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Abstract—QoS prediction plays an important role in service-
oriented downstream tasks. However, most of current state-of-
the-art QoS prediction approaches suffer from two limitations.
First, traditional approaches typically require collection of user-
service historical QoS invocations centrally in order to improve
QoS prediction accuracy, which poses a threat to user data privacy.
Second, although few of the recent approaches take into account
data protection when predicting QoS values, they still cannot effec-
tively capture user-service complex nonlinear invocation relation-
ships, significantly influencing the performance of QoS prediction.
To address these two issues, we propose a novel framework of
data-protected QoS prediction called Federated Residual Ladder
Network (FRLN), which ensures user data protection and effec-
tiveness of predicting missing QoS values. It initially leverages our
designed Residual Ladder Network (RLN) to extract latent features
of users and services from both low and high dimensional spaces.
Then, local QoS prediction models are collaboratively trained by
personalized federated learning with the consideration of data
heterogeneity. Extensive experiments have been conducted on a
real-world large-scale dataset called WS-DREAM, which consists
of 5825 Web services from 74 regions and 339 users from 31
regions comprising a total number of 1,974,675 user-service QoS
invocations. Experimental results demonstrate the effectiveness of
FRLN in multiple evaluation metrics. While the proposed FRLN
framework marks a significant step forward for QoS prediction in
machine learning, ongoing advancements in ML techniques and
expanded datasets are essential for further enhancing its precision
and applicability in real-world scenarios.

Index Terms—Personalized federated learning, residual ladder
network (RLN), web service, data -protected QoS prediction.
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I. INTRODUCTION

HE emergence of Web services in recent years has led to
T their increasing adoption in various technological domains
such as Service-Oriented Architecture (SOA) and Internet of
Services (IoS) [1]. It has resulted in a proliferation of the same
or similar services, making it challenging to recommend opti-
mal services offering the best invocation experiences to service
requesters. Quality of Service (QoS), as a crucial non-functional
attribute [2] plays a vital role in discriminating between these
same or similar services. It is dependent on various factors such
as service deployment conditions, user invocation locations, and
network environment adaptation [3]. Therefore, QoS has be-
come a significant criterion in recommending Web services with
the same or similar functionality. However, due to the rapidly
increasing number of users and services, it is impractical and
time-consuming for service requesters to invoke all Web services
and service providers to monitor QoS information for each ser-
vice invocation. To satisfy diverse service-oriented application
scenarios, such as service discovery, selection, composition,
recommendation and mashup creation, it has become a fun-
damental yet challenging research issue to accurately perform
QoS prediction, because of the remarkable sparsity of historical
user-service invocations.

Collaborative filtering has been widely applied in predicting
missing QoS values, which can be classified into memory-based
and model-based approaches. Memory-based collaborative fil-
tering involves collecting QoS historical invocation records from
user devices, calculating similarity among users or services to
obtain similar neighborhoods, and predicting vacant QoS val-
ues [4], [5], [6], [7]. To alleviate the sparsity problem of memory-
based approaches, model-based collaborative filtering is devoted
to learning a model from historical QoS invocation records, by
extracting the latent semantic features of users and services for
QoS prediction [8], [9]. However, these approaches often have
limited success in handling sparse data, as they primarily capture
low-dimensional and linear features, and may not fully reveal
the complex, high-dimensional relationships among users and
services. As a solution, recent investigations have applied deep
learning techniques [10], [11] to perform QoS prediction task,
using shallow neural multilayer perceptrons to learn complex
nonlinear interaction relationships among users and services and
addressing the poor representations of traditional model-based
collaborative filtering.

The model-based approaches mentioned above frequently
require local user data, such as IP addresses and historical QoS
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invocation records to assist the central server in training a unified
QoS prediction model. As the QoS prediction task increasingly
relies on local user data, privacy concerns have become an
important issue to consider when it comes to practical deploy-
ment. Specifically, this poses a potential data leakage risk, as
malicious central servers could infer sensitive user information
from QoS invocation records. Such user privacy threats result
in difficulty in learning a QoS prediction model by training all
historical invocation records of users. As a result, developing
data-protected QoS prediction techniques has become a crucially
challenging issue. It must protect user data privacy while still
maintaining satisfactory QoS prediction accuracy.

In recent years, emerging federated learning [12], [13], [14],
[15] techniques have been used to develop privacy-preserving
QoS prediction techniques that avoid centralizing local user data.
However, while these approaches move toward data privacy pro-
tection, they work against improving QoS prediction accuracy
for two essential and critical reasons. First, existing approaches
ignore the significant impact on model performance caused by
more limited local users’ QoS invocation records. Given that
each client only has a fraction of the global QoS invocation
records, the shift from centralized to distributed training may
compromise the model’s ability to accurately learn latent user-
service interaction features, which also aggravates the overfitting
situation of QoS prediction model. Second, personalized service
demands and distinct network environments leave QoS records
that deviate from the global QoS invocation distribution on each
client. In such case, most existing approaches upload all the
parameters of the trained local QoS prediction models to the
cloud center for aggregation, exacerbating client-drift [16] and
leading to the degradation of prediction performance. Thus,
training a single global QoS prediction model for all local
users is often insufficient when facing a non-independent and
homogeneously distributed QoS invocation records.

To solve the above issues, we propose a novel approach for
data-protected QoS prediction called Federated Residual Ladder
Network (FRLN), which is designed to overcome the challenges
posed by limited local QoS invocation records and the data
heterogeneity arising from varying distributions of QoS invo-
cation records among users. Specifically, FRLN consists of two
main components. First, we design anew RLN feature extraction
network, which effectively captures latent user-service feature
representations across the limited local historical QoS invoca-
tions. It uses forward and backward residual perception blocks
to capture the interaction between users and services from both
low and high-dimensional spaces. Second, we train local QoS
prediction models collaboratively using federated learning, con-
sidering data heterogeneity. It optimizes globally shared param-
eters as well as locally private ones for each user, towards the per-
sonalization of performing QoS prediction. We upload only the
global representations in the RLN model parameters to the cloud
center for aggregation, while keeping the rest of the personalized
parameters locally. That enables each user to train a personalized
QoS prediction model with their private local QoS invocation
records, thereby achieving the objective of data protection.

