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FRLN: Federated Residual Ladder Network for
Data-Protected QoS Prediction

Guobing Zou, Wenzhuo Yu, Shengxiang Hu, Yanglan Gan*, Bofeng Zhang*, and Yixin Chen, Fellow, IEEE

Abstract—QoS prediction plays an important role in service-oriented downstream tasks. However, most of current state-of-the-art QoS
prediction approaches suffer from two limitations. First, traditional approaches typically require collection of user-service historical QoS
invocations centrally in order to improve QoS prediction accuracy, which poses a threat to user data privacy. Second, although few of
the recent approaches take into account data protection when predicting QoS values, they still cannot effectively capture user-service
complex nonlinear invocation relationships, significantly influencing the performance of QoS prediction. To address these two issues,
we propose a novel framework of data-protected QoS prediction called Federated Residual Ladder Network (FRLN), which ensures
user data protection and effectiveness of predicting missing QoS values. It initially leverages our designed Residual Ladder Network
(RLN) to extract latent features of users and services from both low and high dimensional spaces. Then, local QoS prediction models
are collaboratively trained by personalized federated learning with the consideration of data heterogeneity. Extensive experiments have
been conducted on a real-world large-scale dataset called WS-DREAM, which consists of 5825 Web services from 74 regions and 339
users from 31 regions comprising a total number of 1,974,675 user-service QoS invocations. Experimental results demonstrate the
effectiveness of FRLN in multiple evaluation metrics. While the proposed FRLN framework marks a significant step forward for QoS
prediction in machine learning, ongoing advancements in ML techniques and expanded datasets are essential for further enhancing its
precision and applicability in real-world scenarios.

Index Terms—Web service, Data-protected QoS prediction, Residual ladder network, Personalized federated learning.
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1 INTRODUCTION

THE emergence of Web services in recent years has led
to their increasing adoption in various technological

domains such as Service-Oriented Architecture (SOA) and
Internet of Services (IoS) [1]. It has resulted in a proliferation
of the same or similar services, making it challenging to
recommend optimal services offering the best invocation
experiences to service requesters. Quality of Service (QoS),
as a crucial non-functional attribute [2] plays a vital role in
discriminating between these same or similar services. It is
dependent on various factors such as service deployment
conditions, user invocation locations, and network environ-
ment adaptation [3]. Therefore, QoS has become a significant
criterion in recommending Web services with the same or
similar functionality. However, due to the rapidly increasing
number of users and services, it is impractical and time-
consuming for service requesters to invoke all Web services
and service providers to monitor QoS information for each
service invocation. To satisfy diverse service-oriented appli-
cation scenarios, such as service discovery, selection, compo-
sition, recommendation and mashup creation, it has become
a fundamental yet challenging research issue to accurately
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perform QoS prediction, because of the remarkable sparsity
of historical user-service invocations.

Collaborative filtering has been widely applied in pre-
dicting missing QoS values, which can be classified into
memory-based and model-based approaches. Memory-
based collaborative filtering involves collecting QoS histori-
cal invocation records from user devices, calculating similar-
ity among users or services to obtain similar neighborhoods,
and predicting vacant QoS values [4], [5], [6], [7]. To alleviate
the sparsity problem of memory-based approaches, model-
based collaborative filtering is devoted to learning a model
from historical QoS invocation records, by extracting the
latent semantic features of users and services for QoS predic-
tion [8], [9]. However, these approaches often have limited
success in handling sparse data, as they primarily capture
low-dimensional and linear features, and may not fully
reveal the complex, high-dimensional relationships among
users and services. As a solution, recent investigations have
applied deep learning techniques [10], [11] to perform QoS
prediction task, using shallow neural multilayer perceptrons
to learn complex nonlinear interaction relationships among
users and services and addressing the poor representations
of traditional model-based collaborative filtering.

The model-based approaches mentioned above fre-
quently require local user data, such as IP addresses and
historical QoS invocation records to assist the central server
in training a unified QoS prediction model. As the QoS
prediction task increasingly relies on local user data, privacy
concerns have become an important issue to consider when
it comes to practical deployment. Specifically, this poses
a potential data leakage risk, as malicious central servers
could infer sensitive user information from QoS invocation
records. Such user privacy threats result in difficulty in
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learning a QoS prediction model by training all historical
invocation records of users. As a result, developing data-
protected QoS prediction techniques has become a crucially
challenging issue. It must protect user data privacy while
still maintaining satisfactory QoS prediction accuracy.

In recent years, emerging federated learning [12], [13],
[14], [15] techniques have been used to develop privacy-
preserving QoS prediction techniques that avoid centraliz-
ing local user data. However, while these approaches move
toward data privacy protection, they work against improv-
ing QoS prediction accuracy for two essential and critical
reasons. First, existing approaches ignore the significant
impact on model performance caused by more limited local
users’ QoS invocation records. Given that each client only
has a fraction of the global QoS invocation records, the shift
from centralized to distributed training may compromise
the model’s ability to accurately learn latent user-service
interaction features, which also aggravates the overfitting
situation of QoS prediction model. Second, personalized
service demands and distinct network environments leave
QoS records that deviate from the global QoS invocation
distribution on each client. In such case, most existing ap-
proaches upload all the parameters of the trained local QoS
prediction models to the cloud center for aggregation, exac-
erbating client-drift [16] and leading to the degradation of
prediction performance. Thus, training a single global QoS
prediction model for all local users is often insufficient when
facing a non-independent and homogeneously distributed
QoS invocation records.

To solve the above issues, we propose a novel approach
for data-protected QoS prediction called Federated Residual
Ladder Network (FRLN), which is designed to overcome the
challenges posed by limited local QoS invocation records
and the data heterogeneity arising from varying distribu-
tions of QoS invocation records among users. Specifically,
FRLN consists of two main components. First, we design
a new RLN feature extraction network, which effectively
captures latent user-service feature representations across
the limited local historical QoS invocations. It uses for-
ward and backward residual perception blocks to capture
the interaction between users and services from both low
and high-dimensional spaces. Second, we train local QoS
prediction models collaboratively using federated learning,
considering data heterogeneity. It optimizes globally shared
parameters as well as locally private ones for each user,
towards the personalization of performing QoS prediction.
We upload only the global representations in the RLN
model parameters to the cloud center for aggregation, while
keeping the rest of the personalized parameters locally. That
enables each user to train a personalized QoS prediction
model with their private local QoS invocation records,
thereby achieving the objective of data protection.

To evaluate the effectiveness of our proposed approach,
we conduct extensive experiments on a public and large-
scale real-world dataset called WS-DREAM, which consists
of 5825 real-world Web services from 74 regions and 339
service users from 31 regions. It involves the total number
of 1,974,675 user-service QoS invocations, which is parti-
tioned into a set of independent groups of user-service
QoS invocations in terms of users. Our experimental results
demonstrate that the proposed FRLN achieves the best

prediction performance in multiple evaluation metrics for
data-protected QoS prediction compared to several state-of-
the-art competing baselines.

