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Abstract—The proliferation of homogeneous web services has
necessitated the task of predicting vacant Quality of Service (QoS)
for service-oriented downstream tasks. Existing approaches pri-
marily focus on user-service invocations without considering tem-
poral factors, limiting their applicability in QoS fluctuations over
time. Moreover, some investigations are conducted to predict tem-
porally missing QoS, which still suffers from two limitations. First,
time-aware collaborative filtering (CF) approaches fail to well cap-
ture continuous temporal changes, which lowers the performance
of time-aware QoS prediction. Second, they have paid less attention
to the high sparsity of user-service QoS invocations across sequen-
tially multiple time slices, which affects the calculation of temporal
average QoS, thereby further reducing the accuracy of time-aware
QoS prediction. To effectively mine the continuous temporal vari-
ations and solve the high sparsity of user-service QoS invocations,
we propose a novel time-aware QoS prediction approach named
Temporal Reinforced Collaborative Filtering (TRCF). We design
temporal reinforced RBS and PCC to improve similarity evaluation
that leads to better calculation of temporal average QoS and devia-
tion migration for predicting time-aware QoS. We evaluate TRCF
on a large-scale real-world temporal dataset WS-DREAM across
64 time slices and the results demonstrate its superior performance
in time-aware QoS prediction, both under relatively dense and
extremely sparse QoS situations.

Index Terms—Collaborative filtering, deviation migration,
temporal factor, time -aware QoS prediction, web service.

I. INTRODUCTION

W ITH the rapid development of Internet technology, web
services are deployed by service vendors in real-world

application scenarios, which has greatly promoted the advance-
ments in service selection [1], composition [2], recommenda-
tion [3] and mashup creation [4]. The growing popularity of
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service-oriented architecture (SOA) and the overwhelming web
services registered on the Internet has resulted in a huge number
of functionally similar or equivalent services. It has led to a
homogenization of service functionalities, making it difficult
and time-consuming for service consumers to select their desired
and suitable services from a large pool of homogeneous service
repositories.

Quality of Service (QoS) as the representation of non-
functional criterion has been widely used to differentiate those
homogeneous web services. However, different service re-
questers may receive discrepant QoS due to various external
factors. Simultaneously, the QoS of the same web service can
fluctuate over multiple time slices. Because of the large number
of service consumers and web services, it is scarcely possible to
monitor and experience all the QoS of user-service invocations,
emerging high sparsity of QoS invocations across multiple time
slices. Therefore, how to design an effective approach to predict-
ing time-aware vacant QoS has become a fundamental research
issue in service-oriented application contexts.

In recent years, QoS prediction has been received many
research investigations. Based on whether temporal factors
are taken into account or not, it can be classified into non-
temporal QoS prediction and time-aware QoS prediction [5].
Non-temporal QoS prediction includes memory-based [6], [7],
model-based [8], [9], and deep learning based [10], [11], [12]
approaches for predicting missing QoS. With the consideration
of the time-series variations of network performance, time-
aware QoS prediction is dedicated to integrating the tempo-
ral factor into memory-based collaborative filtering (CF) [13],
[14], [15], which calculates similar neighbors through historical
user-service QoS invocations to perform the task of QoS pre-
diction. Simultaneously, some researchers have proposed new
fusion approaches for time-aware QoS prediction by leveraging
sequence prediction techniques [16], [17]. Moreover, owing
to the applicability of machine learning, more sophisticated
investigations such as tensor decomposition of increasing time
dimension [18], [19] and deep learning models [20], [21], [22]
have been proposed for time-aware QoS prediction.

Despite the progress of existing approaches for partially fa-
cilitating time-aware QoS prediction, they still cannot reach sat-
isfactory performance in service-oriented application contexts.
Specifically, they mainly suffer from the two following defi-
ciencies. First, most memory-based conventional time-aware
CF approaches try to divide the entire temporal intervals into
a set of time slices by corresponding two-dimensional matrices
for representing user-service QoS invocations and combine the
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predicted QoS values from the multiple partitioned QoS ma-
trices based on distance coefficient. Since they mechanically
merge the isolated QoS predictions of each time slice, ignoring
the importance of continuous temporal changes[15], it cannot
well uncover the temporal relationships among users invoking
web services. That significantly undermines the accuracy of
time-aware QoS prediction. Second, it is observed that existing
approaches have paid less attention to how to address the high
sparsity of user-service QoS invocations across sequentially
multiple time slices, which affects the calculation of temporal
average QoS, thereby further reducing the accuracy of time-
aware QoS prediction. Thus, current approaches are incapable of
achieving superior accuracy of time-aware QoS prediction, due
to a lack of effectively mining the continuous temporal variations
and solving the high sparsity of user-service QoS invocations.

To address the above two issues, we propose a novel frame-
work for time-aware QoS prediction called Temporal Reinforced
Collaborative Filtering (TRCF), including three mutually correl-
ative procedures. When calculating temporal average QoS under
densely historical QoS records, it first directly fusions the QoS
values of target user-service invocations across multiple time
slices; as for the situation of high sparsity of user-service QoS
invocations, similar neighbors and their corresponding historical
QoS values at different time slices are taken to reinforce the
reliability of calculating temporal average QoS. Then, tempo-
ral deviation migration is performed by incorporating reliable
factor to improve the effectiveness of calculating the aggregated
deviations from similar neighbors of a target user or service.
Finally, we integrate the temporal average QoS and temporal
deviation migration to predict the missing time-aware QoS.

To evaluate the effectiveness of our proposed TRCF, we
conduct extensive experiments on a public and large-scale
real-world dataset called WS-DREAM, which consists of 4500
real-world web services from 57 regions and 142 users from 22
regions. It involves a total number of 27,392,643 user-service
QoS invocations, which are partitioned into a set of independent
temporal groups of historical QoS records across 64 time slices.
The experimental results demonstrate that TRCF achieves the
best performance in multiple evaluation metrics for time-aware
QoS prediction compared to several state-of-the-art competing
baselines.

The main contributions are summarized as follows:
� We propose a novel framework TRCF for time-aware

QoS prediction. It integrates temporal average QoS and
temporal deviation migration by continuously temporal
QoS vectors across multiple time slices, leading to better
accuracy of time-aware QoS prediction.

� With respect to the high sparsity of user-service QoS invo-
cations across multiple time slices, we propose a flexible
scheme to reinforce the reliability of calculating temporal
average QoS. Ratio-Based Similarity (RBS) [6] is applied
to find similar neighbors as hidden heuristics of insufficient
target user-service temporal interactive relationships, fur-
ther boosting the accuracy of time-aware QoS prediction
at extremely high QoS sparse situations.

� To validate the performance of the proposed TRCF, we
conducted extensive experiments on a real-world dataset.
The experimental results show that TRCF receives supe-
rior time-aware QoS prediction accuracy over competing

TABLE I
NOTATIONS

baselines, and it comprehensively achieves the best perfor-
mance under both relatively dense or extremely high sparse
QoS invocations.

The remainder of this paper is organized as follows. Section
II formulates the time-aware QoS prediction problem. Section
III illustrates the overall framework of TRCF and elaborates
the approach in detail. Section IV shows and analyzes the ex-
perimental results. Section V reviews the related work. Finally,
Section VI concludes the paper and discusses the future work.

II. PROBLEM FORMULATION

We first focus on the understanding of temporal service
ecosystem, and then detailedly define time-aware QoS predic-
tion problem. Table I presents all the notations.

