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Abstract

While Large Language Models (LLMs) show promise for
Text-Attributed Graphs (TAGs) learning, their deployment
is hindered by computational demands. Graph Neural Net-
works (GNNs) are efficient but struggle with TAGs’ complex
semantics. We propose LinguGKD, a novel LLM-to-GNN
knowledge distillation framework that enables transferring
both local semantic details and global structural information
from LLMs to GNNs. First, it introduces TAG-oriented in-
struction tuning, enhancing LLMs with graph-specific knowl-
edge through carefully designed prompts. Next, it develops
a layer-adaptive multi-scale contrastive distillation strategy
aligning LLM and GNN features at multiple granularities,
from node-level to graph-level. Finally, the distilled GNNs
combine the semantic richness of LLMs with the computa-
tional efficiency of traditional GNNs. Experiments demon-
strate that LinguGKD outperforms existing graph distilla-
tion frameworks, the distilled simple GNNs achieve compa-
rable or superior performance to more complex GNNs and
teacher LLMs, while maintaining computational efficiency.
This work bridges the gap between LLMs and GNNs, facil-
itating advanced graph learning in resource-constrained en-
vironments and providing a framework to leverage ongoing
LLM advancements for GNN improvement.

Introduction
Text-Attributed Graphs (TAGs) integrate structured graph
data with rich textual information, providing a comprehen-
sive representation of complex systems across diverse do-
mains (Li et al. 2022; Yang and Shi 2024). Graph Neural
Networks (GNNs) (Veličković et al. 2018; Chen et al. 2020)
excel at interpreting graph structures and offer efficient in-
ference for various downstream tasks, making them a popu-
lar choice for graph-based learning. However, they struggle
with semantic processing (Li et al. 2023), especially as the
complexity and volume of associated textual data increase.

The advent of Large Language Models (LLMs) like
ChatGPT (Ouyang et al. 2022) and Llama (Touvron et al.
2023) brings new opportunities for TAG processing. LLMs
demonstrate exceptional capabilities in understanding com-
plex semantics and capturing entity relationships, making
them promising for graph learning tasks (Wang et al. 2024;
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Fatemi, Halcrow, and Perozzi 2023; Ye et al. 2024). Re-
cent studies show that integrating knowledge graphs can fur-
ther enhance LLMs’ reasoning abilities (Pan et al. 2024b;
Li et al. 2024), highlighting the potential synergy between
LLMs and graph structures. However, applying LLMs to
graph learning faces significant challenges, which include
high computational and storage demands due to large pa-
rameter sizes (often billions1), extended latency during in-
ference limiting practical applications.

To leverage the semantic understanding of LLMs while
maintaining the efficiency of GNNs, a promising direc-
tion is to explore knowledge distillation (KD) techniques
(Chen et al. 2022; Samy, T. Kefato, and Girdzijauskas 2023;
Joshi et al. 2024), which offer the potential to transfer in-
sights from complex LLMs to more compact GNNs, thereby
potentially optimizing graph reasoning tasks for resource-
constrained scenarios. However, the significant architectural
differences between LLMs and GNNs pose substantial chal-
lenges for effective knowledge transfer, a problem that re-
mains largely unexplored in the context of graph learning.

To bridge this gap between LLMs and GNNs, we propose
Linguistic Graph Knowledge Distillation (LinguGKD), a
novel and versatile LLM-to-GNN knowledge distillation
framework. LinguGKD operates in two key stages: First, it
employs instruction tuning of pre-trained LLMs using care-
fully designed graph-oriented prompts, creating an effective
teacher LLM (LinguGraph LLM) with enhanced graph un-
derstanding capabilities. This stage enables the LLM to bet-
ter interpret and reason about graph structures and node at-
tributes in natural language. Second, we develop a layer-
adaptive multi-scale contrastive distillation strategy, which
utilizes a contrastive learning framework to align LLM and
GNN features at both node and graph levels. To further en-
hance knowledge transfer across different neural network
depths, we introduce a layer-adaptive mechanism to dy-
namically adjust the importance of knowledge distillation
at each layer, allowing for more flexible and effective trans-
fer of LLM’s hierarchical understanding to GNN’s message-
passing layers. By combining the downstream task loss with
these distillation objectives, LinguGKD enables GNNs to ef-
fectively learn from LLMs while maintaining their compu-

1https://huggingface.co/spaces/HuggingFaceH4/open llm
leaderboard



tational efficiency, thus optimizing graph reasoning tasks for
resource-constrained environments.