The main contributions are summarized as follows:
• We propose a novel effective QoS prediction frame-

work that uses local invocation records from user
devices, combined with deep neural networks and
personalized federated training techniques, to rec-
oncile data-protected and prediction accuracy while
predicting missing QoS values.

• We propose a new QoS feature extraction net-
work, RLN, which leverages two-way residual-
aware blocks to reveal the complex nonlinear in-
teractions for capturing latent features of users and
services more deeply. Considering the heterogeneity
of QoS invocation records, we train the RLN models
collaboratively in federated learning by a personal-
ized way.

• We reproduce several centralized models under the
federated paradigm, and conduct extensive exper-
iments on a large-scale real-world dataset, WS-
DREAM. The results indicate that FRLN keeps data
protection with still maintaining the superior perfor-
mance for QoS prediction, compared with existing
data-protected approaches.

The rest of this paper is organized as follows. Section
2 formulates the problem of data-protected QoS prediction.
Section 3 presents the proposed approach of FRLN in detail.
Section 4 shows and analyzes the experimental results. Sec-
tion 5 reviews the related work. Finally, Section 6 concludes
the paper.

2 PROBLEM FORMULATION

Definition 1 (Service User). Service users mainly refer to
the users who have invoked one or more services. Let U =
{u1, u2, ..., um} be a set of users. For each u ∈ U , it can be
defined as a three-tuple u =< ID,RE,AS >. ID is the
identifier of u and the rest can be collectively represented as
location information.

A service user’s location information mainly includes
Region (RE) and Autonomous System (AS), respectively.

Definition 2 (Web Service). For data-protected QoS
prediction problem, we mainly focus on the nonfunctional
features of a Web service. Let S = {s1, s2, ..., sn} be a set of
Web services. For each s ∈ S, it can be defined as a three-
tuple s =< ID,RE,AS >. ID is the identifier of s and the
rest can be collectively represented as location information.

A Web service’s location information mainly includes
Region (RE) and Autonomous System (AS), respectively.

Definition 3 (User-Service Invocation Record). Given
a user set U and a service set S, a user-service invocation
record is defined as a three-tuple r =< u, s, ru,s >, where
u ∈ U is a service user, s ∈ S is a Web service, and ru,s is
the QoS value when u invokes s.

Through Web service invocations, the user-service invo-
cation records can be represented as a QoS matrix, denoted
as R. Each row of the matrix represents the QoS of a user
who invokes all Web services, and each column represents
the QoS of a Web service that is invoked by all users.
From the user’s perspective, R can be partitioned into sub-
matrices, denoted as R′ = {R1, R2, ..., Rm}, where each Ri
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Fig. 1. The Framework of FRLN: It is built on the residual ladder network (RLN) and consists of two main stages, including local QoS prediction and
server federated aggregation, which are marked by the black single arrow and the gray two-way arrow, respectively.

represents the QoS record sub-matrices of user ui invoking
all services. If a user ui has invoked a service sj , we have
< ui, sj , rui,sj >∈ Ri, otherwise < ui, sj , rui,sj > 6∈ Ri.

Definition 4 (Data-Protected QoS Prediction Problem).
Given a set of users U , a set of Web services S and all
observed QoS invocation records R, a QoS prediction prob-
lem can be defined as a five-tuple Ω =< U,S,R′, u, s >,
where u ∈ U is a target user, s ∈ S is a target service,
R′ = {R1, R2, ..., Rm} , and < u, s, ru,s > 6∈ R.

The solution to a data-protected QoS prediction problem
Ω is< u, s, r̂u,s >. It indicates the predicted QoS value when
a target user invokes a target service, by exploiting the pro-
vided information of invocation records among users and
services, from the perspective of data-protected objective.

3 APPROACH

3.1 The Framework of FRLN

Figure 1 illustrates the of two main stages, including local
QoS prediction and server federated aggregation.

• In the stage of local QoS prediction, the target
user and target service information are mapped into
low-dimensional dense embedding vectors. Residual
Ladder Network is first designed to learn complex
nonlinear user-service interaction features from the
dense vectors. Then, the generated low and high
dimensional latent features, output by the RLN, are
fused and fed to the QoS Prediction Head, which
is a shallow multilayer perceptron to predict finally
unknown QoS values.

• In the stage of server federated aggregation, the RLN
models are trained by federated learning in a per-
sonalized manner. That is, each user’s corresponding
RLN model uploads the global representation to the
central server for parameter aggregation, while the
rest of the parameters are kept locally away from
central aggregation. Thus, each client holds a per-
sonalized QoS prediction model.

3.2 Local QoS Prediction

3.2.1 User-Service Deep Feature Extraction

Figure 2 shows the layers of the designed RLN for the pro-
cess of extracting user-service deep feature representations.
It begins with the interaction information between users and
services, propagating through user-service input layer, user-
service embedding layer, and user-service residual ladder
layer. By the sequential transformations, it outputs both
low and high-dimensional deep features of user-service
nonlinearly complex interactive relationships.

User-Service Input Layer. It is employed to initialize the
original representation of a user and service. To improve
the effectiveness of extracting deep features, we integrate
location information such as autonomous system (AS) and
region (RE) in addition to the identifiers (ID) of a user
and service. The original user and service features can be
expressed as multi-dimensional vectors:

un = [iu, ru, au] (1)

sn = [is, rs, as] (2)

Where i, r, a denote ID, RE and AS, while u and s
represent a user and service, respectively. We use a global
mapping system to assign identical non-negative integers to
users or services in the same region or autonomous system.

User-Service Embedding Layer. In this layer, the ini-
tially high-dimensional and sparse feature vectors of users
and services are mapped to low-dimensional and dense
embedding feature vectors. The mapping function for a
user’s ID, RE, and AS can be formulated as follows:

Iu = σ
(
WT

u iu
)

(3)

Ru = σ
(
WT

u ru
)

(4)

Au = σ
(
WT

u au
)

(5)
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Fig. 2. The architecture of Residual Ladder Network (RLN) for extracting
low and high-dimensional deep features of a user and service.

Where Wu represents the user’s embedding weight
matrix and σ represents the ReLU activation function of
embedding layer. Iu, Ru and Au represent the embedding
output of a user’s ID, RE and AS, respectively. Similarly,
we can obtain a service’s embedding output Is, Rs and As,
respectively.

These embeddings are then concatenated to correspond-
ingly generate embedding feature vectors Eu and Es, which
are further combined to produce the user-service interaction
feature representation Xu,s. It is expressed by the following
formula where Φ is the operation of feature concatenation.

Eu = Φ (Iu, Ru, Au) =

 Iu
Ru

Au

 (6)

Es = Φ (Is, Rs, As) =

 Is
Rs

As

 (7)

Xu,s = Φ(Eu, Es) =

[
Eu

Es

]
(8)

User-Service Residual Ladder Layer. The output of
embedding layers is integrated into residual ladder layer to
extract the nonlinear interaction relationships between users
and services.