Definition 1. (Temporal Service Ecosystem): A temporal ser-
vice ecosystem is defined as a four-tuple M =< U,S, T,R >,
where U = {u1, u2, . . .} is a set of users, S = {s1, s2, . . .} is
a set of web services and T = {t1, t2, . . .} is a set of contin-
uous time slices. R = {rtu,s} consists of a set of QoS values
correlative to different user-service pairs at multiple temporal
slices.

Definition 2. (User-Service QoS Invocation): Given a tempo-
ral service ecosystem M =< U,S, T,R >, a user-service QoS
invocation is defined as a four-tuple r =< u, s, t, rtu,s >, where
u ∈ U is a user, s ∈ S is a web service, t ∈ T is a temporal slice,
and rtu,s is a QoS value obtained by u invoking s at t.

By aggregating all the QoS values from user-service QoS
invocations, we can obtain a three-dimensional temporal QoS
matrix R as shown in Fig. 1, where it can be equipped by a set
of temporal QoS vectors across multiple time slices.

Definition 3. (Temporal QoS Vector): A temporal QoS vector

is defined as a set Vu,s =
{
rt1u,s, r

t2
u,s, . . ., r

t|T |
u,s

}
, where u ∈ U

is a user, s ∈ S is a web service, tx ∈ T is a temporal slice of
T , and rtu,s is the QoS value obtained by u invoking s at t ∈ T .
A temporal QoS vector represents QoS values of a user-service
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Fig. 1. Temporal QoS matrix. It consists of a set of temporal QoS vectors in
terms of multiple user-service pairs at different time slices.

pair at time slices T , reflecting the temporal fluctuation of QoS
sequences.

As depicted in Fig. 1, in a temporal service ecosystem M , R
can be formalized by temporal QoS vectors of all the user-service
pairs, denoted as R = Vu1,s1 ∪ . . . ∪ Vu1,sn ∪ . . . ∪ Vum,s1 ∪
. . . ∪ Vum,sn , where m is the number of U , n is the number
of S, and l is the number of time slices.

In real application contexts, given a temporal QoS vector
Vu,s = {rt1u,s, rt2u,s, . . ., rt|T |

u,s}, if a user-service pair corresponds
to a QoS value at time slice t, we have rtu,s ∈ R; otherwise,
rtu,s /∈ R needs to be predicted for service recommendation,
which is defined as below.

Definition 4. (Time-aware QoS Prediction Problem): Given
a temporal service ecosystem M , time-aware QoS prediction
problem is defined as Ω =< M,u, s, t >, where u ∈ U is a
target user, s ∈ S is a target service, t ∈ T is a target time slice
and rtu,s /∈ R.

The solution to a given Ω can be represented by an element <
u, s, t, r̂tu,s >∈ Vu,s, where r̂tu,s denotes the predicted missing
temporal QoS for the invocation of a target service s by a target
user u at a time slice t.

III. APPROACH

A. The Framework of TRCF

Fig. 2 is the overall framework of TRCF for time-aware QoS
prediction. The goal of TRCF is to predict an unknown temporal
QoS value when a target user aims at invoking a target web
service at a specified time slice. It consists of three crucial stages,
including temporal average QoS calculation, temporal deviation
migration, and time-aware QoS prediction. The processes of the
three stages are marked with different arrow types and described
as below.
� In the stage of temporal average QoS calculation, the

module of dense temporal QoS fusion directly calculates
the temporal average QoS by averagely accumulating all
the non-zero QoS values of target user-service at multiple

time slices. We propose TRCF-TA (Temporal Average) for
dense QoS distributions by directly averaging the QoS val-
ues from the original temporal QoS vector. For the context
of highly sparse user-service QoS invocations, temporal
reinforced RBS is designed to find similar neighbors of
target service, where the QoS values of target user invoking
those similar services at a certain time slice are aggregated
to supplement the corresponding vacant historical QoS
value of target user-service, for better calculating tem-
poral average QoS. We propose TRCF-RTA (Ratio-based
Temporal Average) for highly sparse QoS distributions by
indirectly averaging the QoS values from the supplemented
temporal QoS vector.

� In the stage of temporal deviation migration, temporal
reinforced PCC is designed to find similar neighbors of
target user, which is used to calculate the deviation mi-
grations to temporal average QoS of each similar user
invoking the target service. Moreover, reliable factor is
calculated by Jaccard similarity coefficient under tempo-
ral QoS invocations of target user and similar neighbors,
further improving the effectiveness of temporal reinforced
PCC and enhancing the reliability of temporal deviation
migration.

� In the stage of time-aware QoS prediction, we integrate the
calculated temporal average QoS and temporal deviation
migration to perform the final unknown temporal predicted
QoS.

B. Temporal Average QoS Calculation

As shown in Fig. 2, dense temporal QoS fusion is provisioned
to directly calculate the temporal average QoS for the case
of target user-service dense QoS invocations across multiple
time slices. Conversely, as for highly sparse QoS invocations,
temporal reinforced RBS is taken to find similar neighbors for
improving the effectiveness of temporal average QoS.

1) Density-Based Temporal Average: For a target user and
web service under the distribution of dense QoS invocations,
temporal average QoS can be calculated by averaging the values
of user-service temporal QoS vector. Specifically, given a tem-

poral QoS vector Vu,s =
{
rt1u,s, r

t2
u,s, . . ., r

t|T |
u,s

}
, density-based

temporal average QoS is expressed by:

Avguu,s = V u,s =

∑
t∈T rtu,s
|To| (1)

where Avguu,s represent the user-based temporal average QoS
values. rtu,s represents the QoS value of target service s invoked
by target user u at time slice t ∈ T . To ⊂ T represents a set of
time slices with a non-zero QoS value. That is, for a time slice
t ∈ To, rtu,s ∈ R.

As to the calculation of service-based temporal average QoS
Avgsu,s, it can also be expressed by the same formula. Specifi-
cally, when calculating temporal average QoS, it is observed that
a target user invokes a target service with the same temporal QoS
vector for both user-based and service-based TRCF under dense
QoS distributions. Consequently, they obtain the same temporal
average QoS by averaging the invoked QoS values from the same
temporal QoS vector across multiple time slices.
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Fig. 2. Overall framework of user-based TRCF for time-aware QoS prediction.

2) Sparsity-Based Temporal Average: To solve the ex-
tremely high sparsity when calculating temporal average QoS,
we apply RBS technique [6], [7] to temporal scenario for finding
similar neighbors of a target user or service. Based on traditional
RBS, we extend it to a temporal reinforced RBS for measuring
the similarity between two temporal QoS vectors by matching
the QoS values at their corresponding time slice. The higher
similarity of temporal reinforced RBS, the more usefulness of
evaluating two similar users or services in terms of their abso-
lutely historical QoS values. It can collaboratively aggregate the
historical QoS from similar neighbors to supplement the vacant
QoS values of a target user-service at corresponding time slices,
enhancing the reliability of sparsity-base temporal average QoS.

For the user-based temporal average QoS, we obtain a candi-
date service set that is more similar to the target service through
temporal reinforced RBS filtering, by a target user invoking a
target service and candidate services, respectively.

Simu
RBS(s, g) =

∑
t∈Tc

min(rtu,s,r
t
u,g)

max(rtu,s,r
t
u,g)

|Tc| (2)

where Simu
RBS(s, g) represents the temporal reinforced RBS

of a target user u invoking a target service s and candidate
service g. Tc represents a set of time slices of u invoking s
and g simultaneously, and |Tc| is the number of time slices in
Tc. min

(
rtu,s, r

t
u,g

)
and max

(
rtu,s, r

t
u,g

)
denote the minimum

and maximum invoked QoS of rtu,s and rtu,g at time slice t,
respectively.