To evaluate the effectiveness of our proposed approach, we
conduct extensive experiments on a public and large-scale
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real-world dataset called WS-DREAM, which consists of 5825
real-world Web services from 74 regions and 339 service users
from 31 regions. It involves the total number of 1,974,675
user-service QoS invocations, which is partitioned into a set of
independent groups of user-service QoS invocations in terms of
users. Our experimental results demonstrate that the proposed
FRLN achieves the best prediction performance in multiple
evaluation metrics for data-protected QoS prediction compared
to several state-of-the-art competing baselines.
The main contributions are summarized as follows:
® We propose a novel effective QoS prediction framework
that uses local invocation records from user devices, com-
bined with deep neural networks and personalized feder-
ated training techniques, to reconcile data-protected and
prediction accuracy while predicting missing QoS values.
® We propose a new QoS feature extraction network, RLN,
which leverages two-way residual-aware blocks to reveal
the complex nonlinear interactions for capturing latent
features of users and services more deeply. Considering
the heterogeneity of QoS invocation records, we train the
RLN models collaboratively in federated learning by a
personalized way.
e We reproduce several centralized models under the fed-
erated paradigm, and conduct extensive experiments on
a large-scale real-world dataset, WS-DREAM. The re-
sults indicate that FRLN keeps data protection with still
maintaining the superior performance for QoS prediction,
compared with existing data-protected approaches.

II. PROBLEM FORMULATION

Definition 1. (Service User): Service users mainly refer to
the users who have invoked one or more services. Let U =
{u1,u2,...,u,} be a set of users. For each u € U, it can
be defined as a three-tuple u =< I D, RE, AS >. ID is the
identifier of u and the rest can be collectively represented as
location information.

A service user’s location information mainly includes Region
(RE) and Autonomous System (AS), respectively.

Definition 2. (Web Service): For data-protected QoS predic-
tion problem, we mainly focus on the nonfunctional features
of a Web service. Let S = {51, $2,...,8,} be a set of Web
services. For each s € S, it can be defined as a three-tuple
s =< 1ID,RE,AS >. ID is the identifier of s and the rest can
be collectively represented as location information.

A Web service’s location information mainly includes Region
(RE) and Autonomous System (AS), respectively.

Definition 3. (User-Service Invocation Record): Given a user
set U and a service set .S, a user-service invocation record is
defined as a three-tuple r =< u, s,r, ¢ >, where v € U is a
service user, s € S is a Web service, and 7, ; is the QoS value
when v invokes s.

Through Web service invocations, the user-service invocation
records can be represented as a QoS matrix, denoted as R.
Each row of the matrix represents the QoS of a user who
invokes all Web services, and each column represents the QoS
of a Web service that is invoked by all users. From the user’s
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perspective, R can be partitioned into sub-matrices, denoted
as R' = {Ry, Ry, ..., Rin}, where each R; represents the QoS
record sub-matrices of user w; invoking all services. If a user
u; has invoked a service s;, we have < g, s;, 7y, s, >€ R,
otherwise < u;, 85, 7w, s; >¢ Ri.

Definition 4. (Data-Protected QoS Prediction Problem):
Given a set of users U, a set of Web services S and all observed
QoS invocation records R, a QoS prediction problem can be
defined as a five-tuple Q =< U, S, R',u,s >, where u € U is
atarget user, s € S is a target service, R = {Ry, Ra,..., R},
and < w, 8,7, s >¢ R.

The solution to a data-protected QoS prediction problem (2
is < u,s, 7, >. It indicates the predicted QoS value when a
target user invokes a target service, by exploiting the provided
information of invocation records among users and services,
from the perspective of data-protected objective.

III. APPROACH
A. The Framework of FRLN

Fig. 1 illustrates the of two main stages, including local QoS

prediction and server federated aggregation.

¢ In the stage of local QoS prediction, the target user and tar-
get service information are mapped into low-dimensional
dense embedding vectors. Residual Ladder Network is first
designed to learn complex nonlinear user-service interac-
tion features from the dense vectors. Then, the generated
low and high dimensional latent features, output by the
RLN, are fused and fed to the QoS Prediction Head,
which is a shallow multilayer perceptron to predict finally
unknown QoS values.

e In the stage of server federated aggregation, the RLN
models are trained by federated learning in a personalized
manner. That is, each user’s corresponding RLN model
uploads the global representation to the central server for
parameter aggregation, while the rest of the parameters
are kept locally away from central aggregation. Thus, each
client holds a personalized QoS prediction model.

000 000000000
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User-Service . (_BrPB ]
Residual Ladder Layer 000000
000000
®
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User-Service
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User-Service
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Target User
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Fig. 2. Architecture of Residual Ladder Network (RLN) for extracting low
and high-dimensional deep features of a user and service.

B. Local QoS Prediction

1) User-Service Deep Feature Extraction: Fig. 2 shows the
layers of the designed RLN for the process of extracting user-
service deep feature representations. It begins with the inter-
action information between users and services, propagating
through user-service input layer, user-service embedding layer,
and user-service residual ladder layer. By the sequential transfor-
mations, it outputs both low and high-dimensional deep features
of user-service nonlinearly complex interactive relationships.

User-Service Input Layer: It is employed to initialize the
original representation of a user and service. To improve the
effectiveness of extracting deep features, we integrate location
information such as autonomous system (AS) and region (RE) in
addition to the identifiers (ID) of a user and service. The original
user and service features can be expressed as multi-dimensional
vectors:

ey
2

Up = [Zua Tu, au]

Sp = [/ém Ts, as]
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Where ¢, 7, a denote ID, RE and AS, while v and s represent a
user and service, respectively. We use a global mapping system
to assign identical non-negative integers to users or services in
the same region or autonomous system.

User-Service Embedding Layer: In this layer, the initially
high-dimensional and sparse feature vectors of users and ser-
vices are mapped to low-dimensional and dense embedding
feature vectors. The mapping function for a user’s ID, RE, and
AS can be formulated as follows:

I, =0 (W, i) 3)
R, =0 (W]r,) 4)
Ay =0 (Wla,) &)

Where W, represents the user’s embedding weight matrix and
o represents the ReLU activation function of embedding layer.
I, R, and A, represent the embedding output of a user’s ID,
RE and AS, respectively. Similarly, we can obtain a service’s
embedding output I, R, and A, respectively.

These embeddings are then concatenated to correspondingly
generate embedding feature vectors F, and F,, which are
further combined to produce the user-service interaction feature
representation X, . It is expressed by the following formula
where @ is the operation of feature concatenation.

I,
Eu = (Iu; Rua Au) - Ru (6)
Ay
I,
Es :q)(IS;RsaAs) = Rs (7)
Asg
E,
Xu,s = ®(Ey, Es) = 8
= BB - |} ®)

User-Service Residual Ladder Layer: The output of embed-
ding layers is integrated into residual ladder layer to extract the
nonlinear interaction relationships between users and services.

Intuitively, high-dimensional spaces are crucial for deep fea-
ture extraction, as existing investigations have shown that low-
dimensional representations are often insufficient for capturing
user-service interaction features, resulting in significant losses
in QoS prediction accuracy [17], [18], [19], [20]. Therefore, in
our user-service residual ladder layer, low-dimensional output of
the forward pyramid is continuously fed as input to the reverse
pyramid structure to generate high-dimensional features. The
generated low and high-dimensional features are then combined
together to further perform local QoS prediction.