Intuitively, high-dimensional spaces are crucial for deep
feature extraction, as existing investigations have shown
that low-dimensional representations are often insufficient
for capturing user-service interaction features, resulting in
significant losses in QoS prediction accuracy [17], [18], [19],
[20]. Therefore, in our user-service residual ladder layer,
low-dimensional output of the forward pyramid is con-
tinuously fed as input to the reverse pyramid structure to
generate high-dimensional features. The generated low and

Residual Ladder 
Network (RLN)

Low-High Dimension
Feature Concatenation QoS

Fig. 3. QoS prediction head.

high-dimensional features are then combined together to
further perform local QoS prediction.

By extending from ResMLP [21], we design the main
unit of user-service residual ladder layer, called the residual
perceptron block (RPB), to extract low and high-dimensional
deep features of users and services. Here, each RPB consists
of two affine layers and dimensions of the affine layer
are consistent within an RPB, but decreasing with forward
propagation in the F-RPB while increasing in the B-RPB.
To reduce the overfitting, a Dropout layer instead of Batch
Normalization (BN) layer is added between the two affine
layers. The reason is that in a federated setting of our local
QoS prediction problem, where each user only holds a small
and non-IID set of user-service QoS invocation records,
the personalized historical QoS invocations of users are
distributed differently across multiple batches. The formal-
izations of F-RPB and B-RPB are as follows.

Aff(X,σ) = σ
(
WTX + b

)
(9)

yif = Aff(D(Aff(xif , ReLU)), ReLU) (10)

xi+1
f = yif + xif (11)

yib = Aff(D(Aff(xib, ReLU)), ReLU) (12)

x∗b = y∗f (13)

xib = yi+1
b + xi+1

b (14)

Where Aff represents affine layer, σ represents ReLU
activation function, and D represents Dropout layer. xif
and yif represents the input and output of the i-th F-RPB,
respectively. Similarly, xib and yib represents the input and
output of the i-th B-RPB, respectively. x∗b and y∗f represent
the top-level F-RPB and B-RPB, which means that the output
of the last F-RPB is utilized as the initial input for the
foremost B-RPB.

3.2.2 Dimensionally Fused QoS Prediction
As Figure 3 shows QoS prediction head is to predict the
unknown QoS when a target user desires to invoke a target
service. We concatenate the low-dimensional xf and high-
dimensional xb latent user-service interaction features ex-
tracted by RLN and feed them into a fully connected layer.
It is formalized as follows:

Xo = Φ(xf , xb) =

[
xf
xb

]
(15)
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r̂u,s = I
(
WT

h Xo + bh
)

(16)

Where r̂u,s represents the predicted QoS value and I
represents a standard identity function as the activation
function for the QoS prediction head layer.

3.3 Server Federated Aggregation
3.3.1 Global Representation Aggregation
The federated learning paradigm relies on storing historical
QoS invocation records on user-side devices rather than
exposing them to a central server. Although it results in
personalized non-IID QoS invocation records that closely
relate to user behavior and preferences, the heterogeneity
of QoS invocation records from multiple clients may have
common latent feature representations that can be shared
across clients. To this end, we propose an extension of the
traditional federated learning where clients cooperate to
learn a global model using all parameters of each client and
then simply replace this global model on each client.

Figure 4 illustrates our proposed scheme of federated
training, which involves global update, local update, as well
as their corresponding server update and client update. The
objective is to develop a bunch of personalized RLN local
QoS prediction models, by both collaboratively learning
shared global feature representation of heterogeneous user-
service invocation QoS across multiple clients and keeping
their own personalized local features for each client.

3.3.2 Personalized Federated Training of RLN
RLN fully extracts the deep features with multiple forward
and backward residual perception blocks (RPBs), which
may contain the common feature representation of user-
service interactions, and all user devices collaborate and
share the global feature representations.

For all the trainable parameters of the RPBs in the user-
service residual ladder layer of RLN, we represent them
as global feature parameters and denote them by ΘG. In
such case, the process of feeding the output Xu,s from
the user-service embedding layer into the residual ladder
layer of RLN can be rewritten as a nonlinear transformation,
formally expressed as

xf , xb ← σ
(
ΘT

GXu,s + b
)

(17)

Conversely, since the input, embedding and output lay-
ers work directly with the user’s personalized local QoS
invocation records, each client keeps them private and
does not share with any other clients. Here, we denote the
trainable parameters of the output layer by Θ̂P,u, the QoS
prediction head is rewritten as

r̂u,s = I

(
Θ̂P,u

[
xf
xb

]
+ b

)
(18)

To train and optimize the model parameters, we take
Mean Absolute Error (MAE) as the loss function, and the
loss to be optimized for a specific user u is expressed as

Lu(ΘG,u, Θ̂P,u) =

∑
s∈S

∣∣∣f(Xu,s; ΘG,u; Θ̂P,u)− ru,s
∣∣∣

n
+ λ‖Θu‖22

(19)

Client 1

⅀

𝜣t+1𝜣t

Global Update Local Update

Local Dataset Local Model QoS

Client m

Local Dataset Local Model QoS

……𝜣 𝜣

𝜣

Server 𝜣 Global Representation

Personalized Features

Client Update

Server Update

Global Update

Local Update

Fig. 4. The proposed scheme of server federated aggregation: All clients
share a common global representation of diverse user-service QoS
records, along with their unique local features tailored to individual
preferences. The global update moves from several clients to a central
server for collective learning, while a local update reverses this flow for
back propagation.

Where S represents the service set and |S| = n, Θu

is all the trainable parameters for each client’s local QoS
prediction model, and λ is the regularization parameter for
controlling model overfitting.

By accumulating and averaging all the users from U , the
global loss function is expressed as

min L(Θ) = min
u1,...,um∈U

∑
u∈U

Tu
T
Lu(ΘG,u, Θ̂P,u) (20)

Where T denotes the total number of samples and Tu
refers to the local samples owned by participant u. The
task of minimizing the global loss function is equivalent to
optimizing each loss function owned by each client.

3.3.3 Algorithms of Client and Server Updates
To minimize the loss function described above, the user
client and server perform updates alternately. In general,
a client u takes local historical QoS invocation records to
train the personalized QoS prediction model. Concurrently,
the global representations extracted by RLN across multiple
clients are transmitted to the central server that takes the
global representation by a federated aggregation process,
sharing the updated representation with other clients.

