario, thus the overall optimization objective of
FHR-DQP is:

min
𝜙,𝜃1,...,𝜃𝑛∈R𝑑

𝐹 (𝜙 ;𝜃 ) :=
1
𝑛

𝑛∑︁
𝑢=1
E(x,y)∼D𝑢

[L𝑢 (𝜙 ;𝜃𝑢 ; x, y)] (19)
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Table 1. Statistics of WS-DREAM Dataset
Item Name Value
Users 339
Services 5,825
Service Invocations 1,974,675
Users’ Regions 31
Users’ ASs 137
Services’ Regions 74
Services’ ASs 992
Services’ Providers 2,699

where D𝑢 denotes the data distribution of client 𝑢 and L𝑢 denotes the loss function on client 𝑢.
Here, Mean Absolute Error (MAE) is used as the loss function during training in the paper, as
shown below:

L𝑢 (𝜙 ;𝜃𝑢 ; x, y) = 1
𝐾

𝐾∑︁
𝑠=1
|F𝑢 (x𝑢,𝑠 ;𝜙 ;𝜃𝑢) − y𝑢,𝑠 | (20)

where 𝐾 denotes the number of QoS samples on client 𝑢, x𝑢,𝑠 and y𝑢,𝑠 denote the 𝑠-th training
sample data on client 𝑢.

4 EXPERIMENTS
4.1 Experimental Setup and Dataset
All the experiments are carried out on our workstation equipped with two NVIDIA RTX 4090
GPUs, two Intel(R) Xeon(R) Silver 4210R @2.40 GHz CPUs and 1.0TB RAM. The components of
FHR-DQP in the experiments are implemented by Python 3.7.15 with Pytorch 1.13.1. To validate
the effectiveness of the distributed QoS prediction performance of FHR-DQP, we conduct extensive
experiments on a real-world Web service QoS dataset called WS-DREAM1 [52], which has been
widely used for service QoS prediction. Here, it consists of two types of service invocation QoS
criteria, including response time (RT) and throughput (TP), which collected from 339 users and 5,825
Web services with 1,974,675 historical QoS invocation records. In addition, the contextual location
information are provided in RT and TP, such as region, latitude, and longitude. Comprehensive
statistics of the QoS dataset is shown in Table 1.

The QoS dataset of RT or TP can be formalized as a user-service QoS matrix. In this matrix, each
row represents a collection of QoS values that a user invokes from all services, and each column
represents a set of QoS values that a service has been invoked by all users. Due to the sparsity of
user-service interactions in real-world scenarios, QoS dataset is trained with four different low
densities: 2.5%, 5%, 7.5%, and 10% on RT and TP, respectively. For the comparisons of QoS prediction
accuracy, remaining QoS samples under each density are treated as testing data in the experiments.

4.2 Evaluation Metrics
Mean absolute error (MAE) and root mean square error (RMSE) are used as the two evaluation met-
rics to measure the accuracy of QoS prediction among the competing approaches in the experiments.
MAE and RMSE are defined as follows:

𝑀𝐴𝐸 =

∑
𝑢,𝑠 |y𝑢,𝑠 − ŷ𝑢,𝑠 |

𝑁
(21)

1https://wsdream.github.io/

ACM Trans. Autonom. Adapt. Syst., Vol. X, No. X, Article XXX. Publication date: December 2024.

https://wsdream.github.io/


Combining Personalized Federated Hypernetworks and Shared Residual Learning for Distributed QoS Prediction XXX:13

Table 2. Parameter Settings

Parameter Value Description
𝑟 30% the fraction of clients on each round
𝑇 3000 the federated training rounds
𝐸 5 the number of client epochs
B -1 the batch size of client network
𝜂 0.005 the learning rate of client network
𝛾 0.005 the learning rate of hypernetworks
E 16 the embedding size of hypernetworks
N <200,200,200> the structure of hypernetworks
R <128, 256, 256, 64> the structure of residual layer

𝑅𝑀𝑆𝐸 =

√︄∑
𝑢,𝑠 (y𝑢,𝑠 − ŷ𝑢,𝑠 )2

𝑁
(22)

where y𝑢,𝑠 is the original QoS value of a target user 𝑢 invoking a service 𝑠 and ŷ𝑢,𝑠 is the predicted
QoS; 𝑁 is the number of test samples of predicted QoS values.