By extending from ResMLP [21], we design the main unit of
user-service residual ladder layer, called the residual perceptron
block (RPB), to extract low and high-dimensional deep features
of users and services. Here, each RPB consists of two affine
layers and dimensions of the affine layer are consistent within
an RPB, but decreasing with forward propagation in the F-RPB
while increasing in the B-RPB. To reduce the overfitting, a
Dropout layer instead of Batch Normalization (BN) layer is
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added between the two affine layers. The reason is that in a
federated setting of our local QoS prediction problem, where
each user only holds a small and non-IID set of user-service QoS
invocation records, the personalized historical QoS invocations
of users are distributed differently across multiple batches. The
formalizations of F-RPB and B-RPB are as follows.

Aff(X,0) =0 (WTX +b) 9)

ys = Aff(D(Aff(x%, ReLU)), ReLU)  (10)
oyt =y + o (11)
y, = Aff(D(Af f(x}, ReLU)), ReLU)  (12)
xhp =y} (13)
oy =y ot (14)

Where Af f represents affine layer, o represents ReLU ac-
tivation function, and D represents Dropout layer. x} and y}
represents the input and output of the i-th F-RPB, respectively.
Similarly, } and y; represents the input and output of the i-th
B-RPB, respectively. z; and y} represent the top-level F-RPB
and B-RPB, which means that the output of the last F-RPB is
utilized as the initial input for the foremost B-RPB.

2) Dimensionally Fused QoS Prediction: As Fig. 3 shows
QoS prediction head is to predict the unknown QoS when a
target user desires to invoke a target service. We concatenate the
low-dimensional x y and high-dimensional x, latent user-service
interaction features extracted by RLN and feed them into a fully
connected layer. It is formalized as follows:

Xy = ®(z,73) = lﬂ (15)
g
Fus =1 (W Xo+by) (16)

Where 7, ; represents the predicted QoS value and I repre-
sents a standard identity function as the activation function for
the QoS prediction head layer.

C. Server Federated Aggregation

1) Global Representation Aggregation: The federated learn-
ing paradigm relies on storing historical QoS invocation records
on user-side devices rather than exposing them to a central server.
Although it results in personalized non-IID QoS invocation
records that closely relate to user behavior and preferences, the
heterogeneity of QoS invocation records from multiple clients
may have common latent feature representations that can be
shared across clients. To this end, we propose an extension of the
traditional federated learning where clients cooperate to learn a
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global model using all parameters of each client and then simply
replace this global model on each client.

Fig. 4 illustrates our proposed scheme of federated training,
which involves global update, local update, as well as their
corresponding server update and client update. The objective
is to develop a bunch of personalized RLN local QoS prediction
models, by both collaboratively learning shared global feature
representation of heterogeneous user-service invocation QoS
across multiple clients and keeping their own personalized local
features for each client.

2) Personalized Federated Training of RLN: RLN fully ex-
tracts the deep features with multiple forward and backward
residual perception blocks (RPBs), which may contain the com-
mon feature representation of user-service interactions, and all
user devices collaborate and share the global feature represen-
tations.

For all the trainable parameters of the RPBs in the user-service
residual ladder layer of RLN, we represent them as global feature
parameters and denote them by O¢. In such case, the process
of feeding the output X, s from the user-service embedding
layer into the residual ladder layer of RLN can be rewritten as a
nonlinear transformation, formally expressed as

zf,ap < 0 (05X +) (17)

Conversely, since the input, embedding and output layers
work directly with the user’s personalized local QoS invocation
records, each client keeps them private and does not share with
any other clients. Here, we denote the trainable parameters of
the output layer by 5] P, the QoS prediction head is rewritten
as

xTf
Tp

Fus=1|0Opu +b (18)

To train and optimize the model parameters, we take Mean
Absolute Error (MAE) as the loss function, and the loss to be
optimized for a specific user u is expressed as

ZSES f(Xu,s; @G,u; éP,u)

n

- ru,s

Lu(@G,ua (:)P,u) =

+ A[Ou13 (19)

Where S represents the service set and |S| =n, ©, is all
the trainable parameters for each client’s local QoS prediction
model, and A is the regularization parameter for controlling
model overfitting.

By accumulating and averaging all the users from U, the
global loss function is expressed as

Ty

Z ?Lu((_)G,ua C:')P,u)

uelU

min L(©) =

min
Uy U €U

(20)

Where T' denotes the total number of samples and 7, refers to
the local samples owned by participant u. The task of minimizing
the global loss function is equivalent to optimizing each loss
function owned by each client.

3) Algorithms of Client and Server Updates: To minimize
the loss function described above, the user client and server
perform updates alternately. In general, a client u takes local
historical QoS invocation records to train the personalized QoS
prediction model. Concurrently, the global representations ex-
tracted by RLN across multiple clients are transmitted to the
central server that takes the global representation by a federated
aggregation process, sharing the updated representation with
other clients.

The pseudo codes of client and server updates are shown in
Algorithms 1 and 2, respectively. For each round t =1, 2..,
k, clients are involved to perform client update based on a
constant fraction C' € (0,1]. In the client update, each client
u receives the current global representation from the central
server, and makes E epochs of gradient-based updates, such
as Stochastic Gradient Descent (SGD), to optimize both global
and personalized parameters. For¢ = 1,..., E, clientu € M, it
executes client updates as

(005,4:0),) — SGD; (05105 :bm) @D

Where 7 denotes learning rate and b indicates the batch size
over the local historical QoS invocation records. We stipulate
thatb = —1 means all local user-service invocation training sam-
ples are treated as a single minibatch. SGD optimizes parameters
from (O ;; ©%) to (0 ,, ©%,,) with (22)

Where O,, represents the parameters (@Ei; (:)3;3) 7) repre-
sents the learning rate, which is a factor that controls the step
size of parameter update, L(O,,) represents the loss function,
and Vo, L(©,,) represents the gradient of the loss function with
respect to the parameters.

Once the client update is finished, the server continues to
receive the local-updated global representations, and takes a
weighted average on them, until it minimizes the global loss
function or reaches the convergence condition.

IV. EXPERIMENTS

A. Experimental Setup and Datasets

All experiments are conducted on a workstation with an
NVIDIA GeForce 1080Ti GPU and an Intel Xeon Gold 6132
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Algorithm 1: Client Update.

1 Initialize @533
2 for each round t = 1,2... do

3 | k<« max(C-|U|,1)

4 M <+ randomly select k clients

5 for each client u € M do

6 Receive 92;_,5, from Server

7 for local epoch i from 1 to E do

s (0,,6%,) + SGD; (0451: 6% 1bin)
9 end

10 Send O, to Server

1 end
12_end

Algorithm 2: Server Update.