The pseudo codes of client and server updates are
shown in Algorithms 1 and 2, respectively. For each round
t = 1, 2.., k, clients are involved to perform client update
based on a constant fraction C ∈ (0, 1]. In the client up-
date, each client u receives the current global representation
from the central server, and makes E epochs of gradient-
based updates, such as Stochastic Gradient Descent (SGD),
to optimize both global and personalized parameters. For
i = 1, ..., E, client u ∈M , it executes client updates as

(Θt
G,u, Θ̂

t
P,u)← SGDi

(
Θt−1

G,u; Θ̂t−1
P,u ; b; η

)
(21)

Where η denotes learning rate and b indicates the batch
size over the local historical QoS invocation records. We
stipulate that b = −1 means all local user-service invocation

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2024.3377100

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on March 26,2024 at 14:52:26 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. X, NO. X, 2024 6

Algorithm 1: Client Update

1 Initialize Θ
(0)
Pu

2 for each round t = 1, 2... do
3 k ← max(C · |U | , 1)
4 M ← randomly select k clients
5 for each client u ∈M do
6 Receive Θt−1

G,u from Server
7 for local epoch i from 1 to E do

8 (Θt
G,u, Θ̂

t
P,u)← SGDi

(
Θt−1

G,u; Θ̂t−1
P,u ; b; η

)
9 end

10 Send Θt
G,u to Server

11 end
12 end

Algorithm 2: Server Update

1 Initialize Θ
(0)
G

2 for each round t = 1, 2... do
3 Receive Θt

G,u from each client u ∈M
4 Aggregate Θt

G ←
∑

u∈M
Tu

T Θt
G,u

5 Propagate Θt
G to each client

6 end

training samples are treated as a single minibatch. SGD
optimizes parameters from (Θt−1

G,u; Θ̂t−1
P,u ) to (Θt

G,u, Θ̂
t
P,u)

with (22)

Θu = Θu − η · ∇Θu
L(Θu) (22)

Where Θu represents the parameters (Θt−1
G,u; Θ̂t−1

P,u ), η
represents the learning rate, which is a factor that controls
the step size of parameter update, L(Θu) represents the loss
function, and ∇Θu

L(Θu) represents the gradient of the loss
function with respect to the parameters.

Once the client update is finished, the server continues to
receive the local-updated global representations, and takes
a weighted average on them, until it minimizes the global
loss function or reaches the convergence condition.

4 EXPERIMENTS

4.1 Experimental Setup and Datasets
All experiments are conducted on a workstation with an
NVIDIA GeForce 1080Ti GPU and an Intel Xeon Gold 6132
CPU at 2.60 GHz. Our approach’s components were imple-
mented in Python 3.7.0 and PyTorch 1.1.0.

To validate the performance of the proposed FRLN
for data-protected QoS prediction by personalized federat-
ing learning, we conduct extensive experiments using the
benchmark dataset WS-DREAM dataset [22]. It is a large-
scale real-world user-service invocation QoS dataset, which
has been widely used for QoS prediction. WS-DREAM con-
tains 1,974,675 historical QoS invocation records from 339
users and 5,825 services. It has two kinds of user-service QoS
invocations, including response time (RT) and throughput
(TP). Each can be represented as a user-service invocation
matrix, where a row has a set of QoS entries indicating a
corresponding user who invokes all of the Web services,

TABLE 1
The statistics of WS-DREAM experimental dataset

Item Value
User ID 339

User regions 31
User AS 137

Service ID 5,825
Service regions 74

Service AS 992
QoS invocation records 1,974,675

TABLE 2
WS-DREAM data sample before and after pre-processing

ID RE AS
(Before/After) (Before/After)

User 111 United States/12 AS378 ILAN./4
Item 525 United States/12 AS271 BCnet/7
RT 0.285
TP 7.782

and a column includes a group of QoS entries indicating
a corresponding Web service that is invoked by all of the
users. Moreover, WS-DREAM provides user and service
identifiers as well as location contextual information, such
as region and autonomous system, which are used as model
inputs for extracting user-service invocation deep features
in FRLN. The detailed statistics of the experimental dataset
are shown in Table 1, where an example of a data sample
before and after pre-processing is shown in Table 2.

In real service-oriented application scenarios, a single
user only invokes a limited number of services, which re-
sults in extreme sparsity of the user-service QoS invocation
matrix. In our experiments, four different low densities of
5%, 10%, 15%, and 20% QoS dataset are generated on RT
and TP as model training data, while the remaining 95%,
90%, 85% and 80% QoS invocation samples are used as
model testing data set to compare the performance between
FRLN and competing baselines. Note that under the con-
sideration of federated setting, randomly generated training
data samples are respectively distributed to different clients,
where each client corresponds to an individual user and
exclusively accesses their own user-service QoS invocation
records within the training dataset.

4.2 Competing Methods and Evaluation Metrics

To evaluate the performance of FRLN, we compare it with
eleven widely-used representative competing approaches,
including two memory-based and one matrix factoriza-
tion model-based approaches, two deep learning based
approaches, and four federated learning based approaches,
and two our self-developed variants of FRLN. They are
described as below.

• UPCC [4]: It is a user-based collaborative filtering
QoS prediction algorithm. It uses PCC to find the
neighbor set of a target user and combines the devia-
tion migration of the neighbor users, and the average
of all QoS values, which are from the target user
invoking Web services.
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• LACF [7]: It is memory-based and state-of-the-art
location-aware collaborative filtering QoS prediction
approach, which incorporates location contextual in-
formation to better calculate the similarity among
users and services.

• PMF [23]: It is probabilistic matrix factorization ap-
proach, which optimizes the traditional matrix fac-
torization utilizing probabilistic model. PMF is used
as a typical model-based collaborative filtering algo-
rithm for vacant QoS prediction.

• NCF [18]: It is a deep learning-based collaborative fil-
tering algorithm utilizing Generalized Matrix Factor-
ization (GMF) and a Multi-Layer Perceptron to learn
complex nonlinear user-service interactions, aimed at
solving regression problems like QoS prediction.

• LDCF [20]: It is a deep learning location-aware col-
laborative filtering algorithm, which builds a bridge
between deep learning and CF through similarity
adaptive corrector. It embeds location information of
users and services into feature representations, and
utilizes MLP to learn high-dimensional nonlinear
relationships between users and services.

• EFMF [24] It is a federated learning based matrix
factorization approach that enhances prediction per-
formance and protects user data privacy by predict-
ing missing QoS values without central aggregation
of user-service records, serving as the federated-
oriented baseline for FRLN.

• NCSF-GMF [25] It is a federated learning based ap-
proach where users collaboratively upload perturbed
updates during server aggregation to enhance pri-
vacy without affecting the global model’s accuracy.

• FedNCF [18] It is a federated learning algorithm that
is based on NCF. It uses the traditional FedAvg ap-
proach for parameter aggregation, whereby all NCF
parameters are uploaded to a central server during
the parameter aggregation phase and subsequently
aggregated.

• FedLDCF [20] It is a federated learning algorithm
based on LDCF, in which all parameters of the LDCF
model are uploaded to the central server and aggre-
gated using the FedAvg approach, offering a promis-
ing solution to privacy and security challenges in
predicting missing QoS values.

• FRLN-Avg It is our self-developed non-personalized
variant of FRLN, applying the FedAvg algorithm [12]
to perform server federated aggregation for those
parameters of the RLN model uploaded to the cloud
center.

• FRLN-(ε, δ)-DP: It is our self-developed differential-
privacy variant of FRLN, which utilizes the DP-SGD
algorithm [26]. We adjust two kinds of parameters
for different levels of privacy protection, including
target privacy budget ε and acceptable privacy risk
δ. Especially, a smaller ε raises more noise, indicating
stronger privacy protection. By taking with different
privacy budgets ε balance data protection and model
performance of QoS prediction.