S∗(s) = {g ∈ S|Simu
RBS(s, g) > θRBS} (3)

where S∗(s) represents the selected set of similar neighbors of a
target service s, and θRBS is the specified threshold of temporal
reinforced RBS filtering.

We find that when the temporal reinforced RBS between s and
g approaches 1, it indicates that u invoking s and g has highly
similar QoS values in their temporal QoS vectors, respectively.

Based on the filtering results, we can obtain a QoS value from
each similar service, which is invoked by the target user at a time
slice. Specifically, given a target user u, a target service s and its
similar service g ∈ S∗(s), the estimated QoS value at time slice
t is calculated as:

r̃tu,s(g) =

{
rtu,g · Simu

RBS(s, g), V u,g ≥ V u,s

rtu,g/Sim
u
RBS(s, g), V u,g < V u,s

(4)

where V u,s and V u,g represent the temporal average QoS
of user-service pair u, s and u, g, respectively. By comparing
V u,s and V u,g , when the temporal average QoS reflected by
user-service pair u, s is less than u, g, the QoS of u invoking
g at time slice t is reduced by Simu

RBS(s, g) to denote r̃tu,s;
otherwise, it is represented by amplifying the QoS value through
Simu

RBS(s, g).
By accumulating the estimated QoS from each similar service,

a group of QoS values can be obtained for estimating the QoS
of the target user invoking the target service at a time slice.

Pu(u, s, t) = {r̃tu,s(g1), r̃tu,s(g2), . . . , r̃tu,s(g|S∗(s)|)} (5)

where Pu(u, s, t) is the set of QoS values estimated for the
target user u and the target service s on the time slice t, which
is assisted by all similar services gx ∈ S∗(s).

By using the above Pu(u, s, t), we estimate the missing QoS
of u invoking s based on similar services at time slice t.

r̃tu,s =

{∑
r̃∈Pu(u,s,t) r̃

|Pu
o (u,s,t)| , rtu,s /∈ R

rtu,s, rtu,s ∈ R
(6)

where r̃tu,s is the final estimated QoS of u invoking s at t.
Pu
o (u, s, t) is the subset of non-zero values in Pu(u, s, t), and

|Pu
o (u, s, t)| is the number of non-zero values.
Here, we note that not every similar service can provide a

valid estimated QoS value because some similar services may
not be invoked by the target user at time slice t. As a result,
if a target user has not invoked a target service at a time slice,
we supplement the missing value with the estimated QoS from
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similar services; otherwise, its original invoked QoS is used to
calculate the temporal average QoS.

Consequently, the updated temporal QoS vector V ′
u,s can

be represented by leveraging the estimated QoS values with
temporal reinforced RBS of similar services, or its original
invoked QoS at each time slice. It is expressed by:

V ′
u,s =

{
r̃t1u,s, r̃

t2
u,s, . . . , r̃

t|T |
u,s

}
u

(7)

where V ′
u,s is the updated temporal QoS vector for a target user

u and a target service s, and T is a set of time slices.
By applying the updated temporal QoS vector V ′

u,s to enhanc-
ing the reliability of sparsity-based temporal average QoS. It is
expressed by:

Avguu,s = V ′
u,s =

∑
t∈T r̃tu,s

|T+
o | (8)

where Avguu,s is user-based temporal average QoS, and r̃tu,s ∈
V ′
u,s denotes the estimated or original QoS of u invoking s at

time slice t.T+
o ⊂ T represents a set of time slices with non-zero

QoS value and estimated QoS with similar services.
Similarly, from the perspective of service-based temporal

average QoS calculation, its temporal reinforced RBS for finding
similar users is expressed as:

Sims
RBS(u,w) =

∑
t∈Tc

min(rtu,s,r
t
w,s)

max(rtu,s,r
t
w,s)

|Tc| (9)

where Sims
RBS(u,w) represents the temporal reinforced RBS

of a target u and candidate user w both invoking a target service
s, and Tc is a set of time slices of u and w commonly invoking s.
min(rtu,s, r

t
w,s) and max(rtu,s, r

t
w,s) denote the minimum and

maximum QoS of rtu,s and rtw,s at a time slice t, respectively.
By applying the calculated service-based temporal reinforced

RBS, we can generate a set of similar users U ∗(u) of a target
user u, which are fed to estimate approximative QoS r̃tu,s of each
w ∈ U ∗(u) invoking a target service s at t.

U ∗(u) = {w ∈ U |Sims
RBS(u,w) > θRBS} (10)

r̃tu,s(w) =

{
rtw,s · Sims

RBS(u,w), V w,s ≥ V u,s

rtw,s/Sim
s
RBS(u,w), V w,s < V u,s

(11)

P s(u, s, t) =
{
r̃tu,s(w1), r̃

t
u,s(w2), . . . , r̃

t
u,s(w|U ∗(u)|)

}
(12)

where U ∗(u) represents the selected set of similar neighbors of
a target user u. V u,s and V w,s denote the temporal average QoS
of the user-service pair u, s and w, s, respectively. By accumu-
lating the estimated QoS from each similar user wx ∈ U ∗(u),
P s(u, s, t) is the set of QoS obtained for estimating the QoS of
the target user u invoking the target service s at a time slice t.

Finally, the missing historical QoS value of a target user
u invoking a target service s at a specified time slice t is
estimated by P s(u, s, t). It can be used to generated an updated
the temporal QoS vector V ′

u,s for calculating the service-based
temporal average QoS.

r̃tu,s =

{∑
r̃∈Ps(u,s,t) r̃

|P s
o (u,s,t)| , rtu,s /∈ R

rtu,s, rtu,s ∈ R
(13)

V ′
u,s =

{
r̃t1u,s, r̃

t2
u,s, . . . , r̃

t|T |
u,s

}
s

(14)

Avgsu,s = V ′
u,s =

∑
t∈T r̃tu,s

|T+
o | (15)

where r̃tu,s represents the final estimated QoS of u invoking s
at t. P s

o (u, s, t) denotes the subset of non-zero QoS values in
P s(u, s, t). V ′

u,s is the updated temporal QoS vector generated
by similar neighbors of a target user. Avgsu,s is the service-based
temporal average QoS.

C. Temporal Deviation Migration

We first design temporal reinforced PCC to find a set of
similar neighbors for aggregating the deviations to their temporal
average QoS. With the consideration of high QoS sparsity, we
then take into account reliable factor to further improve the
effectiveness of temporal reinforced PCC, which finally leads
to better calculation of temporal deviation migration.

1) Temporal Reinforced PCC: Existing time-aware QoS pre-
diction approaches typically incorporate temporal factors using
neural networks or temporal decay factors after separately cal-
culating QoS matrix of each time slice. In other words, they
first mine the two-dimensional QoS invocation relationships
among users and services, and then consider the characteris-
tics of temporal factor, ignoring the importance of continuous
temporal QoS invocation changes between users and services
[15], [23]. Thus, it cannot reveal the temporal QoS relationships
among users invoking web services. To solve this issue, TRCF
utilizes temporal QoS vector of user-service pair across multiple
time slices to perform temporal reinforced PCC that focuses on
evaluating the linear relationship and calculating the similarity
of two temporal QoS vectors to more accurately find similar
neighbors. It enhances the expression of QoS variations along
with continuous time slices, reflecting the temporal fluctuation
of QoS sequences. Following the observation, TRCF can better
capture temporal deviation migration by similar neighbors.