1 Initialize ©(9)

2 for each round t = 1,2... do

3 | Receive O, from each clientu € M
4 Aggregate Og >ueM TT@tGu

5 Propagate O to each client

6 end

TABLE I
STATISTICS OF WS-DREAM EXPERIMENTAL DATASET

Item Value
User ID 339
User regions 31
User AS 137
Service ID 5,825
Service regions 74
Service AS 992

QoS invocation records 1,974,675

CPU at 2.60 GHz. Our approach’s components were imple-
mented in Python 3.7.0 and PyTorch 1.1.0.

To validate the performance of the proposed FRLN for data-
protected QoS prediction by personalized federating learning,
we conduct extensive experiments using the benchmark dataset
WS-DREAM dataset [22]. It is a large-scale real-world user-
service invocation QoS dataset, which has been widely used
for QoS prediction. WS-DREAM contains 1,974,675 historical
QoS invocation records from 339 users and 5,825 services. It has
two kinds of user-service QoS invocations, including response
time (RT) and throughput (TP). Each can be represented as a
user-service invocation matrix, where a row has a set of QoS
entries indicating a corresponding user who invokes all of the
Web services, and a column includes a group of QoS entries
indicating a corresponding Web service that is invoked by all
of the users. Moreover, WS-DREAM provides user and service
identifiers as well as location contextual information, such as
region and autonomous system, which are used as model inputs
for extracting user-service invocation deep features in FRLN.
The detailed statistics of the experimental dataset are shown in
Table I, where an example of a data sample before and after
pre-processing is shown in Table II.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 3, MAY/JUNE 2024

TABLE II
WS-DREAM DATA SAMPLE BEFORE AND AFTER PRE-PROCESSING

ID RE AS
(Before/ After) (Before/ After)
User 111 United States/12 AS378 ILAN./4
Item 525 United States/12 AS271 BCnet/7
RT 0.285
TP 7.782

In real service-oriented application scenarios, a single user
only invokes a limited number of services, which results in
extreme sparsity of the user-service QoS invocation matrix.
In our experiments, four different low densities of 5%, 10%,
15%, and 20% QoS dataset are generated on RT and TP as
model training data, while the remaining 95%, 90%, 85% and
80% QoS invocation samples are used as model testing data
set to compare the performance between FRLN and competing
baselines. Note that under the consideration of federated setting,
randomly generated training data samples are respectively dis-
tributed to different clients, where each client corresponds to an
individual user and exclusively accesses their own user-service
QoS invocation records within the training dataset.

B. Competing Methods and Evaluation Metrics

To evaluate the performance of FRLN, we compare it with
eleven widely-used representative competing approaches, in-
cluding two memory-based and one matrix factorization model-
based approaches, two deep learning based approaches, and four
federated learning based approaches, and two our self-developed
variants of FRLN. They are described as below.

e UPCC [4]: Tt is a user-based collaborative filtering QoS
prediction algorithm. It uses PCC to find the neighbor set
of a target user and combines the deviation migration of the
neighbor users, and the average of all QoS values, which
are from the target user invoking Web services.

e [ACF[7]:Itis memory-based and state-of-the-art location-
aware collaborative filtering QoS prediction approach,
which incorporates location contextual information to bet-
ter calculate the similarity among users and services.

o PMF [23]: Itis probabilistic matrix factorization approach,
which optimizes the traditional matrix factorization utiliz-
ing probabilistic model. PMF is used as a typical model-
based collaborative filtering algorithm for vacant QoS pre-
diction.

e NCF [18]: It is a deep learning-based collaborative filter-
ing algorithm utilizing Generalized Matrix Factorization
(GMF) and a Multi-Layer Perceptron to learn complex non-
linear user-service interactions, aimed at solving regression
problems like QoS prediction.

e LDCF [20]: It is a deep learning location-aware collabo-
rative filtering algorithm, which builds a bridge between
deep learning and CF through similarity adaptive correc-
tor. It embeds location information of users and services
into feature representations, and utilizes MLP to learn
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high-dimensional nonlinear relationships between users
and services.

o EFMF [24]: It is a federated learning based matrix fac-
torization approach that enhances prediction performance
and protects user data privacy by predicting missing QoS
values without central aggregation of user-service records,
serving as the federated-oriented baseline for FRLN.

o NCSF-GMF [25]: Ttis a federated learning based approach
where users collaboratively upload perturbed updates dur-
ing server aggregation to enhance privacy without affecting
the global model’s accuracy.

® FedNCF [18]: It is a federated learning algorithm that is
based on NCEF. It uses the traditional FedAvg approach for
parameter aggregation, whereby all NCF parameters are
uploaded to a central server during the parameter aggrega-
tion phase and subsequently aggregated.

® FedLDCF [20]: It is a federated learning algorithm based
on LDCE, in which all parameters of the LDCF model are
uploaded to the central server and aggregated using the
FedAvg approach, offering a promising solution to privacy
and security challenges in predicting missing QoS values.

® FRLN-Avg: It is our self-developed non-personalized vari-
ant of FRLN, applying the FedAvg algorithm [12] to per-
form server federated aggregation for those parameters of
the RLN model uploaded to the cloud center.

® FRLN-(¢, 6)-DP: 1t is our self-developed differential-
privacy variant of FRLN, which utilizes the DP-SGD algo-
rithm [26]. We adjust two kinds of parameters for different
levels of privacy protection, including target privacy budget
€ and acceptable privacy risk 6. Especially, a smaller €
raises more noise, indicating stronger privacy protection.
By taking with different privacy budgets ¢ balance data
protection and model performance of QoS prediction.

In our experiments, we use both Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE) to evaluate our QoS
prediction models. They are defined as follows:

Zu,s Pu,s = Pusl
N

Zu s (ru s qus)Q
MSE = 2 : -
RMS ¢ 5

Where u and s represent a given target user and target service,
respectively. ,, s and 7, ; represent observed and predicted QoS
values, respectively. N denotes the number of the test QoS
samples in the experiments.

MAE mainly evaluates the overall accuracy of QoS prediction
by calculating the averaged absolute deviation while RMSE
is used to more sensitively assess the performance of QoS
prediction model on outliers using a relatively higher weighting
to large errors on predicted QoS values. The reason we choose
MAE and RMSE as evaluation metrics is that they are instru-
mental in providing a clear picture of the model’s overall QoS
predictive accuracy and its effectiveness in handling outliers,
which has been widely used for validating the performance of
QoS prediction [10], [20], [22], [27].