In our experiments, we use both Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) to evaluate our

TABLE 3
Parameter settings of FRLN

Parameter Value Description
b -1 or 8 Batch size of each client
d 16 Dimensionality
C 0.1 Client selection rate
E 1 or 5 Epoch of each client
η 0.001 Learning rate

depth [256, 128, 64] Depth of RLN model
dropout 0.15 Dropout rate
ε1, ε2 10, 5 Target privacy budget
δ 0.0001 Acceptable privacy risk

Clip 0.5 Maximum gradient norm
FL Round 1000 Total rounds of FL

QoS prediction models. They are defined as follows:

MAE =

∑
u,s |ru,s − r̂u,s|

N
(23)

RMSE =

√∑
u,s (ru,s − r̂u,s)2

N
(24)

Where u and s represent a given target user and target
service, respectively. ru,s and r̂u,s represent observed and
predicted QoS values, respectively. N denotes the number
of the test QoS samples in the experiments.

MAE mainly evaluates the overall accuracy of QoS pre-
diction by calculating the averaged absolute deviation while
RMSE is used to more sensitively assess the performance of
QoS prediction model on outliers using a relatively higher
weighting to large errors on predicted QoS values. The
reason we choose MAE and RMSE as evaluation metrics
is that they are instrumental in providing a clear picture
of the model’s overall QoS predictive accuracy and its
effectiveness in handling outliers, which has been widely
used for validating the performance of QoS prediction [10],
[20], [22], [27].

Additionally, it is still difficult to recognize whether a
machine learning framework can be used for effective QoS
prediction by purely applying MAE and RMSE. The reason
is that these two evaluation metrics cannot well reflect the
gap in absolute terms between the prediction error range
and the ground truth QoS value. Thus, Normalized Mean
Absolute Error (NMAE) [28] [29] is further taken to measure
the QoS prediction accuracy. NMAE is defined as follows:

NMAE =
MAE∑
u,s ru,s/N

(25)

Where ru,s represents observed QoS values. N is the
number of test QoS samples in the experiments. NAME can
be used to calculate the ratio between MAE and the average
real QoS value, reflecting the absolute gap of prediction
error range and ground truth value for effective decision-
making in application scenarios.

4.3 Experiment Results and Analyses
4.3.1 Experiment Results in Federated Settings
Comparisons of Federated Settings. To verify the effective-
ness of our proposed FRLN, we first compare it with ex-
isting state-of-art QoS prediction approaches in a federated
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TABLE 4
Experimental results of federated QoS prediction under multiple densities on RT dataset. The best results are marked in bold and the second-best

results are highlighted in gray background. The gains are calculated between the best and the second-best predicted QoS values

Methods
Density 5% Density 10% Density 15% Density 20%

MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

EFMF 0.622 1.526 0.683 0.528 1.326 0.581 0.488 1.237 0.538 0.470 1.200 0.518
NCSF-GMF 0.569 1.557 0.625 0.481 1.456 0.530 0.453 1.340 0.498 0.400 1.286 0.441
FedNCF 0.492 1.478 0.543 0.431 1.374 0.474 0.417 1.361 0.458 0.403 1.326 0.444
FedLDCF 0.491 1.433 0.541 0.451 1.356 0.496 0.433 1.364 0.475 0.410 1.387 0.451
FRLN 0.379 1.306 0.418 0.344 1.238 0.378 0.322 1.201 0.355 0.309 1.175 0.340
FRLN-Avg 0.397 1.347 0.437 0.385 1.329 0.423 0.380 1.312 0.418 0.365 1.285 0.401
FRLN-(ε1, δ)-DP 0.390 1.355 0.429 0.345 1.260 0.380 0.324 1.218 0.357 0.312 1.197 0.344
FRLN-(ε2, δ)-DP 0.417 1.380 0.458 0.370 1.301 0.407 0.329 1.220 0.361 0.322 1.206 0.356
Gains 22.81% 8.86% 22.73% 20.19% 6.64% 20.25% 22.78% 2.91% 22.48% 23.32% 2.08% 22.90%

TABLE 5
Experimental results of federated QoS prediction under multiple densities on TP dataset

Methods
Density 5% Density 10% Density 15% Density 20%

MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

EFMF 26.92 68.86 0.567 19.62 53.37 0.411 16.91 48.69 0.354 15.34 43.87 0.323
NCSF-GMF 18.08 63.88 0.379 21.99 55.08 0.462 17.08 49.05 0.359 14.92 47.16 0.313
FedNCF 18.52 57.27 0.389 16.02 51.40 0.337 15.24 50.09 0.322 15.17 49.20 0.318
FedLDCF 16.48 54.07 0.346 14.77 48.43 0.311 13.20 45.83 0.276 12.96 45.23 0.272
FRLN 14.94 51.62 0.314 12.57 44.67 0.264 11.37 40.87 0.239 11.06 39.60 0.232
FRLN-Avg 15.02 52.49 0.314 13.81 45.12 0.290 13.48 44.37 0.284 13.47 42.82 0.282
FRLN-(ε1, δ)-DP 17.08 54.02 0.359 14.84 47.39 0.311 13.60 44.27 0.285 13.36 43.53 0.281
FRLN-(ε2, δ)-DP 17.85 56.75 0.377 14.86 46.98 0.312 14.00 44.92 0.295 13.86 44.32 0.291
Gains 9.34% 4.53% 9.45% 14.90% 7.76% 15.19% 13.86% 10.82% 13.40% 14.66% 9.73% 17.2%

learning environment, where the parameter settings used
in our FRLN are shown in Table 3. FRLN-Avg uses the
same parameter settings as FRLN. Parameter ε, δ, Clip are
specifically utilized in the FRLN-DP variant. In this variant,
the per-sample gradients of the client models are clipped
according to C , followed by the addition of gaussian noise
to these gradients before executing the gradient descent.
Considering the efficiency of the DP-SGD algorithm, we set
b=8 and E=1. To achieve the best for the rest of competing
approaches, we set the optimal model parameters directly,
as recommended in their experiments. A larger number
of total FL round is set to ensure convergence to optimal
performance for all competing baselines.

Table 4 and Table 5 show the experimental results of
federated QoS prediction under multiple densities on RT
and TP, respectively. The best results of FRLN and its
variants are marked in bold and the best results of other
competing approaches are highlighted in gray background.
From the results, we demonstrate that all of the competing
approaches have a gradual decrease of MAE, RMSE and
NMAE on both RT and TP datasets as the density increases
from 5% to 20%. The reason is that more available user-
service QoS invocation records lead to sufficient training
of different QoS prediction models, resulting in better per-
formance on MAE, RMSE and NMAE. More specifically,
FRLN outperforms other federated competing approaches,
showing a significant improvement of 23.32% on MAE, up
to 8.86% on RMSE and 22.90% on NMAE across multiple
matrix densities on RT dataset. Likewise, on the TP dataset,

FRLN achieved an impressive improvement of 14.9% on
MAE, 10.82% on RMSE and 17.2% on NMAE, respectively.