When finding user-based similar neighbors by temporal rein-
forced PCC, instead of traditional PCC that is used to calculate
the similarity between two users jointly invoking multiple ser-
vices, we incorporate temporal factors by calculating temporal
QoS vectors of two users invoking the same web service at
multiple time slices. That is, it enables us to calculate the
similarity of QoS fluctuations for a target user u and candidate
user v invoking the target service s across multiple time slices
Tc. It is expressed as:

Sims
PCC(u, v)

=

∑
t∈Tc

(
rtu,s − V u,s

) (
rtv,s − V v,s

)
√∑

t∈Tc

(
rtu,s − V u,s

)2√∑
t∈Tc

(
rtv,s − V v,s

)2 (16)

whereTc = Tu,s ∩ Tv,s represents the intersection of time slices
when u and v have both invoked s. rtu,s and rtv,s represent the
QoS values of s invoked by u and v at time slice t, respectively.
V u,s and V v,s denote the temporal average QoS of user-service
pair u, s and v, s, respectively.

Based on the calculation of temporal reinforced PCC, a set
of candidate users whose similarity to the target user is greater
than a threshold are selected as similar users.

U(u) = {v ∈ U |Sims
PCC(u, v) > θPCC} (17)
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where U(u) is the selected set of similar users, and θPCC is the
similarity threshold of temporal reinforced PCC.

Likewise, when finding service-based similar neighbors by
temporal reinforced PCC, we introduce temporal factors to
traditional PCC by calculating temporal QoS vectors of two
services invoked by the same user. It can reflect the similarity
of QoS fluctuations between a target user u invoking a target
service s and candidate service f over a set of time slices Tc. It
is expressed as:

Simu
PCC(s, f) =

∑
t∈Tc(r

t
u,s−V u,s)(rtu,f−V u,f)√∑

t∈Tc(rtu,s−V u,s)
2
√∑

t∈Tc(r
t
u,f−V u,f)

2

(18)

S(s) = {f ∈ S|Simu
PCC(s, f) > θPCC} (19)

whereTc = Tu,s ∩ Tu,f represents the intersection of time slices
when u has jointly invoked s and f . rtu,s and rtu,f represent the
QoS values of s and f invoked by u at time slice t, respectively.
V u,s and V u,f denote the temporal average QoS of user-service
pair u, s and u, f , respectively. S(s) is the selected set of similar
services of s for calculating temporal deviation migration.

2) Reliable Factor: When user-service QoS invocations
are abundant, temporal reinforced PCC can accurately cal-
culate the similarity between two temporal QoS vectors.
However, in case of high QoS sparsity, the impact of vector
intersection factors may cause PCC to either underestimate or
overestimate the similarity between two QoS vectors [15]. It can
result in low reliability of temporal reinforced PCC, which has a
negative influence on calculating temporal deviation migration.

To address this issue, we have employed the Jaccard similarity
coefficient as a reliable factor to numerically adjust the similarity
of temporal reinforced PCC. It is expressed as:

Js(u, v) =
|Vu,s ∩ Vv,s|
|Vu,s ∪ Vv,s| (20)

where |Vu,s ∩ Vv,s| is the number of time slices that both u and
v have invoked s, and |Vu,s ∪ Vv,s| is the total number of time
slices that u and/or v have invoked s.

It is observed that under the same density of user-service QoS
invocations, as the number of common time slices increases for
a target user and candidate user invoking a target service, it
strengthens the reliability of calculating the similarity of tem-
poral reinforced PCC, and vice versa. In such case, we integrate
the temporal reinforced PCC similarity calculated by (16) and
reliable factor calculated by (20) to optimize the user-based
similarity between a target user u and a candidate user v.

Sims(u, v) = Sims
PCC(u, v) · Js(u, v) (21)

where the multiplication of Js(u, v) can avoid false high sim-
ilarity that may not truly reflect the similarity between two
users due to the small number of intersection of time slices on
co-invoked service. Furthermore, even though integrating both
similarity calculations may result in relatively small Sims(u, v)
when temporal deviation migration is performed by (24), the
difference among similar users can still be significantly reflected
by the ratio of the similarity of a target user’s neighbor to the
sum of similarities of all the neighbors. Thus, it can ensure a
more reliable and accurate QoS prediction result.

Similarly, the updated similarity of service-based temporal
reinforced PCC with reliable factor is expressed as:

Ju(s, f) =
|Vu,s ∩ Vu,f |
|Vu,s ∪ Vu,f | (22)

Simu(s, f) = Simu
PCC(s, f) · Ju(s, f) (23)

where |Vu,s ∩ Vu,f | is the number of time slices that u has
jointly invoked s and f , and |Vu,s ∪ Vu,f | is the total number of
time slices that u has invoked s and/or f . Simu

PCC(s, f) is the
similarity of service-based temporal reinforced PCC calculated
by (18).

When calculating the temporal deviation migration, we pri-
oritize the filtration of selecting similar neighbors based on the
specified threshold of temporal reinforced PCC, followed by
the integration of reliable factor, rather than selecting similar
neighbors by the updated similarity together with temporal
reinforced PCC and reliable factor. It can be explained by the
following example.

Example:
O = {0.7, 0.6, 0.6, 0.4}
Filtration → Integration:
A = {0.7, 0.6, 0.6}
A′ = {0.7× 0.06, 0.6× 0.06, 0.6× 0.03}
Integration → Filtration:
B = {0.7× 0.06, 0.6× 0.06, 0.4× 0.09, 0.6× 0.03}
B′ = {0.7× 0.06, 0.6× 0.06, 0.4× 0.09}
Suppose we have calculated the similarity set O of tem-

poral reinforced PCC, consisting of four similar neighbors
with the corresponding QoS similarity. In the Filtration →
Integration, assuming that we specify the threshold to 0.5, it
filters out 0.4 and obtains the similar neighbors with the simi-
larity set A. After integrating the reliable factors, we generate
the final similarity set A′. Conversely, in the Integration →
Filtration, we first integrate O with reliable factors and obtain
the updated similarity set B. Assuming that we specify the
threshold to 0.030, the updated similarity 0.6× 0.03 having
higher temporal reinforced PCC and lower reliable factor is
filtered out from B, whereas the updated similarity 0.4× 0.09
having lower temporal reinforced PCC and higher reliable factor
keeps in the final similarity set B′.

From the above analysis, it is more reasonable to first find a
set of similar neighbors by the similarity of temporal reinforced
PCC, and then further update the similarity of each selected
neighbor by integrating reliable factor, when performing the
temporal deviation migration. That is, for a similar neighbor,
although it has a relatively bigger reliable factor and potentially
leads to higher deviation weight, it still may be classified as a
dissimilar neighbor that cannot be used for calculating temporal
deviation due to its lower temporal reinforced PCC.

3) Temporal Deviation Calculation: By combining temporal
reinforced PCC, reliable factor and temporal average QoS of
similar neighbors, the user-based temporal deviation migration
is calculated as:

Devuu,s =

∑
v∈U(u) Sim

s(u, v) · (rtv,s −Avguv,s
)

∑
v∈U(u) Sim

s(u, v)
(24)

where Avguv,s represents the temporal average QoS of a candi-
date user v and a target service s. rtv,s is the true QoS value of s
invoked by v in the currently predicted time slice.
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Similarly, the service-based temporal deviation migration is
calculated as follows:

Devsu,s =

∑
f∈S(s) Sim

u(s, f) ·
(
rtu,f −Avgsu,f

)
∑

f∈S(s) Sim
u(s, f)

(25)

where Avgsu,f represents the temporal average QoS of a target
user u and a candidate service f . rtu,f is the true QoS value of
f invoked by u in the currently predicted time slice.