MAFE = (23)

(24)

TABLE III
PARAMETER SETTINGS OF FRLN

Parameter Value Description
b -1or8 Batch size of each client
d 16 Dimensionality
C 0.1 Client selection rate
E lorb Epoch of each client
n 0.001 Learning rate
depth (256, 128, 64] Depth of RLN model
dropout 0.15 Dropout rate
€1, €2 10,5 Target privacy budget
0 0.0001 Acceptable privacy risk
Clip 0.5 Maximum gradient norm
FL_Round 1000 Total rounds of FL

Additionally, it is still difficult to recognize whether a ma-
chine learning framework can be used for effective QoS pre-
diction by purely applying MAE and RMSE. The reason is
that these two evaluation metrics cannot well reflect the gap
in absolute terms between the prediction error range and the
ground truth QoS value. Thus, Normalized Mean Absolute Error
(NMAE) [28][29] is further taken to measure the QoS prediction
accuracy. NMAE is defined as follows:

MAFE
Zu,s T%S/N

Where r,, s represents observed QoS values. N is the number
of test QoS samples in the experiments. NAME can be used
to calculate the ratio between MAE and the average real QoS
value, reflecting the absolute gap of prediction error range and
ground truth value for effective decision-making in application
scenarios.

NMAE = 25)

C. Experiment Results and Analyses

1) Experiment Results in Federated Settings. Comparisons of
Federated Settings: To verify the effectiveness of our proposed
FRLN, we first compare it with existing state-of-art QoS pre-
diction approaches in a federated learning environment, where
the parameter settings used in our FRLN are shown in Table III.
FRLN-Avg uses the same parameter settings as FRLN. Param-
eter €, §, Clip are specifically utilized in the FRLN-DP variant.
In this variant, the per-sample gradients of the client models are
clipped according to C, followed by the addition of gaussian
noise to these gradients before executing the gradient descent.
Considering the efficiency of the DP-SGD algorithm, we set
b=8 and E'=1. To achieve the best for the rest of competing
approaches, we set the optimal model parameters directly, as
recommended in their experiments. A larger number of total
FL_round is set to ensure convergence to optimal performance
for all competing baselines.

Tables IV and V show the experimental results of federated
QoS prediction under multiple densities on RT and TP, respec-
tively. The best results of FRLN and its variants are marked in
bold and the best results of other competing approaches are high-
lighted in gray background. From the results, we demonstrate
that all of the competing approaches have a gradual decrease of
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TABLE IV
EXPERIMENTAL RESULTS OF FEDERATED QOS PREDICTION UNDER MULTIPLE DENSITIES ON RT DATASET

Methods Density 5% Density 10% Density 15% Density 20%
MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE
EFMF 0.622 1.526 0.683 0.528 1.326 0.581 0.488 1.237 0.538 0.470 1.200 0.518
NCSE-GMF 0.569 1.557 0.625 0.481 1.456 0.530 0.453 1.340 0.498 0.400 1.286 0.441
FedNCF 0.492 1.478 0.543 0.431 1.374 0.474 0.417 1.361 0.458 0.403 1.326 0.444
Fed LDCF 0.491 1.433 0.541 0.451 1.356 0.496 0.433 1.364 0.475 0.410 1.387 0.451
FRLN 0.379 1.306 0.418 0.344 1.238 0.378 0.322 1.201 0.355 0.309 1.175 0.340
FRLN-Avg 0.397 1.347 0.437 0.385 1.329 0.423 0.380 1.312 0.418 0.365 1.285 0.401
FRLN-(¢1, 6)-DP  0.390 1.355 0.429 0.345 1.260 0.380 0.324 1.218 0.357 0.312 1.197 0.344
FRLN-(ez, 6)-DP  0.417 1.380 0.458 0.370 1.301 0.407 0.329 1.220 0.361 0.322 1.206 0.356
Gains 22.81% 8.86% 22.73% 20.19% 6.64% 20.25% 22.78% 291% 22.48% 23.32% 2.08% 22.90%
The best results are marked in bold and the second-best results are highlighted in gray background. The gains are calculated between the best and the second-best predicted
QoS values.
TABLE V
EXPERIMENTAL RESULTS OF FEDERATED QOS PREDICTION UNDER MULTIPLE DENSITIES ON TP DATASET
Methods Density 5% Density 10% Density 15% Density 20%
MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE
EFMF 2692  68.86 0.567 19.62 53.37 0.411 16.91 48.69 0.354 1534  43.87 0.323
NCSF-GMF 18.08  63.88 0.379 21.99 55.08 0.462 17.08 49.05 0.359 14.92 47.16 0.313
FedNCF 18.52  57.27 0.389 16.02 51.40 0.337 15.24 50.09 0.322 1517  49.20 0.318
FedLDCF 16.48 54.07 0.346 14.77 48.43 0.311 13.20 45.83 0.276 12.96 45.23 0.272
FRLN 14.94 51.62 0.314 12.57 44.67 0.264 11.37 40.87 0.239 11.06 39.60 0.232
FRLN-Avg 15.02  52.49 0.314 13.81 45.12 0.290 13.48 44.37 0.284 1347  42.82 0.282
FRLN-(e1, 6)-DP  17.08  54.02 0.359 14.84  47.39 0.311 13.60 44.27 0.285 13.36 43.53 0.281
FRLN-(e3, 6)-DP  17.85  56.75 0.377 14.86  46.98 0.312 14.00 4492 0.295 13.86 44.32 0.291
Gains 9.34% 4.53%  9.45% 14.90% 7.76% 15.19% 13.86% 10.82% 13.40% 14.66% 9.73%  17.2%

The best results are marked in bold and the second-best results are highlighted in gray background. The gains are calculated between the best and the second-best predicted

QoS values.

MAE, RMSE and NMAE on both RT and TP datasets as the den-
sity increases from 5% to 20%. The reason is that more available
user-service QoS invocation records lead to sufficient training
of different QoS prediction models, resulting in better perfor-
mance on MAE, RMSE and NMAE. More specifically, FRLN
outperforms other federated competing approaches, showing a
significant improvement of 23.32% on MAE, up to 8.86% on
RMSE and 22.90% on NMAE across multiple matrix densities
on RT dataset. Likewise, on the TP dataset, FRLN achieved an
impressive improvement of 14.9% on MAE, 10.82% on RMSE
and 17.2% on NMAE, respectively.

FRLN outperforms competing baselines in both RT and TP
datasets on NMAE, potentially indicating its applicability in real
service-oriented scenarios. Specifically, taking the RT dataset as
an example, it is observed from NMAE and MAE values that
invoking a Web service with an average response time close
to 1 s, FRLN’s average predicted QoS ranges from 0.6 to 1.4
seconds. The results demonstrate that FRLN can predict missing
QoS values within an acceptable margin of prediction error, thus
highlighting its potential possibility in practical applications.
However, further enhancing machine learning frameworks for
QoS prediction or expanding larger QoS datasets is of crucial
importance towards seamless applications in various real-world
distributed computing environments.