FRLN outperforms competing baselines in both RT and
TP datasets on NMAE, potentially indicating its applicabil-
ity in real service-oriented scenarios. Specifically, taking the
RT dataset as an example, it is observed from NMAE and
MAE values that invoking a Web service with an average
response time close to 1 second, FRLN’s average predicted
QoS ranges from 0.6 to 1.4 seconds. The results demon-
strate that FRLN can predict missing QoS values within
an acceptable margin of prediction error, thus highlighting
its potential possibility in practical applications. However,
further enhancing machine learning frameworks for QoS
prediction or expanding larger QoS datasets is of crucial
importance towards seamless applications in various real-
world distributed computing environments.

FRLN achieves superior performance in QoS prediction
accuracy for two key reasons. First, we employ a specially
designed RLN network for each client’s QoS prediction
model. It leverages two-way residual-aware blocks to ex-
tract latent user-service nonlinear interaction features, while
also considering low and high dimensional feature fusion
for better QoS prediction performance. Second, we mitigate
the issue of client-drift caused by non-IID QoS user-service
invocation records on a single client, which is evidenced by
the comparison between FRLN and FRLN-Avg. Specifically,
FRLN demonstrates superior performance over FRLN-Avg
in both RT and TP datasets. The underlying mechanism
of FRLN’s enhanced performance can be attributed to its
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TABLE 6
Experimental results of centralized QoS prediction under multiple densities on RT dataset

Methods
Density 5% Density 10% Density 15% Density 20%

MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

UPCC 0.698 1.665 0.7697 0.559 1.466 0.6147 0.496 1.349 0.5463 0.464 1.274 0.5098
LACF 0.631 1.439 0.6965 0.562 1.338 0.6169 0.513 1.269 0.5624 0.477 1.222 0.5251
PMF 0.623 1.532 0.6847 0.528 1.329 0.5818 0.488 1.238 0.5381 0.469 1.202 0.5174
NCF 0.472 1.438 0.5186 0.386 1.314 0.4241 0.362 1.303 0.3991 0.352 1.274 0.3883
LDCF 0.403 1.277 0.4427 0.364 1.233 0.4005 0.345 1.169 0.3797 0.331 1.138 0.363
RLN 0.373 1.303 0.4108 0.325 1.227 0.3572 0.302 1.168 0.332 0.289 1.146 0.3181
Gains 7.44% -2.00% 7.21% 10.71% 0.49% 10.81% 12.46% 0.09% 12.56% 12.69% -0.70% 12.37%

TABLE 7
Experimental results of centralized QoS prediction under multiple densities on TP dataset

Methods
Density 5% Density 10% Density 15% Density 20%

MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE MAE RMSE NMAE

UPCC 31.43 77.08 0.661 24.70 64.18 0.519 22.35 58.95 0.470 21.21 56.16 0.444
LACF 22.97 55.78 0.481 19.44 52.92 0.409 17.58 49.56 0.369 16.45 47.41 0.345
PMF 26.47 67.46 0.556 19.83 50.64 0.416 16.84 47.48 0.354 15.32 43.86 0.321
NCF 18.68 54.65 0.392 14.40 46.22 0.303 13.30 45.35 0.279 12.84 44.95 0.270
LDCF 13.84 47.35 0.291 12.38 43.48 0.259 11.27 39.81 0.236 10.84 38.99 0.228
RLN 13.81 47.90 0.290 11.25 40.82 0.237 10.42 38.01 0.219 10.13 37.13 0.213
Gains 0.22% -1.16% 0.3% 9.13% 6.12% 8.49% 7.54% 4.52% 7.20% 6.55% 4.77% 6.57%

unique strategy of utilizing the residual ladder layer param-
eters within each client’s QoS prediction model as shared
parameters for server federated aggregation. Thus, it treats
the remaining parameters as private features, ensuring that
they are not shared with other clients. That approach en-
ables each client to leverage local data to train their indi-
vidualized models by both collaborative learning of shared
parameters and keep interior training of personalized fea-
tures, effectively countering the challenges posed by client-
drift in non-IID scenarios of user-service QoS invocation
records. Compared to our proposed FRLN, the competing
baselines EFMF, FedNCF, FedLDCF and NCSF-GMF par-
tially failed to address the issue of accurately capturing the
complex nonlinear interaction relationships between users
and services with the limited amount of historical QoS
invocation records on each user client. Moreover, FedNCF
and FedLDCF achieve better overall QoS prediction perfor-
mance than EFMF, as they take advantage of the MLPs to
capture non-linear user-services interaction features.

Analysis on Data-Protection. FRLN has implemented
several strategies to protect user-service QoS invocation
records. First, leveraging federated learning framework,
FRLN uploads the learned model parameters instead of real
QoS invocation data, ensuring users’ originally local data is
not accessed by the central server. Second, although some
investigations [30], [31], [32], [33], [34] have raised concerns
about potential privacy breaches through the analysis of
neural network parameters, FRLN only updates the latent
features identified by the layer of residual ladder network
for server federated aggregation, while keeping those user-
interactive parameters within local QoS prediction model.
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Fig. 5. A comparative analysis of various federated learning models over
fixed training time under 5% density of RT dataset. The x-axis denotes
the model training time in seconds, while the y-axis represents each
model’s QoS prediction performance on RMSE.

It aligns with the data processing inequality [12], which
can further strength the capability of data protection that
these selectively uploaded parameters contain less private
information. Third, FRLN is also enhanced with advanced
differential privacy (DP) encryption technique DP-SGD al-
gorithm, by locally adding gaussian noise to user gradient
updates for perturbing the model parameters before upload-
ing. The experiments reveal a necessary balance between
model accuracy and user privacy, emphasizing different
levels of data protection in federated learning.

Comparisons on Uniform Training Time. To test the
model performance under equivalent training time con-
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TABLE 8
Performance changes of QoS prediction approaches under different

training settings on both RT and TP datasets

Methods
RT TP

MAE RMSE MAE RMSE

LDCF −→FedLDCF -23.86% -13.09% -19.55% -16.00%
NCF −→FedNCF -14.48% -4.08% -18.14% -9.45%
PMF −−→EFMF -0.21 % 0.16 % -0.13 % 0.02%
RLN −−→FRLN -6.92 % -2.61 % -9.18% -6.65%

straints, experiments have been conducted and the results
are shown in Figure 5 that although all models exhibit a gen-
eral reduction on RMSE over time, FRLN stands out with its
significantly lower RMSE, achieving superior convergence
and its efficacy in latent feature extraction. Specifically,
despite an additional complexity due to the incorporation
of RLN, FRLN receives its optimal performance within a
reasonably acceptable timeframe. It demonstrates certain
suitability by personalized QoS prediction model training
for data-protected real-world applications, where the accu-
racy of model prediction is of the utmost importance. As
for FRLN-DP, more training time is required for model con-
vergence, since it has the highest data-protected level with
the consideration of integrating differential privacy and
training personalized parameters. In practical applications,
it can regulate the critical equilibrium among QoS prediction
performance, user privacy, and model training efficiency in
FRLN by applying different data-protected levels.