By applying the above temporal deviation migration, it may
result in a negative non-zero temporal predicted QoS. This is
primarily due to the fact that the temporal deviation migration
of is negative and its absolute value is relatively large, possibly
triggering an illegal prediction of missing temporal QoS by
adding temporal average QoS. To guarantee the non-negative
predicted QoS in real application contexts, we further modify
the temporal deviation migration for those cases with negative
predicted QoS. They are reconstructed by multiplication scaling
for user-based and service-based temporal deviation migration,
respectively.

Dev′uu,s =

∑
v∈U(u) Sim

s(u, v) · (rtv,s/Avguv,s)∑
v∈U(u) Sim

s(u, v)
(26)

Dev′su,s =

∑
f∈S(s) Sim

u(s, f) ·
(
rtu,f/Avg

s
u,f

)
∑

f∈S(s) Sim
u(s, f)

(27)

D. Time-Aware QoS Prediction

Based on temporal average QoS and temporal deviation mi-
gration, the user-based missing temporal QoS is predicted:

r̂uu,s = Avguu,s +Devuu,s (28)

where r̂uu,s denotes the predicted temporal QoS at a time slice t.
Avguu,s and Devuu,s represent the user-based temporal average
QoS and temporal deviation migration of a target useru invoking
a target service s, respectively.

Similarly, the service-based missing temporal QoS is pre-
dicted by:

r̂su,s = Avgsu,s +Devsu,s (29)

where r̂su,s denotes the predicted temporal QoS at a time slice
t. Avgsu,s and Devsu,s represent the service-based temporal
average QoS and temporal deviation migration of a target user
u invoking a target service s, respectively.

Based on the results of above user-based and service-based
predicted temporal QoS values, the finally time-aware predicted
QoS is calculated as follows:

r̂tu,s = α · r̂uu,s + (1− α) · r̂su,s (30)

where α denotes the adjusting coefficient of user-based and
service-based temporal QoS prediction.

When the predicted temporal QoS value r̂tu,s is less than
0, i.e., r̂tu,s < 0, we perform the user-based and service-based
missing temporal QoS prediction by the reconstructed temporal
deviation migration. They are further combined by adjusting
coefficient to predict the finally time-aware missing QoS.

r̂′
u

u,s = Avguu,s ·Dev′uu,s (31)

r̂′
s

u,s = Avgsu,s ·Dev′su,s (32)

r̂′
t

u,s = α · r̂′uu,s + (1− α) · r̂′su,s (33)

TABLE II
STATISTICS OF TEMPORAL RT IN WS-DREAM

where r̂′
t

u,s represents the finally missing temporal QoS for the
phenomenon of negative prediction.

Despite the enhancement of information expression through
similar user and service neighbors for the reinforcement of lin-
early temporal user-service invocations across multiple continu-
ous time slices, TRCF still struggles to learn complex nonlinear
invocation relationships under time-aware situations. It may
partially weaken temporal QoS prediction performance.

IV. EXPERIMENTS

A. Experimental Setup and Dataset

All the experiments are carried out on our workstation
equipped with two NVIDIA GTX 1080Ti GPUs, an Intel(R)
Xeon(R) Gold 6130 @2.60 GHz CPU and 192 GB RAM. All
the components of TRCF are implemented by python 3.7.1.

To evaluate the effectiveness of TRCF, we have conducted
extensive experiments on a publicly available large-scale real-
world temporal QoS dataset called WS-DREAM [24]. It has
been widely used for time-aware QoS prediction that contains
two kinds of QoS criteria, namely response time (RT) and
throughput (TP). Since RT can intuitively reflect the networking
status of users and services across different time slices, we have
chosen RT as the primary experimental temporal QoS dataset.
It comprises 142 independent users, 4500 web services, and
a total number of 27,392,643 user-service QoS invocations,
which is partitioned into a set of independent temporal groups
of historical QoS records across 64 time slices. The overall
QoS sparsity of WS-DREAM dataset is approximately 66.98%.
Table II provides the detailed statistics regarding the temporal
RT dataset. For the splitting strategy of training data, we have
randomly selected QoS invocation records across multiple time
slices from the original dataset to generate the experimental
dataset that aims to simulate realistic application scenarios as
closely as possible. In the experiments, we have divided the
dataset into four different QoS densities, including 5%, 10%,
15%, and 20%. For the comparison of temporal QoS prediction
performance, the remaining QoS samples at each QoS density
are used as testing samples.

To verify the effectiveness of our proposed TRCF, we tune
different ranges of parameters. In the experiments, the prediction
performance of TRCF is impacted by the parameter settings,
which is shown in Table III.
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TABLE III
PARAMETER SETTINGS OF TRCF

B. Evaluation Metrics

In the experiments, we compare the QoS prediction perfor-
mance of TRCF and competing baselines by two evaluation
metrics, including Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE).

Let rtu,s and r̂tu,s represent the ground truth QoS and predicted
time-aware QoS of a target service s invoked by a target user
u at a time slice t, respectively. MAE and RMSE are applied
to measure the variances between the observed QoS and the
predicted missing temporal QoS.

MAE =

∑
u,s

∣∣rtu,s − r̂tu,s
∣∣

N
(34)

RMSE =

√∑
u,s

(
rtu,s − r̂tu,s

)2
N

(35)

where N is the number of test samples of the predicted time-
aware QoS. Obviously, we can find that smaller values on
MAE and RMSE indicate better accuracy of predicting missing
temporal QoS across multiple time slices.

In our experiments, MAE is a linear evaluation metric that
equally weights all individual differences, enabling it to demon-
strate the accuracy of overall time-aware QoS prediction. Con-
versely, RMSE enhances the weighting of those individual out-
liers that is more sensitive to large errors of time-aware QoS
prediction.

C. Competing Methods

To evaluate the performance of TRCF, we compare it with
eight competing baselines, including a benchmark approach
UIMean, two traditional CF-based approaches UPCC [25] and
IPCC [26], as well as five well-known and state-of-the-art
approaches, namely PNCF [20], WSPred [18], TUIPCC [15],
PLMF [22], and RNCF [23].
� UIMean: It is a hybrid QoS prediction approach that com-

bines the average user-based QoS value from UMEAN and
the average service-based QoS value from IMEAN. Here,
UMEAN and IMEAN calculate the average QoS of a target
user who has invoked all services, and a target service that
has been invoked by all users in the current time slice,
respectively.

� UPCC [25]: It is a user-based QoS prediction approach that
involves finding a group of users similar to a target user. The
predicted QoS is obtained by combining the average QoS
from UMEAN and the deviation migration from similar
users.

� IPCC [26]: It is a service-based QoS prediction approach
that involves finding a set of services similar to a target

service. The predicted QoS is obtained by combining the
average QoS from IMEAN and the deviation migration
from similar services.

� PNCF [20]: It is a personalized recommendation model
by neural collaborative filtering that can also be used for
QoS prediction. It uses a deep neural network to capture
user-service nonlinear invocation relationships and obtain
the feature representations of users and services by sparse
vectors for predicting missing QoS.

� WSPred [18]: It is a temporal perception QoS prediction
approach that upgrades the temporal dimension feature
based on two-dimensional user-service QoS matrix. It
expands to three-dimensional tensor decomposition and
makes reliable QoS prediction results by adding the di-
mension of temporal factor.