MAE reflects the overall accuracy of QoS prediction by averaging absolute deviations from the
original QoS values. Compared with MAE, RMSE is more sensitive to outliers as it assigns relatively
higher weights to large errors in predicted QoS values. Smaller deviations on MAE and RMSE
indicate better performance of QoS model prediction.

4.3 Competing Approaches
To evaluate the effectiveness of FHR-DQP, we compare it with ten competing approaches, including
three Memory-based, five Model-based and two FL-based methods. They are described as below.
• Memory-based methods:

- UPCC [35]: It is a user-based centralized QoS prediction method that calculates a set
of similar users as the neighborhood of a target user by PCC, and combines the average
QoS values of the target user with the deviation values of similar users to achieve QoS
prediction.

- IPCC [51]: It is an item-based centralized QoS prediction method that calculates a set
of similar items as the neighborhood of a target item by PCC, and combines the average
QoS values of the target item with the deviation values of similar items to achieve QoS
prediction.

- UIPCC [51]: It is a hybrid CF method by the combination of UPCC and IPCC, which
applies a weighting coefficient to adjust their relative importance. It is a memory-based
representative approach for centralized QoS prediction.

• Model-based methods:
- PMF [31]: It is a variant MF method for centralized QoS prediction, which leverages prior
Gaussian distribution to optimize hyperparameters in probability model.

- FM [44]: It is a reinforced MF method for centralized QoS prediction, which integrates
the linear regression model and the matrix factorization model to model multiple variable
interactions with linear complexity.

- NCF [12]: It is an advanced neural collaborative filtering method that combines multi-
layer perceptron and generalized matrix factorization, which learns complex non-linear
interactions between users and services to achieve centralized QoS prediction.
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Table 3. Performance Comparisons of QoS Prediction on Response Time

Methods
Density=2.5% Density=5% Density=7.5% Density=10%

MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

UPCC 0.7679 1.7888 0.8465 0.6166 1.5287 0.6795 0.5724 1.4197 0.6322 0.5550 1.3800 0.6120

IPCC 0.7380 1.7749 0.8105 0.6727 1.6981 0.7407 0.6471 1.6728 0.7147 0.6261 1.6367 0.6892

UIPCC 0.7515 1.7549 0.8261 0.6079 1.5023 0.6714 0.5670 1.4064 0.626 0.5502 1.3684 0.6058

PMF 0.6492 1.6149 0.7150 0.5753 1.4422 0.6332 0.5252 1.3370 0.5786 0.4954 1.2778 0.5455

FM 0.6876 1.5321 0.7566 0.6203 1.4406 0.6837 0.5592 1.3281 0.6165 0.5392 1.3052 0.5947

NCF 0.5444 1.5472 0.6007 0.4652 1.3904 0.5115 0.4159 1.3583 0.4567 0.3783 1.3040 0.4170

NDMF 0.5393 1.4036 0.5935 0.4880 1.3495 0.5365 0.4416 1.2793 0.4862 0.4304 1.2349 0.4739

DNM 0.4777 1.4829 0.5253 0.4147 1.4274 0.4553 0.3843 1.3745 0.4228 0.3628 1.3567 0.3997

ENMF 0.7031 1.7358 0.7752 0.6104 1.5048 0.6717 0.5254 1.3446 0.5792 0.4965 1.2821 0.5472

FedNCF 0.5926 1.6108 0.6539 0.4923 1.4780 0.5414 0.4606 1.3815 0.5059 0.4315 1.3747 0.4754

FHR-DQP 0.4389 1.3855 0.4835 0.3988 1.2990 0.4392 0.3879 1.2897 0.4279 0.3650 1.2532 0.4029

Gains 8.12% 1.29% 7.96% 3.83% 3.74% 3.54% -0.94% -0.81% -1.21% -0.61% -1.48% -0.80%

- NDMF [53]: It is an advanced neighborhood-aware neural collaborative filtering method,
which integrates user-selected neighborhoods into collaborative loss function via a deep
neural network (DNN) to achieve neighborhood-integrated centralized QoS prediction.