FRLN achieves superior performance in QoS prediction ac-
curacy for two key reasons. First, we employ a specially de-
signed RLN network for each client’s QoS prediction model. It
leverages two-way residual-aware blocks to extract latent user-
service nonlinear interaction features, while also considering
low and high dimensional feature fusion for better QoS predic-
tion performance. Second, we mitigate the issue of client-drift
caused by non-IID QoS user-service invocation records on a
single client, which is evidenced by the comparison between
FRLN and FRLN-Avg. Specifically, FRLN demonstrates supe-
rior performance over FRLN-Avg in both RT and TP datasets.
The underlying mechanism of FRLN’s enhanced performance
can be attributed to its unique strategy of utilizing the residual
ladder layer parameters within each client’s QoS prediction
model as shared parameters for server federated aggregation.
Thus, it treats the remaining parameters as private features,
ensuring that they are not shared with other clients. That ap-
proach enables each client to leverage local data to train their
individualized models by both collaborative learning of shared
parameters and keep interior training of personalized features,
effectively countering the challenges posed by client-drift in
non-IID scenarios of user-service QoS invocation records. Com-
pared to our proposed FRLN, the competing baselines EFMF,
FedNCF, FedLDCF and NCSF-GMF partially failed to address
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Fig. 5. Comparative analysis of various federated learning models over fixed
training time under 5% density of RT dataset. The x-axis denotes the model
training time in seconds, while the y-axis represents each model’s QoS prediction
performance on RMSE.

the issue of accurately capturing the complex nonlinear interac-
tion relationships between users and services with the limited
amount of historical QoS invocation records on each user client.
Moreover, FedNCF and FedLDCF achieve better overall QoS
prediction performance than EFMF, as they take advantage of the
MLPs to capture non-linear user-services interaction features.

Analysis on Data-Protection: FRLN has implemented several
strategies to protect user-service QoS invocation records. First,
leveraging federated learning framework, FRLN uploads the
learned model parameters instead of real QoS invocation data,
ensuring users’ originally local data is not accessed by the
central server. Second, although some investigations [30], [31],
[32], [33], [34] have raised concerns about potential privacy
breaches through the analysis of neural network parameters,
FRLN only updates the latent features identified by the layer
of residual ladder network for server federated aggregation,
while keeping those user-interactive parameters within local
QoS prediction model. It aligns with the data processing
inequality [12], which can further strength the capability of
data protection that these selectively uploaded parameters
contain less private information. Third, FRLN is also enhanced
with advanced differential privacy (DP) encryption technique
DP-SGD algorithm, by locally adding gaussian noise to user
gradient updates for perturbing the model parameters before
uploading. The experiments reveal a necessary balance between
model accuracy and user privacy, emphasizing different levels
of data protection in federated learning.

Comparisons on Uniform Training Time: To test the model
performance under equivalent training time constraints, experi-
ments have been conducted and the results are shown in Fig. 5
that although all models exhibit a general reduction on RMSE
over time, FRLN stands out with its significantly lower RMSE,
achieving superior convergence and its efficacy in latent feature
extraction. Specifically, despite an additional complexity due
to the incorporation of RLN, FRLN receives its optimal per-
formance within a reasonably acceptable timeframe. It demon-
strates certain suitability by personalized QoS prediction model
training for data-protected real-world applications, where the
accuracy of model prediction is of the utmost importance.

As for FRLN-DP, more training time is required for model
convergence, since it has the highest data-protected level with

the consideration of integrating differential privacy and training
personalized parameters. In practical applications, it can regulate
the critical equilibrium among QoS prediction performance, user
privacy, and model training efficiency in FRLN by applying
different data-protected levels.

2) Experiment Results in Centralized Settings: To further
validate the performance of our proposed method, we conducted
additional experiments using a centralized training model and
compared it with representative centralized QoS prediction com-
peting baselines. Although FRLN is designed for the federated
learning paradigm, local QoS prediction model RLN also ex-
hibits outstanding performance in the centralized training model.
Tables VI and VII show the experimental results of centralized
QoS prediction under multiple densities on RT and TP datasets,
respectively. Specifically, RLN enhances the MAE, RMSE,
and NMAE on the RT dataset by up to 12.69%, 0.49%, and
12.37%, respectively. On the TP dataset, the improvements on
MAE, RMSE, and NMAE are up to 9.13%, 6.12%, and 8.49%,
respectively.

The reason for the poor performance of traditional CF-based
centralized QoS prediction methods is their inability to
effectively capture low-dimensional nonlinear user-service
interactions, and the sparse historical QoS data limiting their
learning of latent user and service features. However, NCF,
which utilizes a multi-layer perceptron to exploit nonlinear
interactions between users and services, shows a significant
improvement in QoS prediction performance by effectively
compensating for QoS sparsity limitations. LDCF further
enhances the performance by adding contextual information
for better feature representation, such as geographical locations
of users and services. Overall, our RLN model surpasses
LDCF in most QoS density scenarios on the RT and TP
datasets. This is due to its effective deep feature extraction,
utilizing a bi-directional residual structure for both low and
high-dimensional space analysis. Thus, RLN allows for the
exploration of more latent relationships between users and ser-
vices, ultimately improving the performance of centralized QoS
prediction.

3) Performance Variations in Two Training Settings: We
compare the decline variations of QoS prediction accuracy
among four competing approaches under the same density of
20%, by switching training modes from centralized to federated
way. Table VIII shows the results of performance changes on RT
and TP, respectively. It was observed that, in addition to EFMF,
each QoS prediction model experienced a decrease in prediction
performance of both MAE and RMSE to different degrees. As
for EFMF showing little performance degradation, it can be
attributed to the fact that EFMF is considered a federated version
of PMF and undergoes a distributed computation of matrix
factorization. However, the QoS prediction accuracy of EFMF
is inferior when compared to the other three deep learning-based
QoS prediction competing approaches.

The superior performance of NCF and LDCF observed in
centralized training is not replicated in the federated QoS predic-
tion. In RT dataset, they experienced a decrease on MAE of 14%
and 23% for NCF and LDCF; a decrease on RMSE of 4% and
13%, respectively. Also, they have a similar performance drops
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TABLE VI
EXPERIMENTAL RESULTS OF CENTRALIZED QOS PREDICTION UNDER MULTIPLE DENSITIES ON RT DATASET

Methods Density 5% Density 10% Density 15% Density 20%
MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

UPCC 0.698 1.665 0.7697 0559 1466 0.6147 0496 1349 0.5463 0.464 1.274  0.5098

LACF 0.631 1439 0.6965 0562 1338 0.6169 0513 1.269 05624 0477 1.222  0.5251

PMF 0.623 1532 0.6847  0.528 1.329 0.5818  0.488 1.238 0.5381  0.469 1.202  0.5174

NCF 0472 1438 05186 0.386 1.314 04241  0.362 1.303 0.3991  0.352 1.274  0.3883

LDCF 0403 1.277 04427 0364 1233 04005 0345 1169 03797 0.331 1.138 0.363

RLN 0373 1.303 04108 0.325 1.227 0.3572 0.302  1.168 0.332 0.289 1.146  0.3181

Gains 744% -2.00% 7.21% 10.71% 0.49% 10.81% 12.46% 0.09% 12.56% 12.69% -0.70% 12.37%
The best results are marked in bold and the second-best results are highlighted in gray background. The gains are calculated between the best and the second-best predicted
QoS values.