� TUIPCC [15]: It is a temporal QoS prediction approach
that combines the average historical QoS value and collab-
orative QoS value calculated by the selected user or service
neighbors based on the similarity of user-service temporal
QoS invocations.

� PLMF [22]: It is an LSTM-based time-aware QoS predic-
tion approach. It first encodes three-dimensional tensor of
user-service-time invocation relationships and obtains the
feature representations by one-hot encoding. Then, the en-
coded eigenvector is reduced by the embedding dimension
of a fully connected network. Finally, LSTM is applied
to extract the latent temporal characteristics for predicting
time-aware QoS.

� RNCF [23]: It introduces a multi-layer GRU into the
framework of neural collaborative filtering and leverages
historical user-service invocations of different time slices
to learn the temporal patterns between users and services
for superior time-aware QoS prediction.

D. Experiment Results and Analyses

In the experiments, we denote our proposed TRCF-TA as the
approach of time-aware QoS prediction under dense user-service
invocations, and TRCF-RTA for highly sparse QoS invocations.
To ensure the fairness of the performance comparison of time-
aware QoS prediction, we evaluate the effectiveness among
TRCF and the competitive baselines by calculating MAE and
RMSE under four different QoS densities of 5%, 10%, 15%, and
20%.

Table IV shows the experimental results of time-aware QoS
prediction under four different matrix densities on temporal RT
dataset. Here, the best results of MAE and RMSE of each column
within eight competing baselines and TRCF variants are first
respectively highlighted in the gray background, and then the
best results of each column among all competing approaches
are marked in bold. From the results, we can see that our
proposed TRCF-TA and TRCF-RTA continue to outperform
all competitive approaches in terms of RMSE, and the QoS
prediction accuracy of TRCF-TA and TRCF-RTA on MAE is
slightly lower than RNCF at QoS density of 10%, but superior
to all competitive approaches at other three QoS densities. In
the case of 10% QoS density where RNCF achieves slightly
better performance than our proposed TRCF-TA and TRCF-
RTA in terms of MAE, it may be occurred because the model

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 13,2024 at 17:15:25 UTC from IEEE Xplore.  Restrictions apply. 



ZOU et al.: TRCF: TEMPORAL REINFORCED COLLABORATIVE FILTERING FOR TIME-AWARE QOS PREDICTION 1855

TABLE IV
EXPERIMENTAL RESULTS OF TIME-AWARE QOS PREDICTION UNDER MULTIPLE QOS DENSITIES ON TEMPORAL RT DATASET

complexity of RNCF at that QoS density could more precisely
match the characteristics of the dataset, allowing the model
to fully capture key factors and thereby exhibiting superior
QoS prediction performance. Additionally, as QoS density on
temporal RT increases from 5% to 20% with an interval step 5%,
it is observed that MAE and RMSE gradually become smaller
among all competing approaches, indicating more effective QoS
prediction performance. The underlying reason is that higher
QoS density provides more sufficient user-service temporal
invocations that is beneficial to mine temporal characteristics
and find similar neighbors, enabling competing approaches to
receive better accuracy of time-aware QoS prediction.

More Specifically, UIMEAN, UPCC, and IPCC, as basic
and purely traditional CF approaches, have relatively poor QoS
prediction performance. The primary reason is that they can
only predict missing QoS values through two-dimensional his-
torical QoS records, instead of three-dimensional temporal QoS
invocations. That is, these approaches cannot take full advan-
tage of past historical QoS records across multiple time slices.
Compared to the three conventional approaches, the other five
competing baselines take into account temporal factors, which
can boost the accuracy of time-aware QoS prediction on MAE
and RMSE. In particular, RNCF that can effectively represent
features of different user-service pairs on multiple time slices
by neural collaborative filtering performs better among all eight
competitive baselines in terms of MAE under different QoS
densities, but a little bit worse in terms of RMSE. On the con-
trary, PLMF that trains the complete time series of user-service
pairs through a personalized LSTM model achieves better ac-
curacy of time-aware QoS prediction on RMSE among all eight
competitive baselines, whereas relatively lower performance on
MAE. Inspired by these competing baselines, we have found
that the temporally dynamic changes of user-service invocations
play an important role in QoS prediction across multiple time
slices, due to the differences of networking conditions among
users and services. Following the observation, TRCF captures
the continuous QoS fluctuations along multiple time slices by
temporal QoS vectors, which are used to measure the similarity
between two users or services. As a result, it can find neighbors
of a user or service with similar QoS temporal trends, which is
used to calculate temporal average QoS and temporal deviation
migration for better accuracy of time-aware QoS prediction on
both MAE and RMSE.

As for our proposed TRCF-TA and TRCF-RTA, when the
temporal QoS matrix is dense, abundant user-service QoS in-
vocations can be available across multiple time slices. In such
case, TRCF-TA can straightforwardly adopt sufficient tempo-
ral historical records from a target user-service pair for more
accurately calculating temporal average QoS. Meanwhile, it
can also directly employ temporal QoS vectors of a target user
and target service to find similar users and services for more
effectively calculating temporal deviation migration. Conse-
quently, TRCF-TA obtains superior MAE and RMSE compared
to TRCF-RTA at almost all of the dense QoS situations of
10%, 15% and 20%, as shown in Table IV. That is, due to
sufficient historical QoS records of a given target user-service
pair, TRCF-TA can effectively reflect temporal QoS vectors
for predicting missing temporal QoS. At this moment, it is
unnecessary to further rely on similar users or services to
supplement missing historical QoS records for a target user
invoking a target service at corresponding time slices, which
may trigger noisy representation of temporal QoS vector for
worsening the QoS prediction accuracy. However, when the
density drops, the prediction results of TRCF-TA will rapidly
decline. This is because the decline in data volume leads to
the unclear expression of network conditions, which also af-
fects the neighbor selection and benchmark value calculation of
TRCF-TA.

To improve the prediction accuracy of TRCF at high sparsity,
we added an RBS aggregation module when calculating the
baseline value and proposed the TRCF-RTA method suitable
for extremely-high sparsity. The reason is that TRCF-TA cannot
directly capture useful temporal QoS vectors of a target user
and target service, which significantly affects its calculation of
temporal average QoS and selection of similar neighbors for
temporal deviation migration. In such a scene, TRCF-RTA is
applied for time-aware QoS prediction at high QoS sparsity,
since it finds both similar neighbors of a target user and target
service for supplementing historical QoS records that a target
user has not invoked a target service at multiple time slices.
In this way, TRCF-RTA enriches the originally high sparse
temporal QoS vectors for more effectively calculating temporal
average QoS and temporal deviation migration, where similar
neighbors of a target user or service also take into account
the compensation of missing historical QoS in their temporal
QoS vectors to solve the high sparsity. Thus, it leads to better
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TABLE V
PERFORMANCE COMPARISONS BETWEEN TRCF-TA AND TRCF-RTA UNDER EXTREMELY HIGH SPARSE QOS DENSITIES

Fig. 3. Performance impact of window size on TRCF-TA and TRCF-RTA under different QoS densities.

time-aware QoS prediction accuracy, as shown at the density of
5% in Table IV.