- DNM [41]: It is an advanced contextual-aware neural collaborative filtering method,
which maps contextual features into a shared latent space and integrates their high-order
interactions through DNN to achieve multi-attribute centralized QoS prediction.

• FL-based methods:
- ENMF [47]: It is a federated matrix factorization method for distributed QoS prediction
that preserves user data privacy without aggregating raw QoS data for each client. It is a
recent approach for distributed QoS prediction and is applied as an FL-based baseline.

- FedNCF: It is a federated QoS prediction method based on NCF [12] for distributed QoS
prediction. We apply FedAvg to federate NCF, where all parameters of the client model are
included in the parameter aggregation phase.

4.4 Experimental Results and Analyses
To guarantee the fairness of comparison, we tune the parameters of all centralized QoS prediction
approaches directly as they are suggested with the best performance in reference benchmark
experiments, and the parameter settings of all federated QoS prediction approaches are shown in
Table 2. The structure of hypernetworks N is <200, 200, 200> and residual layer R is <128, 256,
256, 64>. The learning rate of client network 𝜂 is 0.005 and the learning rate of hypernetworks 𝛾 is
0.005. We tune the hyperparameter fraction of clients on each round 𝑟 in {10%, 30%, 50%, 100%}, the
number of client epochs 𝐸 in {1, 5, 10, 20}, the embedding size of hypernetwork E in {2,4,8,16,32}
and the batch size of client network B in {32,64,128,-1}, where B = −1 indicates that the client’s
local data is treated as a single batch. All approaches are trained on RT and TP training datasets,
and QoS prediction performance is evaluated by comparing MAE and RMSE on the test samples.
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Table 4. Performance Comparisons of QoS Prediction on Throughput

Methods
Density=2.5% Density=5% Density=7.5% Density=10%

MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

UPCC 38.84 93.33 0.8151 25.42 65.68 0.5362 22.96 58.83 0.4827 21.25 57.24 0.4465

IPCC 37.25 97.50 0.7827 32.96 89.85 0.6898 31.02 87.56 0.6521 29.76 84.90 0.6277

UIPCC 36.87 91.85 0.7777 25.18 65.37 0.5293 22.93 59.17 0.4820 22.43 57.56 0.4720

PMF 30.18 74.67 0.6349 24.20 56.03 0.5090 22.52 55.97 0.4730 19.83 51.75 0.4175

FM 28.57 72.30 0.6020 21.59 57.60 0.4521 19.47 50.51 0.4086 17.69 48.62 0.3731

NCF 24.21 64.15 0.5066 18.68 54.65 0.3921 15.88 48.38 0.3327 14.40 46.22 0.3013

NDMF 20.31 58.17 0.4275 16.38 50.96 0.3451 15.28 47.60 0.3215 13.93 43.91 0.2934

DNM 18.29 65.65 0.3851 14.85 59.33 0.3125 13.82 56.55 0.2913 12.92 54.50 0.2713

ENMF 31.24 76.93 0.6540 26.92 68.86 0.5661 24.64 56.04 0.5174 19.62 53.37 0.4135

FedNCF 24.38 70.01 0.5125 18.52 57.27 0.3896 17.42 52.83 0.3673 16.02 51.40 0.3354

FHR-DQP 17.26 55.52 0.3631 14.63 48.81 0.3082 13.72 46.27 0.2881 13.16 44.65 0.2758

Gains 5.63% 4.56% 5.71% 1.48% 4.22% 1.38% 0.72% 2.79% 1.10% -1.86% -1.69% -1.66%

Table 5. Performance Comparisons of our CQP and DQP approaches on Response Time and Throughput