TABLE VII
EXPERIMENTAL RESULTS OF CENTRALIZED QOS PREDICTION UNDER MULTIPLE DENSITIES ON TP DATASET
Methods Density 5% Density 10% Density 15% Density 20%
MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

UPCC 3143 77.08 0.661 2470 64.18 0.519 2235 58.95 0470 2121 56.16 0.444
LACF 2297 55.78 0481 1944 5292 0409 1758 4956 0369 1645 4741 0.345
PMF 2647  67.46 0556 19.83 50.64 0416 1684 4748 0354 1532 4386 0.321
NCF 18.68  54.65 0.392 1440 46.22 0.303 13.30 45.35 0279  12.84 4495 0.270
LDCF 13.84 47.35 0.291 12.38 43.48 0.259  11.27 39.81 0236  10.84 38.99 0.228
RLN 13.81 47.90 0.290 11.25 40.82 0.237 1042 38.01 0.219 10.13 37.13 0.213
Gains 022% -1.16% 03% 913% 6.12% 8.49% 7.54% 4.52% 7.20% 655% 4.77%  6.57%

The best results are marked in bold and the second-best results are highlighted in gray background. The gains are calculated between the best and the second-best predicted

QoS values.

TABLE VIII
PERFORMANCE CHANGES OF QOS PREDICTION APPROACHES UNDER
DIFFERENT TRAINING SETTINGS ON BOTH RT AND TP DATASETS

RT TP
Methods MAE _ RMSE __ MAE __ RMSE
LDCF —FedLDCF -23.86% -13.09% -19.55% -16.00%
NCF —FedNCF  -14.48%  -4.08% -18.14%  -9.45%
PMF — SEFMF ~ -021% 0.16% -0.13%  0.02%
RIN — SFRIN  692% 261% -9.18%  -6.65%

on TP dataset. The possibility of leading to the phenomenon is
that FedNCF and FedLDCF are implemented using conventional
federated learning by averaging all of the parameters in NCF and
LDCEF. However, the heterogeneity of user-service QoS invoca-
tion records across different clients is ignored, and it affects the
performance of corresponding federated QoS prediction models.
In contrast, our proposed FRLN experienced a relatively more
moderate performance degradation in the federated training,
since it considers the non-IID QoS distributions by training
a bunch of personalized local QoS prediction models among
multiple clients.

D. The Absence of Batch Normalization

Batch Normalization (BN) standardizes input data per mini-
batch, enabling faster and more stable network training [35].

TABLE IX
IMPACT OF BN AND DROPOUT

RT TP
MAE RMSE MAE RMSE
Neither 0.392 1310 15.22 51.82
BN 0423 1.377 1853 57091
Dropout 0.379 1306 1494 51.62

However, we observe that BN is typically applied in centralized
QoS prediction models, which assume that the accumulated
historical QoS records follow the same distribution as the entire
dataset. In the federated paradigm, on the other hand, distributed
QoS invocation records held by each user are personalized
and highly heterogeneous. Additionally, the number of QoS
invocations is often small, making it difficult to support large
batch sizes. As a result, individual nodes can differ remarkably
across multiple clients, leading to a significant degradation in
QoS prediction performance.

To validate our hypothesis, experiments were conducted with
FRLN under 5% QoS density on RT and TP datasets, with results
in Table IX confirming our assumptions. Specifically, we found
that FRLN with BN suffered from obvious performance loss
on both MAE and RMSE, especially for TP dataset. However,
the use of dropout can effectively improve the QoS prediction
accuracy. Therefore, BN is excluded from our designed residual
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Fig. 7. Performance impact of client selection rates, with each bar color representing a distinct QoS density between 5% and 20% across various client selection

rates (0.1, 0.3,0.5, 1).

perceptron block of RLN where dropout is used to prevent model
overfitting for better prediction performance in FRLN.

E. Performance Impact of Parameters

1) Impact of Dimensionality and Density: To test the per-
formance impact of feature vector dimensionality d, we set six
different dimension values of 2, 4, 8, 16, 32, and 64 at 5%, 10%,
15%, and 20% densities on the RT and TP datasets, respectively.
Under the above settings, we generate 3D visualizations on MAE
and RMSE, as illustrated in Fig. 6. The results show that for low
density QoS matrices, there emerges an initially decreasing and
then increasing variation tendency on MAE and RMSE as the
dimensionality of the feature vectors gradually ascends among
RT and TP, respectively. The underlying reason is that there
is limited information in sparse QoS matrices, the prediction
performance is better as the dimensionality increases. However,
if the dimensionality continues to increase, the model can dilute
useful information about the user-service interactions, making
the QoS prediction model less effective due to worsening model
overfitting.

Conversely, for denser QoS matrices, the higher dimension-
ality of the feature vectors facilitates the QoS prediction model
in mining more information representations among user and
service interactions. As seen in Fig. 6, the improvement in QoS
prediction performance by increasing the dimensionality of the
feature vectors from 2 to 16 is more significant than that by
increasing it from 16 to 64. As a result, setting the dimension-
ality of the feature vectors to 16 can achieve the optimal QoS
prediction performance across multiple QoS densities.

2) Impact of Client Selection Rate: To assess the impact
of the client selection rate C' that determines the number of
users participating in a particular training round, we conducted
experiments with four different values of 0.1, 0.3, 0.5, and 1
under four QoS densities, including 5%, 10%, 15% and 20%,

respectively. Fig. 7 demonstrates that for low density QoS ma-
trices, a higher client selection rate C' results in decreased QoS
prediction performance on MAE and RMSE overall. This is due
to each client having fewer QoS invocation records at a low
density, resulting in inadequate model training. An increase in
client selection rate C' introduces undertrained clients, which
further reduces the model performance. Therefore, by selecting
a smaller client selection rate, we can improve the model’s
generalization ability. However, with high density QoS matrices,
more local data is included in the training process, enabling every
client to receive sufficient training and become fully trained. In
such cases, an increase in the client selection rate C' does not
significantly reduce QoS prediction performance.

Furthermore, we evaluate the convergence efficiency of QoS
prediction model training under a fixed 10% QoS density by
adjusting C. As shown in Fig. 8, decreasing C' increases the
required training rounds for model convergence. For instance,
in the RT dataset, C'=1 converges in 50 rounds, while C'=0.1
remains unconverged after 170 rounds. It indicates that more
clients participating in a single round of model training increase
the time required, while fewer clients participating reduce the
time per round but increase the total number of communication
rounds.