To further testify the advantages of TRCF-RTA over TRCF-
TA at extremely low densities of temporal QoS matrix, we make
the performance comparisons of time-aware QoS prediction
under QoS densities ranging from 1% to 4% with an interval step
1%. Here, TRCF-TA is designed for temporal QoS prediction
when there are sufficient historical QoS records from different
time slices. TRCF-RTA is designed to enhance the performance
of temporal QoS prediction in situations where the QoS density
distributions are extremely sparse among multiple time slices. It
can facilitate the QoS prediction by incorporating the module
of temporal reinforced RBS to find similar service neighbor
and supplement the missing QoS invocations in temporal QoS
vector. The performance comparisons between TRCF-TA and
TRCF-RTA on MAE and RMSE under additional four highly
sparse QoS densities of 1%, 2%, 3%, and 4% are shown in
Table V, where the best results of each column are marked in
bold and gray background. The results indicate that at each low
QoS density, TRCF-RTA consistently outperforms the predic-
tion accuracy of TRCF-TA on both MAE and RMSE. There-
fore, our designed temporal reinforced RBS can effectively im-
prove time-aware QoS prediction performance of TRCF under
those densities with high QoS sparsity. It demonstrates the use-
fulness of temporal reinforced RBS for enhancing the reliability
of calculating temporal average QoS, which ultimately raises
time-aware QoS prediction of TRCF-RTA at extremely low QoS
densities.

E. Performance Impact of Parameters

1) Impact of Window Size: In the experiments, window size
of user-service historical QoS invocations impacts the perfor-
mance of time-aware QoS prediction for both TRCF-TA and
TRCF-RTA. A window size refers to the length of a temporal
QoS vector where a user has invoked a service across a set of
time slices. A larger window size reflects a longer temporal QoS

vector for a user-service pair and vice versa. A small window
size may result in the exclusion of useful historical QoS records,
whereas a large window may introduce outdated noisy QoS
lowering the prediction accuracy [15]. Therefore, selecting an
appropriate window size is crucial to improve the performance of
temporal QoS prediction of TRCF. To test the performance im-
pact of window size, we have conducted a series of experiments
by setting the parameters of θPCC=0.5, θRBS=0.68 andα=0.5,
while varying the window size from 8 to 64 with an interval
step of 8. The experimental results of performance impact of
window size on MAE and RMSE is illustrated in Fig. 3, where
each window size is tested on TRCF-TA and TRCF-RTA under
four QoS densities of 5%, 10%, 15% and 20%.

It can be observed from the experimental results that when the
window size is small, increasing it significantly enhances the
performance of time-aware QoS prediction, since a relatively
larger window size can provision more useful historical invoca-
tion QoS records. More specifically, in the case of low window
size, since TRCF-TA only considers the original temporal QoS
vector of a target user-service pair, it lacks of sufficient historical
temporal QoS records and results in poor prediction accuracy.
Comparatively, TRCF-RTA can enrich temporal QoS vector
by using similar neighbors’ historical QoS records, thereby
achieving relatively superior QoS prediction performance in
a small window size. However, as the window size becomes
larger, TRCF-TA can capture its own original historical QoS
records that remarkably improves the prediction accuracy, while
TRCF-RTA probably brings in noisy historical QoS invocations
by similar neighbors that may has a negative impact of out-
weighing the benefits of increased number of temporal QoS
invocations, thereby weakening the effectiveness of predicting
temporal QoS in a large window size. Moreover, as the windows
size continues to increase, the final QoS prediction accuracy of
TRCF-RTA is inferior to that of TRCF-TA. Thus, the overall
experimental curve on MAE and RMSE of TRCF-RTA con-
verges faster than that of TRCF-TA, as shown in Fig. 3. In the
temporal RT dataset, larger window sizes lead to better accuracy
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Fig. 4. Performance impact of θPCC and θRBS on MAE and RMSE of TRCF-RTA under different QoS densities.

for TRCF, whereas it takes more additionally computational
costs for predicting missing temporal QoS.

2) Impact of θPCC and θRBS: The settings of θPCC and
θRBS impact the selection of similar neighbors of a target user
and service, which are crucial to effectively calculate temporal
average QoS and temporal deviation migration for better time-
aware QoS prediction. However, a higher or lower threshold
of θPCC and θRBS affects the experimental results due to
the exclusion of potentially useful temporal characteristics or
additional noisy user-service invocations that compromise the
temporal QoS prediction accuracy.

To test the performance impact of two similarity thresholds
for optimally finding similar neighbors, we have conducted
experiments with a predefined window size of 64 and α=0.5,
while θPCC ranges from 0.3 to 0.8 with an interval step of 0.1,
and θRBS varies from 0.66 to 0.76 with an interval step of 0.02.
Fig. 4 illustrates the performance impact of θPCC and θRBS on
MAE and RMSE, where TRCF-RTA is used to predict temporal
QoS under four different densities of 5%, 10%, 15% and 20%,
respectively.

From the three-dimensional visualizations on MAE and
RMSE as the variations of θPCC and θRBS , we can find that
when the QoS density starts from 5%, adjusting θPCC has a weak
performance impact on time-aware QoS prediction because
of relatively less influence on temporal deviation migration
by θPCC than that of temporal average QoS by θRBS . Thus,
adjusting θRBS leads to significantly positive changes on MAE
and RMSE since TRCF-RTA is sensitive to more accurately
calculate temporal average QoS by useful similar neighbors
under highly sparse QoS. As the increasing QoS density from 5%
to 10% and 15%, TRCF-RTA is impacted more by temporal de-
viation migration relative to θPCC than that by temporal average
QoS relative to θRBS , where adjusting both θPCC and θRBS has
obvious influence on the accuracy of temporal QoS prediction.
However, when the QoS density arises at 20%, the influence of

adjusting θRBS has been significantly reduced, particularly on
RMSE, while θPCC can still keep a substantial impact on predic-
tion accuracy. The main reason is that as the QoS density gradu-
ally increases, an original temporal QoS vector of a target user-
service pair can sufficiently represent their temporally historical
invocation patterns, without externally supplementing missing
QoS invocations across multiple time slices for better calculat-
ing the temporal average QoS. After comprehensive parameter
tuning, we set θPCC=0.5 and θRBS=0.68 that achieve the
best performance of time-aware QoS prediction in temporal RT
dataset.

3) Impact of Adjusting Coefficient α: TRCF combines user-
based and service-based time-aware QoS prediction by an ad-
justing coefficient α, which balances the impact of these two
kinds of ways and optimizes the finally missing time-aware
predicted QoS. Since the total adjusting coefficients of the two
ways are 1, we focus on analyzing the performance impact of
α. In the experiments, we set the parameters of window size as
64, θPCC=0.5, and θRBS=0.68, while varying the adjusting
coefficient α from 0.0 to 1.0 with an interval step of 0.1.
The densities of temporal QoS matrix are 5%, 10%, 15% and
20%.

Fig. 5 illustrates the performance impact of adjusting coeffi-
cient on time-aware QoS prediction. When α is set to 1.0, TRCF
completely degenerates into user-based approach; at the other
extreme, whenα is set to 0.0, it turns to be a purely service-based
temporal approach. It can be observed from Fig. 5 that both
TRCF-TA and TRCF-RTA can receive the lowest MAE and
RMSE for the best performance with the setting of α at a certain
value between 0 and 1. It indicates that both user-based and
service-based time-aware QoS prediction make contributions
to the improvement of predicting missing temporal QoS under
multiple densities. However, it is challenging to identify a fixed
α that achieves the best performance on MAE and RMSE for
TRCF-TA and TRCF-RTA across multiple QoS densities. For

Authorized licensed use limited to: SHANGHAI UNIVERSITY. Downloaded on August 13,2024 at 17:15:25 UTC from IEEE Xplore.  Restrictions apply. 