QoS Methods
Density=2.5% Density=5% Density=7.5% Density=10%

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

RT
CQP 0.4220 1.3508 0.3655 1.2904 0.3458 1.2657 0.3459 1.2400

DQP 0.4389 1.3855 0.3988 1.2990 0.3879 1.2897 0.3650 1.2532

TP
CQP 16.44 53.56 13.84 47.57 13.06 45.09 12.27 42.51

DQP 17.26 55.52 14.63 48.81 13.72 46.27 13.16 44.65

To prevent deviations, we run FHR-DQP and the competing methods three times to calculate the
average results of predicted QoS for comparative analysis to reflect the fairness of the experiments.
Table 3 and Table 4 show the QoS prediction experimental results on RT and TP among both

centralized and federated competing baselines. The best results of distributed and centralized
methods each column are marked in the form of dark and underline, respectively. It is observed that
all competing methods demonstrate a reduction on MAE and RMSE as the QoS density increases
from 2.5% to 10% on RT and TP, indicating the accuracy improvement in the QoS prediction. The
improvement can be attributed to the increase in the number of available historical QoS, facilitating
the calculation of similar neighborhoods in memory-based CF methods and enabling better learning
of the invocation relationships between users and services during model training in model-based
CF methods.

UPCC, IPCC, and UIPCC, as traditional memory-based CF methods, rely heavily on calculating
similar users and services based on historical QoS invocations. As a result, they perform poorly in
QoS prediction performance because they are easily affected by the density of the user-service QoS
invocation matrix. As the traditional model-based matrix factorization method, PMF introduces a
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Table 6. Results of ablation experiments on Response Time

Methods
Density=2.5% Density=5% Density=7.5% Density=10%

MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

FR-DQP 0.4745 1.4589 0.4277 0.5234 1.3455 0.4709 0.4089 1.3279 0.4508 0.3855 1.2941 0.4248

FH-DQP 0.5076 1.4244 0.5576 0.4557 1.4042 0.5028 0.4286 1.3856 0.4736 0.4056 1.3409 0.4467

FPR-DQP 0.4586 1.3970 0.5055 0.4089 1.3425 0.4498 0.3817 1.2995 0.4212 0.3793 1.2761 0.4190

FHR-DQP 0.4389 1.3855 0.4835 0.3988 1.2990 0.4392 0.3879 1.2897 0.4279 0.3650 1.2532 0.4029

probabilistic model to achieve the decomposition of user and item features, which partially alleviates
the sparsity of user-service QoS invocation relationships. Compared with traditional memory-based
CF methods, it demonstrates better QoS prediction performance. Additionally, FM focuses more on
learning linear feature interactions and achieves better QoS prediction performance than MF. To
further improve QoS prediction accuracy, advanced model-based neural CF methods are designed
to model the deep non-linear interaction relationships between users and services. NCF employs a
multilayer perceptron (MLP) to learn the non-linear interaction relationships from the embedding
feature vectors of users and services. Although NCF outperforms traditional model-based CF
methods, it remains inferior to NDMF and DNM because NCF neglects location information when
extracting the latent features of users and services. NDMF considers the location information
of users and calculates similar users as neighbors, which is integrated with the loss function to
train the QoS prediction model, leading to significant prediction performance improvement on
RMSE across all densities. DNM makes full use of QoS location information during the initial
feature embedding and then integrates it into an MLP network to better capture implicit non-linear
interaction relationships. Compared with NCF and NDMF, DNM achieves the best performance on
MAE even though it performs relatively poorly on RMSE.

As the QoS density increases from 2.5% to 10% on RT and TP, it can be observed that all federated
learning methods achieve lower MAE and RMSE. This is because with increased QoS density, there
are more QoS invocation records available for each client to train their local model, leading to
better trained models that improve the federated QoS prediction accuracy. FHR-DQP improves
the QoS prediction accuracy at all densities in comparison to EFMF and FedNCF, demonstrating
the advantage of its personalized federated learning framework for distributed QoS prediction.
Although FHR-DQP exhibits slightly worse performance in certain high QoS density scenarios, such
as when TP density is equal to 7.5% or 10% on MAE compared to DNM, and 10% on RMSE compared
to NDMF, it generally outperforms centralized baselines on both RT and TP. The possibility [16, 32]
is that centralized competing baselines are better able to capture strong collaborative relationships
in high-density datasets, whereas federated methods are more likely to fall into unpredicted
suboptimal points when dealing with larger amounts of non-IID QoS datasets. As shown in Table
5, although there is a decrease in the accuracy of our federated approach DQP compared to our
centralized approach CQP, the relatively slight decrease highlights the advancement of the proposed
distributed federated framework in sustaining the effectiveness of missing QoS prediction.