4.3.2 Experiment Results in Centralized Settings
To further validate the performance of our proposed
method, we conducted additional experiments using a cen-
tralized training model and compared it with representative
centralized QoS prediction competing baselines. Although
FRLN is designed for the federated learning paradigm,
local QoS prediction model RLN also exhibits outstanding
performance in the centralized training model. Tables 6
and 7 show the experimental results of centralized QoS
prediction under multiple densities on RT and TP datasets,
respectively. Specifically, RLN enhances the MAE, RMSE,
and NMAE on the RT dataset by up to 12.69%, 0.49%, and
12.37%, respectively. On the TP dataset, the improvements
on MAE, RMSE, and NMAE are up to 9.13%, 6.12%, and
8.49%, respectively.

The reason for the poor performance of traditional CF-
based centralized QoS prediction methods is their inabil-
ity to effectively capture low-dimensional nonlinear user-
service interactions, and the sparse historical QoS data lim-
iting their learning of latent user and service features. How-
ever, NCF, which utilizes a multi-layer perceptron to exploit
nonlinear interactions between users and services, shows
a significant improvement in QoS prediction performance
by effectively compensating for QoS sparsity limitations.
LDCF further enhances the performance by adding contex-
tual information for better feature representation, such as
geographical locations of users and services. Overall, our
RLN model surpasses LDCF in most QoS density scenarios
on the RT and TP datasets. This is due to its effective
deep feature extraction, utilizing a bi-directional residual
structure for both low and high-dimensional space analysis.

TABLE 9
Impact of BN and Dropout

RT TP
MAE RMSE MAE RMSE

Neither 0.392 1.310 15.22 51.82
BN 0.423 1.377 18.53 57.91

Dropout 0.379 1.306 14.94 51.62

Thus, RLN allows for the exploration of more latent rela-
tionships between users and services, ultimately improving
the performance of centralized QoS prediction.

4.3.3 Performance Variations in Two Training Settings
We compare the decline variations of QoS prediction ac-
curacy among four competing approaches under the same
density of 20%, by switching training modes from cen-
tralized to federated way. Table 8 shows the results of
performance changes on RT and TP, respectively. It was
observed that, in addition to EFMF, each QoS prediction
model experienced a decrease in prediction performance of
both MAE and RMSE to different degrees. As for EFMF
showing little performance degradation, it can be attributed
to the fact that EFMF is considered a federated version
of PMF and undergoes a distributed computation of ma-
trix factorization. However, the QoS prediction accuracy of
EFMF is inferior when compared to the other three deep
learning-based QoS prediction competing approaches.

The superior performance of NCF and LDCF observed
in centralized training is not replicated in the federated
QoS prediction. In RT dataset, they experienced a decrease
on MAE of 14% and 23% for NCF and LDCF; a decrease
on RMSE of 4% and 13%, respectively. Also, they have a
similar performance drops on TP dataset. The possibility of
leading to the phenomenon is that FedNCF and FedLDCF
are implemented using conventional federated learning by
averaging all of the parameters in NCF and LDCF. However,
the heterogeneity of user-service QoS invocation records
across different clients is ignored, and it affects the perfor-
mance of corresponding federated QoS prediction models.
In contrast, our proposed FRLN experienced a relatively
more moderate performance degradation in the federated
training, since it considers the non-IID QoS distributions
by training a bunch of personalized local QoS prediction
models among multiple clients.

4.4 The Absence of Batch Normalization
Batch Normalization (BN) standardizes input data per mini-
batch, enabling faster and more stable network training [35].
However, we observe that BN is typically applied in central-
ized QoS prediction models, which assume that the accumu-
lated historical QoS records follow the same distribution as
the entire dataset. In the federated paradigm, on the other
hand, distributed QoS invocation records held by each user
are personalized and highly heterogeneous. Additionally,
the number of QoS invocations is often small, making it
difficult to support large batch sizes. As a result, individual
nodes can differ remarkably across multiple clients, leading
to a significant degradation in QoS prediction performance.

To validate our hypothesis, experiments were conducted
with FRLN under 5% QoS density on RT and TP datasets,
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Fig. 6. Performance impact of dimensionality and density.

(a) (b) (c) (d)

Fig. 7. Performance impact of client selection rates.

(a) (b) (c) (d)

Fig. 8. Convergence efficiency of QoS prediction model training under 10% density with different client selection rate.

with results in Table 9 confirming our assumptions. Specif-
ically, we found that FRLN with BN suffered from obvious
performance loss on both MAE and RMSE, especially for
TP dataset. However, the use of dropout can effectively
improve the QoS prediction accuracy. Therefore, BN is
excluded from our designed residual perceptron block of
RLN where dropout is used to prevent model overfitting
for better prediction performance in FRLN.

4.5 Performance Impact of Parameters

4.5.1 Impact of Dimensionality and Density

To test the performance impact of feature vector dimension-
ality d, we set six different dimension values of 2, 4, 8, 16,
32, and 64 at 5%, 10%, 15%, and 20% densities on the RT
and TP datasets, respectively. Under the above settings, we
generate 3D visualizations on MAE and RMSE, as illustrated
in Figure 6. The results show that for low density QoS
matrices, there emerges an initially decreasing and then
increasing variation tendency on MAE and RMSE as the
dimensionality of the feature vectors gradually ascends
among RT and TP, respectively. The underlying reason is
that there is limited information in sparse QoS matrices,
the prediction performance is better as the dimensionality

increases. However, if the dimensionality continues to in-
crease, the model can dilute useful information about the
user-service interactions, making the QoS prediction model
less effective due to worsening model overfitting.

Conversely, for denser QoS matrices, the higher dimen-
sionality of the feature vectors facilitates the QoS prediction
model in mining more information representations among
user and service interactions. As seen in Figure 6, the im-
provement in QoS prediction performance by increasing the
dimensionality of the feature vectors from 2 to 16 is more
significant than that by increasing it from 16 to 64. As a
result, setting the dimensionality of the feature vectors to 16
can achieve the optimal QoS prediction performance across
multiple QoS densities.

4.5.2 Impact of Client Selection Rate
To assess the impact of the client selection rate C that
determines the number of users participating in a particular
training round, we conducted experiments with four differ-
ent values of 0.1, 0.3, 0.5, and 1 under four QoS densities,
including 5%, 10%, 15% and 20%, respectively. Figure 7
demonstrates that for low density QoS matrices, a higher
client selection rate C results in decreased QoS prediction
performance on MAE and RMSE overall. This is due to
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each client having fewer QoS invocation records at a low
density, resulting in inadequate model training. An increase
in client selection rate C introduces undertrained clients,
which further reduces the model performance. Therefore, by
selecting a smaller client selection rate, we can improve the
model’s generalization ability. However, with high density
QoS matrices, more local data is included in the training
process, enabling every client to receive sufficient training
and become fully trained. In such cases, an increase in the
client selection rate C does not significantly reduce QoS
prediction performance.

Furthermore, we evaluate the convergence efficiency of
QoS prediction model training under a fixed 10% QoS
density by adjusting C . As shown in Figure 8, decreasing
C increases the required training rounds for model conver-
gence. For instance, in the RT dataset, C=1 converges in 50
rounds, while C=0.1 remains unconverged after 170 rounds.
It indicates that more clients participating in a single round
of model training increase the time required, while fewer
clients participating reduce the time per round but increase
the total number of communication rounds.