Our main contributions are summarized as follows:
• We conceptualize the novel research problem of know-

ledge distillation from LLMs to GNNs and propose
LinguGKD, an innovative graph knowledge distillation
framework that leverages graph-oriented teacher LLMs
to enrich student GNNs’ feature learning capabilities
while maintaining their high reasoning efficiency, offer-
ing significant potential for real-world applications.

• We design a unique layer-adaptive multi-scale con-
trastive distillation strategy within the LinguGKD frame-
work. By employing a combination of local and global
alignment losses with trainable layer-adaptive parame-
ters, we ensure effective synchronization of hierarchical
node features between the teacher LLM and the student
GNN, thus guaranteeing the transfer of deep semantic
knowledge and complex graph structural understanding.

• Through extensive experiments evaluations across di-
verse LLM-GNN combinations and multiple benchmark
datasets, we demonstrate that LinguGKD significantly
enhances GNN accuracy while maintaining a lightweight
model structure. Our framework exhibits strong adapt-
ability to different LLM architectures, enabling continu-
ous improvement of GNN performance as LLM technol-
ogy advances. This adaptability, combined with effective
knowledge distillation, achieves an optimal balance be-
tween performance and efficiency, making it practical to
deploy high-performing graph learning models in diverse
resource-constrained real-world scenarios.

Preliminaries
Definition 1 (Text-Attributed Graph) A Text-Attributed
Graph (TAG) is a graph where each node is associated with
textual data. Formally, a TAG is denoted as G = (V, E ,X ),
where V = {vi}ni=1 represents the set of nodes, E is the set
of edges, and X = {xi}ni=1 denotes the node attributes,
where xi represents the textual attribute of node vi.

Definition 2 (Graph Neural Network) Graph Neural Net-
works (GNNs) are specialized for handling graph-structured
data, primarily through a k-layer message-passing mech-
anism (Kipf and Welling 2017), enabling the capture and
analysis of k-hop node relationships. The general form of
message passing in GNNs can be defined as:

h(k)
v = f

(
h(k−1)
v ,AGG

(
{h(k−1)

u : u ∈ N (v)}
))

(1)

where h
(k)
v is node v’s feature at the k-th layer, N (v) in-

cludes v’s neighboring nodes, f(·) is a node update func-
tion, and AGG(·) is a neighborhood aggregation function.

Definition 3 (LLM-to-GNN Knowledge Distillation)
LLM-to-GNN Knowledge Distillation (KD) aims to trans-
fer semantic understanding from a large teacher LLM
to a compact student GNN for processing TAGs. It en-
hances GNN’s capability in capturing complex semantic
relationships while maintaining its structural learning
advantages and computational efficiency. The ultimate

goal is to achieve a balance between model performance,
inference speed, and memory footprint, enabling the de-
ployment of semantically-rich graph learning models in
resource-constrained environments.

Approach
Figure 1 illustrates the LinguGKD framework for TAG-
oriented graph knowledge distillation. Our approach adopts
a modular architecture with three decoupled stages to en-
sure both effectiveness and efficiency. We first fine-tune a
pre-trained language model through carefully designed in-
struction prompts to enhance its graph understanding capa-
bilities, which serves as a one-time process and can lever-
age existing graph-specific LLMs as they become available.
The fine-tuned LLM then acts as a teacher model to extract
rich semantic features from graph nodes, which are cached
to enable efficient reuse across multiple distillation experi-
ments. Finally, we train a lightweight student GNN through
our proposed layer-adaptive multi-scale contrastive distilla-
tion mechanism, utilizing the cached LLM features while
keeping the teacher model frozen. This decoupled design
not only ensures computational efficiency but also provides
flexibility to incorporate advances in both LLM and GNN
architectures, making our framework adaptable to future de-
velopments in both domains.

TAG Instruction Tuning of Pre-trained LLM
To address the lack of out-of-the-box graph-specific LLMs,
we propose a tailored instruction tuning approach for graph
tasks, which builds upon recent work in graph-oriented lan-
guage models (Ye et al. 2024; Chen et al. 2024) and ad-
vanced LLM instruction tuning strategies (Wei et al. 2022;
Zhang et al. 2023). This approach aims to create a teacher
LLM capable of effectively processing and understanding
graph-structured data, leveraging instruction tuning’s proven
efficacy in enhancing LLM capabilities for specialized tasks.

For a given center node vi and a maximum neigh-
bor hop k, we construct a series of subgraphs {G(l)

i } =

{(vi,N (l)(vi), E(l)
i ,X (l)

i )}kl=0, where N (l)(vi) is vi’s l-hop
neighbors, E(l)

i is the set of edges between these nodes, and
X (l)

i is the set of corresponding node text attributes. For each
subgraph, we design a three-part instruction prompt:

• Task-specific instruction (I): Defines the graph task, e.g.,
”Classify the node in [graph type of G(l)

i ], represented
as (node ID, degree, attributes). Categorize the node into
[classification categories] based on [task criterion].”