4.5 Ablation Study and Hyper-Parameters Impact
4.5.1 Ablation Study. Ablation experiments are conducted to validate the effectiveness of FHR-DQP
proposed in this paper. Tables 6 and 7 report the results of ablation experiments among FHR-DQP
and its three variants, respectively. In the experiments, FR-DQP uses the federated averaging
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Table 7. Results of ablation experiments on Throughput

Methods
Density=2.5% Density=5% Density=7.5% Density=10%

MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

FR-DQP 17.79 56.03 0.3747 15.06 49.84 0.3194 14.06 47.19 0.2966 13.72 46.42 0.2921

FH-DQP 20.29 59.22 0.4245 18.20 55.51 0.3831 17.03 53.26 0.3575 16.20 50.15 0.3398

FPR-DQP 17.73 56.90 0.3733 14.99 49.31 0.3346 14.01 47.03 0.3158 13.89 46.29 0.3093

FHR-DQP 17.26 55.52 0.3631 14.81 48.81 0.3082 13.72 46.27 0.2881 13.16 44.65 0.2758

(FedAvg) to perform global updates on all parameters of the model, which is the most commonly
used aggregation algorithm in federated learning. Although FR-DQP is facilitate to deploy, it
requires consistent data distribution across different clients to achieve satisfactory QoS prediction
performance. In real-world scenarios, data distributions on different clients often vary considerably,
resulting in the client drift problem and a significant QoS performance drop when applying the
FedAvg. FH-DQP employs a hypernetwork to perform personalized updates on all parameters of
the model without shared feature extraction, which severely undermines collaborative learning
of shared features. It can be observed that FR-DQP is vulnerable to data heterogeneity, while
FH-DQP has the worst prediction performance mainly because it ignores the common information
of user and service features. Specifically, due to the fact that QoS network geographic information
characteristics do not vary with different users, FH-DQP treats all parameters in the user network
as personalized parameters, neglecting the common characteristics brought about by QoS network
geographic information. For instance, when different users are located in the same Autonomous
System (AS), the inherent characteristics of that AS should be the same. Consequently, FH-DQP
performance is inferior to the FR-DQP. FPR-DQP is a CQP approach based on the FedProx
algorithm, which improves and optimizes the FedAvg for federated parameter aggregation. By
comparing with FR-DQP and FPR-DQP, the effectiveness of the hypernetwork is demonstrated. In
addition, as the amount of data increases, the hypernetwork can be applied in resource-constrained
environments by deploying a large-scale model on the server side. With the consideration of both
residual FedAvg update and hypernetworks generation, FHR-DQP exhibits the best performance
under different QoS densities.

4.5.2 Impact of the fraction of clients. In real-world scenarios, there are numerous clients connected
to the server, making it difficult to aggregate model parameters from all clients during federated
learning. Typically, a random subset of clients participate in federated training and aggregation
based on the participation rate in each federated round. To test the performance impact of client
participation rate on the model, we set its value as 10%, 30%, 50%, and 100% under different QoS
densities, respectively, and the experimental results are shown in Fig. 5.
It can be seen that as the client participation rate increases, both MAE and RMSE generally

show a decreasing trend, because when the client participation rate is too low, the small number
of training samples may lead to underfitting of the federated model. However, when all clients
participate in every round of federated training, it does not significantly improve the prediction
accuracy of the federated model. In some cases, it may even result in decreased performance, such
as an increased MAE value on TP at 5% density. Although increasing the client participation rate
requires longer federated training time, it does not yield significant QoS performance improvement.
As a result, it is generally recommended to set the client participation rate between 30% and 50% to
achieve better QoS prediction performance.
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Fig. 5. Performance impact of 𝑟 on FHR-DQP under different QoS densities