V. THREATS TO VALIDITY

Threats to application validity: In our proposed data-
protected FRLN, each client maintains its local user-service QoS
invocation records in a distributed manner, posing significant
challenges to traditional centralized QoS prediction methods.
Specifically, FRLN in real-world distributed computing scenar-
i0s, like edge computing networks, where dynamic user mobil-
ity significantly affects network connectivity and interactions
between edge users and servers, may introduce additional com-
plexities to the QoS prediction task. Additionally, the limited
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on both RT and TP dataset, displaying performance improvements over training rounds through declining MAE and RMSE.

computing capacity of edge servers and the restricted node
coverage in edge computing networks pose further challenges
to FRLN’s applicability. Therefore, future efforts should fo-
cus on refining FRLN to enhance QoS prediction in various
downstream distributed computing paradigms, like mobile edge
computing networks, addressing both theoretical and practical
challenges to confirm FRLN’s applicability. Furthermore, ac-
cording to experimental results on NMAE, current machine
learning techniques are still not sufficiently sophisticated for
high-precision QoS prediction in practical applications. Thus,
it is expected to pose more efforts on exploring more advanced
machine learning frameworks and incorporating larger datasets
to further improve QoS prediction accuracy, better satisfying the
application demands in real service-oriented scenarios similar
to edge computing environments by providing low response
latency services.

Threats to dataset validity: In the experiments, we employed
WS-DREAM dataset for the evaluation of the proposed FRLN.
It comprises real-world user-service QoS invocation records
and is widely-used for QoS prediction task, which includes a
comprehensive range of characteristics essential for effective
QoS prediction. Under this experimental circumstances, FRLN
integrates deeply with WS-DREAM dataset, utilizing its rich
contextual elements such as multi-granularity geographical in-
formation to enhance the feature learning and representation of
both users and services. Despite the superior results achieved
with the WS-DREAM dataset, the threats of FRLN generaliz-
ability need to be validated by adapting to other experimental
datasets with diverse contextual information. To this end, it is
expected to involve extending FRLN’s application to a broader
range of datasets, with a specific focus on recommender systems.
It can improve the adaptability, applicability, and robustness
of FRLN, thereby enlarging its long-term utility and relevance
across various application scenarios.

VI. RELATED WORK
A. Collaborative Filtering Based QoS Prediction

The basic idea of memory-based CF approaches for QoS
prediction lies in using similarity calculation to obtain simi-
lar neighborhoods, and predicting unknown QoS value. Shao
et al. [4] first introduced using the Pearson correlation co-
efficient (PCC) to determine user similarity and predict the
QoS for a target user and service. Zheng et al. [22] proposed
WSRec, integrating similar user and service considerations for

recommendations. To enhance similarity calculation accuracy,
researchers began incorporating contextual factors like reliabil-
ity, time, and location. Chen et al. [6] considered the reputation
value as well as location information before similarity calcula-
tion. Zou et al. [5] proposed an reinforced collaborative filtering
algorithm by filtering noisy services with low similarity to the
target service, which significantly improves the accuracy of QoS
prediction. However, in real application scenarios, the prediction
accuracy of memory-based collaborative filtering is remarkably
reduced due to the sparse QoS invocation records.
Model-based CF methods, such as matrix factorization and
gradient descent, tackle memory-based sparsity by using his-
torical QoS data to predict unknown values. PMF [23] uses
a probabilistic model to optimize matrix decomposition for
better recommendations. Wang et al. [36] developed a multi-
dimensional CF approach for QoS prediction HDOP.

B. Deep Learning Based QoS Prediction

Traditional CF-based QoS prediction approaches are dedi-
cated to learning low-dimensional, linear user-service invoca-
tion relationships. When faced with the sparsity of historical
QoS invocation records, it is inadequate for learning more latent
features. Recently, deep learning techniques have been initially
applied to extract user-service complex nonlinear invocation
relationships, boosting the QoS prediction performance. He
etal. [18] first applied deep learning techniques to recommender
systems, thus solving the problem that matrix factorization fails
to express high-dimensional nonlinear features. Xu et al. [19]
proposed SDNN with lateral connections and further improved
NCF by learning relations in both high-dimensional and low-
dimensional spaces simulatneously, which is the state-of-art in
recommender system.

Wu et al. [37] proposed a deep neural model DNM for
multi-attribute QoS prediction, which captures the higher-order
interaction features of users and services through the interaction
and perception layers of the DNM. Zhang et al. [20] introduced
LDCEF, a location-aware deep neural network for collaborative
filtering, incorporating geographical data into the model. LDCF
connects deep learning with collaborative filtering using a sim-
ilarity adaptive corrector, integrating user and service context
into its features and learning complex user-service relationships.
However, these methods are part of centralized QoS prediction,
aggregating historical user-service QoS data for training, making
data-protected QoS prediction challenging.
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C. Data-Protected QoS Prediction

Zhu et al. [38] first focused on privacy protection for ser-
vice recommendation and proposed a simple and efficient data-
protected framework with the help of data obfuscation tech-
niques, under which two typical data-protected QoS prediction
approaches were developed, including, P-UIPCC and P-PMF.
Liu et al. [39] proposed a data-protected collaborative QoS
prediction framework by introducing differential privacy tech-
niques, which can protect users’ private data, while maintaining
accurate QoS prediction capability. In recent years, some re-
searchers have started to consider applying the federated learn-
ing framework to QoS prediction. Zhang et al. [24] proposed a
data-protected QoS prediction approach based on the federated
learning matrix decomposition technique, and further improved
the prediction efficiency by reduction strategy. However, ex-
isting data-protected approaches ignore the significant impact
on local QoS prediction model performance and personalized
model training by considering diverse data distribution across
different user clients.

Recentresearch has identified new security and privacy threats
in federated learning. Huang et al. [33] explore gradient inver-
sion attacks in federated learning and present effective mitiga-
tion with little impact on data utility. Fraboni et al. [34] discuss
“free-rider attacks” in federated learning, offering strategies for
detection and prevention in environments with limited data and
important models.

VII. CONCLUSION

In this paper, we propose a novel framework of data-protected
QoS prediction based on federated residual ladder network,
named FRLN. First, we design a residual ladder network as a fea-
ture extraction model called RLN, which captures the complex
nonlinear invocation relationships between users and services
from both low and high dimensional spaces with forward and
backward residual-aware blocks, which is more beneficial to
learn latent features of users and services for better QoS pre-
diction accuracy. Second, we propose a personalized federated
model training strategy to overcome the QoS prediction perfor-
mance loss due to data heterogeneity across multiple user clients,
where only the global expressions learned from RLN model are
uploaded to the cloud server for aggregation. It further improves
the accuracy of QoS prediction, while protecting users’ data
privacy of QoS invocations. We conduct extensive experiments
on two large-scale QoS datasets, and the results demonstrate
that FRLN achieves the best performance for data-protected
QoS prediction. While the proposed FRLN framework marks a
significant step forward for QoS prediction in machine learning,
ongoing advancements in ML techniques and expanded datasets
are essential for further enhancing its precision and applicability
in real-world scenarios.
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