• Structural description (τl): Converts the subgraph struc-
ture into natural language, e.g., ”(node [id], [degree], [at-
tributes]) is connected within [l] hops to [l-hop neighbors
in N (l)(vi)] through [intermediate paths in E(l)

i ].”
• Task-relevant query (Q): Poses a task-specific question,

e.g., ”What category should the node ([id], [degree], [at-
tributes]) be classified as?”

Following the instruction-following model design in
(Taori et al. 2023), we then construct the instruction prompt
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Figure 1: The LinguGKD framework for TAG-oriented LLM-to-GNN knowledge distillation.

pl for the l-th order subgraph by concatenating the task-
specific instruction, structural description, and task-relevant
query through a predefined template:

pl = concat(I, τl,Q) (2)

To fine-tune the pre-trained LLM, we employ the negative
log-likelihood loss as the objective function:

LNLL(P) = −
k∑

l=0

∑
pl∈Pl

|y|∑
j=1

log p(ŷj |pl, ŷ<j) (3)

where ŷj is the j-th token generated by the LLM for the
node label, Pl is the set of all instruction prompts for the l-th
order subgraph, and P =

⋃k
l=0 Pl is the set of all instruction

prompts across all orders.
Through this process, we obtain an LLM adapted for

graph tasks, which we term LinguGraph LLM. It serves as
the teacher model in the subsequent knowledge distillation
process, providing rich semantic and structural knowledge
to the student GNN model.

Knowledge Distillation from LinguGraph LLM to
GNN
Teacher Feature Learning via LinguGraph LLM The
LinguGraph LLM, fine-tuned with graph-specific instruc-
tion prompts, serves as our teacher model for extracting
semantically-rich node features. Inspired by (Xiao et al.
2024), we observe that tailored instructions significantly
enhance the LLM’s proficiency in generating semantic
features. Consequently, we leverage the entire instruction
prompt set P for the extraction of node semantic features,
rather than limiting it to the structural prompt set T .

For an instruction prompt pl ∈ P , we extract the l-th
order node latent feature through the LLM’s transformer
(Vaswani et al. 2017) architecture:

hL
l = Transformer(EmbeddingL(pl);Wtr)|pl|,: (4)

where EmbeddingL(·) is the embedding layer of the LLM,
Wtr denotes the parameters of the transformer layers. The
output hL

l ∈ RdL represents the feature vector correspond-
ing to the last token of the processed instruction prompt after
self-attention, dL denotes the dimension of the LLM’s hid-
den state.

To prepare these LLM-extracted features for knowledge
distillation, we introduce a two-step processing mechanism:

hT
l = Mp(LayerNorm(Ml

f (h
L
l ));Wp, bp) (5)

where Ml
f is a hop-specific neural knowledge filter with

learned parameters, LayerNorm(·) is a layer normalization
operation, and Mp is a shared linear projector with param-
eters Wp and bp. This design distills pertinent layer-wise in-
formation and aligns features from different hops into a uni-
fied distillation space hT

l ∈ Rdk , where dk is the distillation
space dimension. The process yields a set of hierarchical
teacher node features FT = {hT

l }kl=0, capturing semantic
information at multiple neighborhood levels.

Student Feature Learning via GNN The student GNN
MS extracts multi-hop node features through a message-
passing mechanism (Kipf and Welling 2017), capturing the
graph’s structural information. While various GNN archi-
tectures exist (Veličković et al. 2018; Hamilton, Ying, and
Leskovec 2017; Xu et al. 2018), they share a common prin-
ciple of aggregating information from neighboring nodes.



Our framework is compatible with any off-the-shelf GNN
variant, allowing flexibility in model choice.

For a given k-hop neighbor subgraph G(k)
i of a central

node vi, the k-order message aggregation proceeds as:

h
(0)
j = EmbeddingG(xj), ∀xj ∈ {xi} ∪ X (k)

i (6)

m
(l)
i←j = M(l)

msg(h
(l−1)
i ,h

(l−1)
j , eij ;W

(l)
msg) (7)

hG
l = M(l)

update(h
(l−1)
i ,

⊕
vj∈N (vi)

m
(l)
i←j ;W

(l)
update) (8)

where EmbeddingG(·) initializes node features from textual
attributes xj . For 0 < l ≤ k, m(l)

i←j represents the message

from node j to node i at the l-th layer. M(l)
msg(·) constructs

messages,
⊕

denotes a differentiable, permutation-invariant
aggregation function, and M(l)

update(·) updates node features.