4.5.3 Impact of the depth of hypernetworks. A hypernetwork is a neural network model that
generates parameters for another neural network and is used to generate network parameters for
the personalized user-service prediction layer in FHR-DQP. The generated network parameters
vary with the depth of the hypernetworks, which in turn affects QoS prediction performance. To
test the performance impact of hypernetworks with different depths on QoS prediction, we conduct
experiments with depths ranging from 1 to 5 with a fixed number of 200 neurons per layer under
different QoS densities, and the experimental results are shown in Fig. 6.
It is observed that as the QoS density increases, the network generated by the hypernetwork

can better match the actual data distribution, leading to improved QoS prediction accuracy. As
the number of hypernetwork layers increases, MAE and RMSE generally show a decreasing trend,
followed by an increasing trend. Specifically, the decreasing trend reaches its peak when the
depth increases from 1 to 3, and then the accuracy decreases when it increases from 3 to 5. The
main reason for this phenomenon is that when using a hypernetwork with a small number of
multilayer perceptron (MLP) layers, fewer parameters are insufficient to learn complex interaction
relationships. Conversely, when the number of MLP layers is large, it may lead to an overfitting
problem of network parameters. Both hypernetwork situations in hypernetwork are not beneficial
to generating interaction parameters between users and services for QoS prediction. Therefore,
considering the QoS prediction performance under different QoS densities and the scale of the
hypernetwork, the hypernetwork depth is recommended to be 2 or 3 to achieve the optimal QoS
prediction performance of FHR-DQP.
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Fig. 6. Performance impact of |N | on FHR-DQP under different QoS densities

4.5.4 Impact of the number of client epochs. The number of local training epochs determines the
convergence efficiency of the client model. In theory, the more epochs local training has, the better
the convergence efficiency of the client model will be. However, the risk of overfitting in the global
model increases as the client model reaches its convergence parameters in federated learning [40].
To test the influence of the number of local training epochs on prediction performance, we vary its
value by 1, 5, 10, and 20 with 2.5% QoS density, respectively, and the results are shown in Fig. 7.

When the epoch is set to 1 and then the federated aggregation is applied, both MAE and RMSE
exhibit an oscillating trend, indicating that it is challenging for the model to converge. The primary
reason for this phenomenon is that the number of local training epochs is limited, hampering
the convergence of the client model. When the epoch is set to 5, 10, or 20, MAE and RMSE tend
to stabilize, indicating that the global model has converged. Nevertheless, the final convergence
performance varies across the three different client epoch settings. Among them, the fitting ability
of the global model is best when the number of epochs is set to 5 or 10 on RT, and the model shows
the supreme fitting ability when running repeatedly for 5 epochs on TP. In addition, it can be seen
that the prediction performance of the global model deteriorates gradually as the number of client
epochs increases. The main reason is that the global model overfits when the client model receives
too many training iterations, reducing its prediction performance. Based on the above analysis,
when the number of epochs is set to 5 in our experiments, FHR-DQP achieves the best prediction
accuracy.
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Fig. 7. Performance impact of 𝑇 on FHR-DQP under different client epochs

5 RELATEDWORK
5.1 Centralized QoS Prediction
5.1.1 Memory-based Methods. This kind of approaches firstly computes similarities between users
or services, and then predicts unknown QoS by calculating average QoS and deviation migration
based on historical QoS invocations. Shao et al. [35] introduced a user-based CF approach that
predicts QoS values by finding similar users through Pearson Correlation Coefficient (PCC). Zheng
et al. [51] proposed a hybrid CF approach called WSRec, which combines user-based and service-
based CF by computing predicted QoS values with an adjusted weighting coefficient. Sun et al. [37]
and Wu et al. [43] proposed enhanced similarity calculation algorithms for QoS prediction. Sun et
al. introduced a normalization technique called normal recovery (NR), whereby the QoS values
of users are scaled to the same range to unify similarity across different multi-dimensional latent
spaces. Wu et al. proposed a ratio-based approach to calculating user or service similarity. Chen et
al. considered a wide range of QoS data and integrates it into a CF model by using a Top-K strategy
to identify similar neighbors and combining bias information to generate QoS predictions. However,
memory-based approaches face a critical challenge due to the sparsity of historical QoS invocations,
which substantially undermines their QoS prediction performance in real-world applications.