1858 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 17, NO. 4, JULY/AUGUST 2024

Fig. 5. Performance impact of adjusting coefficient α on TRCF-TA and TRCF-RTA under different QoS densities.

example, when QoS density is set to 10% for TRCF-TA, it per-
forms optimally on MAE and RMSE with the setting of α=0.4,
while TRCF-TA can receive the best performance by adjusting
α=0.7 under the QoS density of 20%. Taking into account the
prediction performance on MAE and RMSE, TRCF-TA and
TRCF-RTA can receive superior accuracy of temporal QoS
prediction when their adjusting coefficients are set by α=0.6
and α=0.5, respectively.

V. RELATED WORK

A. Non-Temporal QoS Prediction

Non-temporal QoS prediction can be classified into three cate-
gories: memory-based, model-based and deep learning based ap-
proaches, which are typically performed on a two-dimensional
matrix of user-service QoS invocations.

Memory-based approaches mainly employ traditional collab-
orative filtering (CF) to predict missing QoS. It can be divided
into user-based [25], service-based [26], and their linear combi-
nation through weight coefficients. The core of memory-based
QoS prediction approaches is to identify a group of similar users
or services as the neighborhood by similarity calculation, and
use them for calculating deviation migration, which is finally
combined with average QoS to perform the task of QoS predic-
tion. Some researchers have focused on effectively quantifying
the similarity between users and services to recognize similar
neighborhoods [27]. Wu et al. wu2017collaborative proposed
a rate-based similarity (RBS) approach to select the neighbor-
hood of users and services, resulting in better QoS prediction.
Zou et al. [7] proposed a reinforced CF approach based on both
RBS and PCC, which can accurately calculate average QoS and
deviation migration.

Model-based and deep learning approaches can partially ad-
dress the limitation of CF-based ones by extracting implicit
linear or nonlinear invocation relationships to enhance QoS pre-
diction performance. Xu et al. [8] proposed two context-aware
matrix factorization models for users and services to obtain
more accurate QoS prediction results. Wu et al. [9] proposed
a general context-sensitive matrix factorization approach to
model the interaction between users and services. Additionally,
deep learning techniques have been recently used to solve QoS
prediction problems since they can better deal with sparsity and
learn implicit nonlinear interactions [10], [11]. [28] combined
neural networks and matrix factorization, adopting multi-task
learning to reduce prediction errors and improve the perfor-
mance of the predicted QoS. Zou et al. Li et al. [12] proposed

topology-aware neural (TAN) model to address the challenge of
collaborative QoS prediction by considering the underlying net-
work topology and complex interactions between autonomous
systems. [29] designed a location-aware two-tower deep residual
network together with collaborative filtering to achieve superior
QoS prediction. In the latest advancements, some researches
have further improved QoS prediction performance by using
expert systems and attention mechanisms [30] or graph neural
networks [31] for multiple feature selection, extraction, and
interaction from user-service contextual information and QoS
invocations.

B. Time-Aware QoS Prediction

Time-aware QoS prediction can be partitioned into four
categories, including temporal factor integrated CF, sequence
prediction, tensor decomposition and deep learning.

Hu et al. [13] integrated temporal factor with the CF ap-
proach and selected more similar neighbors through a random
walk algorithm to alleviate data sparsity and achieve better
time-aware QoS prediction. Ma et al. [14] proposed a new
vector comparison approach that combines orientation similarity
and dimension similarity to implement time series analysis for
multi-valued collaborative QoS prediction in cloud computing.
Tong et al. [15] proposed an improved time-aware QoS predic-
tion approach based on CF. First, it normalized the historical
QoS value and calculated the similarity. Then, it calculated
the weight based on the distance of time slices and selected
similar neighbors. Finally, the missing QoS was predicted us-
ing hybrid CF. These approaches demonstrate the effective-
ness of integrating temporal information into QoS prediction,
and addressing the limitations of non-temporal QoS prediction
approaches.

Due to the correlation between time-aware QoS prediction
and sequence prediction analysis, relevant research has used
the ARIMA model to enhance the prediction performance of
missing temporal QoS. Hu et al. [16] established a QoS pre-
diction model that effectively combines CF and the ARIMA
model, and applied the Kalman filtering algorithm to compen-
sate for the shortcomings of the ARIMA model in time-aware
QoS prediction. Ding et al. [17] combined the ARIMA model
with memory-based CF to capture the temporal characteristics
of user similarity, improving the performance of missing pre-
dicted temporal QoS. These approaches demonstrate the effec-
tiveness of integrating sequence prediction analysis with QoS
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prediction, improving the accuracy of time-aware QoS predic-
tion by capturing temporal characteristics of QoS variations.

Compared to non-temporal QoS prediction, incorporating
temporal factor requires converting the classic two-dimensional
user-service matrix into a three-dimensional tensor repre-
sentation, where matrix factorization is upgraded to three-
dimensional tensor decomposition [18], [19]. Meng et al. [32]
proposed a time-aware hybrid collaborative cloud service rec-
ommendation approach, which introduced a temporal-aware
LFM model-based on CP decomposition and biases model
to distinguish temporal QoS metrics from stable QoS ones.
Zhang et al. [33] proposed an approach that combines Per-
sonalized Gated Recurrent Unit (PGRU) and Generalized Ten-
sor Factorization (GTF) to comprehensively predict unknown
time-aware QoS by leveraging long short term dependency
patterns. Luo et al. [34] proposed a temporal pattern-aware
QoS prediction approach by biased non-negative late factor-
ization of tensors (BNLFTs) model, which extracts time po-
tential factors from dynamic QoS. These approaches demon-
strate the effectiveness of incorporating temporal factor into
QoS prediction by using tensor representations and factorization
techniques.

With regard to deep learning models, RNN and its vari-
ants LSTM and GRU have been recently used for time-aware
QoS prediction. Wang et al. [35] applied LSTM to create on-
line reliable QoS prediction model for service-oriented sys-
tems. Xiong et al. [21] considered multi-dimension context
for learning an effective QoS prediction model derived from
the past QoS invocation history. Xiong et al. [22] proposed
a personalized matrix factorization approach PLMF based on
LSTM, which can capture dynamic representations for online
QoS prediction. Zou et al. [36] proposed a temporal QoS
prediction framework called DeepTSQP, which combines bi-
nary features with memory-based similarity to express the
characteristics of users or services and feeds them to a GRU
model for mining temporal aggregated feature for predicting
unknown temporal QoS value. These approaches demonstrate
the effectiveness of using deep learning models for tempo-
ral QoS prediction by capturing temporal dependencies and
patterns.

VI. CONCLUSION AND FUTURE WORK

In this article, we propose a novel approach called TRCF,
which is dedicated to advancing the performance of time-aware
QoS prediction. First, when calculating temporal average QoS
with densely historical QoS records, TRCF-TA directly fusions
the QoS values of a given target user-service invocations across
multiple time slices; especially for high QoS sparsity, TRCF-
RTA finds a set of similar neighbors and their corresponding his-
torical QoS values at different time slices are taken by temporal
reinforced RBS to enhance the reliability of calculating temporal
average QoS. Then, TRCF performs temporal deviation migra-
tion by incorporating reliable factor to improve the effectiveness
of calculating the aggregated deviations from similar neighbors
based on temporal reinforced PCC. Finally, TRCF integrates
the temporal average QoS and temporal deviation migration to
predict the missing time-aware QoS. The experimental results
demonstrate that TRCF achieves the best performance compared
with state-of-the-art competing baselines.

In the future, we plan to explore and design new deep neural
networks by plugging into similar neighborhoods in TRCF as
heuristics to further improve the performance of time-aware QoS
prediction.
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