5 THREATS TO VALIDITY

Threats to application validity. In our proposed data-
protected FRLN, each client maintains its local user-service
QoS invocation records in a distributed manner, posing
significant challenges to traditional centralized QoS predic-
tion methods. Specifically, FRLN in real-world distributed
computing scenarios, like edge computing networks, where
dynamic user mobility significantly affects network con-
nectivity and interactions between edge users and servers,
may introduce additional complexities to the QoS prediction
task. Additionally, the limited computing capacity of edge
servers and the restricted node coverage in edge computing
networks pose further challenges to FRLN’s applicability.
Therefore, future efforts should focus on refining FRLN to
enhance QoS prediction in various downstream distributed
computing paradigms, like mobile edge computing net-
works, addressing both theoretical and practical challenges
to confirm FRLN’s applicability. Furthermore, according to
experimental results on NMAE, current machine learning
techniques are still not sufficiently sophisticated for high-
precision QoS prediction in practical applications. Thus,
it is expected to pose more efforts on exploring more
advanced machine learning frameworks and incorporating
larger datasets to further improve QoS prediction accuracy,
better satisfying the application demands in real service-
oriented scenarios similar to edge computing environments
by providing low response latency services.

Threats to dataset validity. In the experiments, we
employed WS-DREAM dataset for the evaluation of the
proposed FRLN. It comprises real-world user-service QoS
invocation records and is widely-used for QoS prediction
task, which includes a comprehensive range of characteris-
tics essential for effective QoS prediction. Under this exper-
imental circumstances, FRLN integrates deeply with WS-
DREAM dataset, utilizing its rich contextual elements such
as multi-granularity geographical information to enhance
the feature learning and representation of both users and
services. Despite the superior results achieved with the WS-
DREAM dataset, the threats of FRLN generalizability need

to be validated by adapting to other experimental datasets
with diverse contextual information. To this end, it is ex-
pected to involve extending FRLN’s application to a broader
range of datasets, with a specific focus on recommender
systems. It can improve the adaptability, applicability, and
robustness of FRLN, thereby enlarging its long-term utility
and relevance across various application scenarios.

6 RELATED WORK

6.1 Collaborative Filtering based QoS Prediction
The basic idea of memory-based CF approaches for QoS pre-
diction lies in using similarity calculation to obtain similar
neighborhoods, and predicting unknown QoS value. Shao
et al. [4] first introduced using the Pearson correlation co-
efficient (PCC) to determine user similarity and predict the
QoS for a target user and service. Zheng et al. [22] proposed
WSRec, integrating similar user and service considerations
for recommendations. To enhance similarity calculation ac-
curacy, researchers began incorporating contextual factors
like reliability, time, and location. Chen et al. [6] considered
the reputation value as well as location information before
similarity calculation. Zou et al. [5] proposed an reinforced
collaborative filtering algorithm by filtering noisy services
with low similarity to the target service, which significantly
improves the accuracy of QoS prediction. However, in real
application scenarios, the prediction accuracy of memory-
based collaborative filtering is remarkably reduced due to
the sparse QoS invocation records.

Model-based CF methods, such as matrix factorization
and gradient descent, tackle memory-based sparsity by us-
ing historical QoS data to predict unknown values. PMF [23]
uses a probabilistic model to optimize matrix decomposition
for better recommendations. Wang et al. [36] developed a
multi-dimensional CF approach for QoS prediction HDOP.

6.2 Deep Learning based QoS Prediction
Traditional CF-based QoS prediction approaches are dedi-
cated to learning low-dimensional, linear user-service invo-
cation relationships. When faced with the sparsity of histor-
ical QoS invocation records, it is inadequate for learning
more latent features. Recently, deep learning techniques
have been initially applied to extract user-service com-
plex nonlinear invocation relationships, boosting the QoS
prediction performance. He et al. [18] first applied deep
learning techniques to recommender systems, thus solving
the problem that matrix factorization fails to express high-
dimensional nonlinear features. Xu et al. [19] proposed
SDNN with lateral connections and further improved NCF
by learning relations in both high-dimensional and low-
dimensional spaces simulatneously, which is the state-of-art
in recommender system.

Wu et al. [37] proposed a deep neural model DNM for
multi-attribute QoS prediction, which captures the higher-
order interaction features of users and services through the
interaction and perception layers of the DNM. Zhang et al.
[20] introduced LDCF, a location-aware deep neural net-
work for collaborative filtering, incorporating geographical
data into the model. LDCF connects deep learning with
collaborative filtering using a similarity adaptive corrector,
integrating user and service context into its features and
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learning complex user-service relationships. However, these
methods are part of centralized QoS prediction, aggregating
historical user-service QoS data for training, making data-
protected QoS prediction challenging.

6.3 Data-Protected QoS Prediction
Zhu et al. [38] first focused on privacy protection for service
recommendation and proposed a simple and efficient data-
protected framework with the help of data obfuscation
techniques, under which two typical data-protected QoS
prediction approaches were developed, including, P-UIPCC
and P-PMF. Liu et al. [39] proposed a data-protected collabo-
rative QoS prediction framework by introducing differential
privacy techniques, which can protect users’ private data,
while maintaining accurate QoS prediction capability. In
recent years, some researchers have started to consider ap-
plying the federated learning framework to QoS prediction.
Zhang et al. [24] proposed a data-protected QoS prediction
approach based on the federated learning matrix decom-
position technique, and further improved the prediction
efficiency by reduction strategy. However, existing data-
protected approaches ignore the significant impact on local
QoS prediction model performance and personalized model
training by considering diverse data distribution across
different user clients.

Recent research has identified new security and privacy
threats in federated learning. Huang et al. [33] explore
gradient inversion attacks in federated learning and present
effective mitigation with little impact on data utility. Fraboni
et al. [34] discuss “free-rider attacks” in federated learning,
offering strategies for detection and prevention in environ-
ments with limited data and important models.

7 CONCLUSION

In this paper, we propose a novel framework of data-
protected QoS prediction based on federated residual ladder
network, named FRLN. First, we design a residual ladder
network as a feature extraction model called RLN, which
captures the complex nonlinear invocation relationships
between users and services from both low and high dimen-
sional spaces with forward and backward residual-aware
blocks, which is more beneficial to learn latent features of
users and services for better QoS prediction accuracy. Sec-
ond, we propose a personalized federated model training
strategy to overcome the QoS prediction performance loss
due to data heterogeneity across multiple user clients, where
only the global expressions learned from RLN model are
uploaded to the cloud server for aggregation. It further
improves the accuracy of QoS prediction, while protecting
users’ data privacy of QoS invocations. We conduct exten-
sive experiments on two large-scale QoS datasets, and the
results demonstrate that FRLN achieves the best perfor-
mance for data-protected QoS prediction. While the pro-
posed FRLN framework marks a significant step forward for
QoS prediction in machine learning, ongoing advancements
in ML techniques and expanded datasets are essential for
further enhancing its precision and applicability in real-
world scenarios.
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