5.1.2 Model-based Methods. Matrix factorization (MF) and its variants are widely used as tradi-
tional model-based methods for QoS prediction, which directly embed user/service ID as a vector
and model their linear interactions with inner product. Zhang et al. [46] designed a variant of MF
named non-negative matrix factorization (NMF) by enforcing a non-negativity constraint in the

ACM Trans. Autonom. Adapt. Syst., Vol. X, No. X, Article XXX. Publication date: December 2024.



Combining Personalized Federated Hypernetworks and Shared Residual Learning for Distributed QoS Prediction XXX:21

linear model. Mnih et al. [31] proposed probabilistic matrix factorization (PMF), which is another
variant of MF that introduces a probability model to optimize the matrix factorization model. NMF
and PMF enhance QoS prediction performance remarkably compared to MF. To further improve QoS
prediction accuracy, researchers have proposed hybrid models that integrate neighborhood-based
approaches with matrix factorization. Li et al. [25] proposed a location-aware reputation-based
matrix factorization (LRMF) model for QoS prediction. which identifies the user neighborhood
based on user’s reputation and geographical information to reinforce the feature representation
of users and services. Compared to memory-based approaches, MF and its variants can better
predict vacant QoS by learning linear interaction relationships between latent features of users and
services. Nevertheless, they cannot effectively capture the implicitly complex non-linear interaction
relationships from user-service historical QoS invocations, resulting in unsatisfactory accuracy of
QoS prediction.
Deep learning approaches have been widely used to solve QoS prediction problems. Neural

collaborative filtering (NCF) [11] leverages a multi-layer perceptron (MLP) to learn the interactive
function of non-linear relationships, which has been applied for effective QoS prediction. Recent
studies have proposed various deep learningmodels based onNCF to further improve QoS prediction
accuracy. Wu et al. [41] proposed a deep neural model (DNM) that considers multiple attributes of
users and services, where contextual features are mapped into a shared latent space and their high-
order interactions are captured through an MLP network. Xia et al. [45] proposed a QoS prediction
approach that introduces implicit and explicit features into the initial dense vector representation
and utilizes a convolutional neural network (CNN) to compress and optimize the procedure of
feature extraction. Li et al. [22] proposed a topology-aware neural (TAN) model that introduces
network topology structure to solve the QoS prediction problem. By incorporating the network
topology information, the TAN model can effectively capture the complex relationships among
users and services. Zou et al. [54] proposed a neighborhood-based collaborative residual learning
(NCRL) model that utilizes a location-aware two-tower deep residual network for collaborative
prediction, which is applied as the client model of our FHR-DQP.
These models have shown significant performance improvements for QoS prediction by effec-

tively learning the complex non-linear interactive relationships among users and services. Although
extensive deep learning models have been studied to enhance the accuracy of QoS prediction, most
of them concentrate on developing a centralized QoS prediction model, neglecting the privacy-
preserving significance of user-service QoS invocations.

5.2 Personalized Federated Learning
Heterogeneous datasets are widespread in real-world applications, and many efforts in personal-
ized federated learning (PFL) [36] have been devoted to addressing the theoretical and practical
challenges when applying federated learning to the non-IID dataset. PFL can be broadly classified
into two categories: global model personalization and local model personalization.

There are two main global model personalization strategies: data-based and model-based. Data-
based methods employ data augmentation to expand heterogeneous datasets. Zhao et al. [50]
proposed data sharing strategies for federated learning by creating a small subset of data that
is globally shared across all edge devices, which reduces the risk of overfitting to local data and
improves prediction performance. Wu et al. [42] proposed a generative convolutional autoencoder
for personalized health monitoring, which refines the model with a generated class-balanced dataset
from the user’s personal data. Besides, client selection mechanisms are also designed to sample from
more IID distributed data to improve the global model generalization. Wang et al. [39] proposed
a mechanism based on a reinforcement learning framework for device selection in federated
learning, which selects a subset of devices in each communication round to maximize a reward
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that encourages the increase of validation accuracy and penalizes the use of more communication
rounds. Model-based methods typically implement regularization between global and local models
or apply contrastive learning (CL) to close the distance between local and global models. Li et al.
[24] performed contrastive learning at the model level, which utilize the similarity between model
representations to correct the local training of individuals. In addition, some researchers introduced
meta-learning and transfer learning to accelerate the convergence speed of the global model and
improve the effectiveness of local model personalization [16, 21].

Local model personalization strategies can be divided into architecture-based and similarity-based
approaches. Architecture-based methods utilize parameter decoupling to train model networks
locally to perform personalized tasks for specific scenarios [3], whose parameters are not sharedwith
the server. Li et al. [21] enabled a personalized model architecture by using knowledge distillation
[15] to select different network models based on multiple training objectives. Similarity-based
methods produce personalization by establishing a relationship model between clients. Sattler et al.
[33] clustered clients into different client groups and trained corresponding federated models on
each homogeneous client group.
Considering the distributed and privacy data characteristics of user-service QoS invocation

records and the heterogeneity of data across clients, we adopt a personalized federated hypernetwork
framework to train personalized prediction layers collaboratively, significantly improving the
performance of distributed QoS prediction.

6 DISCUSSION AND FUTUREWORK
6.1 Computational Cost and Communication Expenses

- Computational Cost. Hypernetwork updates impose additional computational consump-
tion on the server, increasing the overall computational complexity and resource requirements.
Specifically, it mainly depends on the number of participating service users and the network
size of the hypernetwork. Since the hypernetwork is deployed in the cloud for personalized
user needs, it is not impacted by resource-constrained environments.

- Communication Expenses. Communication is limited to local model parameters, not
the larger hypernetwork itself, allowing for complex server-side models without additional
overhead compared to FedAvg for federated parameter aggregation..

6.2 Limitation
- Malicious User Influence. Malicious users can modify data features or inject incorrect data
subsets into the original dataset to embed backdoors into the model, thereby manipulating
the training objectives of the local client [48]. Our proposed approach FHR-DQP introduces
a hypernetwork so that destroying a service user’s QoS prediction model does not leak
information about other service users, because the server-side hypernetwork generates a
single embedding for each user that remains on the server and cannot be interpreted. However,
it still retains the noisy gradient introduced by the service user during the stage of federated
parameter aggregation, which possibly reduces the model’s QoS prediction accuracy.

- Computational Cost on the Server. Hypernetwork updates introduce additional compu-
tational consumptions on the server, increasing the overall computational complexity and
resource requirements.

6.3 Future Work
To address these limitations and enhance FHR-DQP, several promising research directions are
outlined.
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- Reputation Mechanism. Reputation mechanism identifying untrusted users in mobile edge
computing (MEC) is based on the Byzantine Fault Tolerance (BFT) mechanism, which can be
recognized by the training gradient of surrounding users in a similar network environment.

- Reduce the Size of the Embedding Layer. To mitigate privacy leakage, the fewer number
of neurons in the residual network are shared between the server and each service user,
which has a smaller impact on the accuracy of the centralized model, but it inevitably leads
to a decrease in the accuracy of a single QoS prediction model.

- Improving Server Efficiency. Server load balancing strategies, distributed processing
techniques, or more efficient federated learning algorithms can be investigated and designed
to optimize the computational burden on servers.

7 CONCLUSION
In this paper, we propose a novel distributed QoS prediction framework called FHR-DQP, which
integrates shared feature extraction with residual learning and personalized network generation via
a hypernetwork. First, the server performs one round of parameter aggregation of shared feature
extraction residual layer, which is uploaded by the client that has been trained using private data
locally. Then, the client uploads locally trained personalized feature representations and gradients
of personalized prediction networks to the server, and the server leverages the hypernetwork to
generate personalized network parameters for different clients. Finally, predicting an unknown
QoS for a distributed target user is attainable through the trained personalized QoS prediction
model until global convergence.
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