W
(l)
msg, and W

(l)
update are learnable parameters. To align with

the teacher’s feature space, we apply a normalization layer:

hS
l = Norm(hG

l ), 0 ≤ l ≤ k (9)

where hS
l ∈ Rdk denotes the student knowledge, and

Norm(·) is typically batch or layer normalization. The pro-
cess yields a set of hierarchical student node features FS =
{hS

l }kl=0, capturing structural information at multiple scales.

Layer-Adaptive Multi-scale Contrastive Distillation
Traditional knowledge distillation methods face significant
challenges in transferring knowledge from LLMs to GNNs
due to their inherent heterogeneity. To address this, we
propose an approach that aims for the GNN to learn both
the feature distribution of the LLM and the relationships
between these features, rather than directly fitting fea-
ture values. This allows for a more flexible knowledge
transfer that respects graph structures while incorporating
LLM’s semantic understanding. We achieve this through a
combination of local and global distillation losses.

The local distillation loss aims to align individual node
representations between the GNN and LLM. However, di-
rectly minimizing the distance between these representa-
tions is suboptimal due to the fundamentally different archi-
tectures and objectives of GNNs and LLMs. To address this
challenge, we leverage contrastive learning (Tian, Krishnan,
and Isola 2020), which offers several key advantages: first,
it preserves the LLM’s semantic structure while adapting to
the GNN’s feature space by learning relative relationships
rather than absolute values; second, it enhances the discrim-
inative power of learned representations through hard nega-
tive mining. Thus, we formally define the local contrastive
distillation loss as:

Ll
Dl

= −E

log es(h
S
l ,hT

l )/τ

es(h
S
l ,hT

l )/τ +
∑m

j=1 e
s(hS

l ,h−
l,j)/τ

 (10)

where s(·, ·) denotes a similarity function, τ is the temper-
ature, hS

l and hT
l are l-th order features from the GNN and

LLM, h−l,j represents teacher features from different cate-
gories serving as hard negative samples (Robinson et al.

2021), and m is the number of hard negative samples se-
lected for each positive pair.

While local loss aligns individual node representations, it
may not fully capture the global feature space structure of
the LLM. To address this, we introduce a global alignment
loss to ensure that the GNN’s overall feature distribution and
inter-feature relationships mirror those of the LLM. Specif-
ically, we employ KL divergence to measure the discrep-
ancy between feature distributions of the student GNN and
teacher LLM at layer l:

Ll
Dg

= KL(PS
l ||PT

l ) (11)

where PS
l and PT

l represent the distributions of pairwise fea-
ture similarities. Let HS

l and HT
l ∈ Rn×dk denote the node

feature matrices at layer l for the GNN and LLM respec-
tively. The similarity distributions are computed using co-
sine similarity:

PS
l [i, j] =

HS
l [i, :] · HS

l [j, :]
⊤

∥HS
l [i, :]∥2 · ∥HS

l [j, :]∥2
(12)

PT
l [i, j] =

HT
l [i, :] · HT

l [j, :]
⊤

∥HT
l [i, :]∥2 · ∥HT

l [j, :]∥2
(13)

The combination of local and global losses ensures com-
prehensive knowledge transfer. While the local loss focuses
on node-level alignment, the global loss preserves the over-
all structure of the feature space, capturing higher-order re-
lationships that might be missed by pairwise comparisons
alone. Furthermore, to account for the varying importance
of knowledge at different graph depths (Kipf and Welling
2017; Huang, Wang, and Chao 2019), we introduce a layer-
adaptive mechanism:

LD =

k∑
l=0

γl(Ll
Dl

+ Ll
Dg

) (14)

where γl are trainable layer-adaptive parameters. This mech-
anism allows the model to dynamically adjust the contribu-
tion of each layer to the overall distillation process, adapting
to different graph structures and tasks by focusing on the
most informative layers for effective knowledge transfer.

Model Training
Training the student GNN involves both knowledge distilla-
tion from the teacher LLM and optimization for the specific
downstream task. We formulate this as a multi-task joint op-
timization problem. Taking node classification as an exam-
ple, we first define the task-specific prediction as:

ŷ = softmax(WGh
S
k + bG) (15)

where hS
k is the final layer output of the GNN, and WG,bG

are learnable parameters. The classification loss is then com-
puted using cross-entropy:

LG = −
|Dtr|∑
i=1

yi log(ŷi) (16)



where yi and ŷi are the true and predicted label distributions
respectively, and Dtr is the training set. To balance knowl-
edge distillation and task-specific performance, we define a
joint loss function:

L = αLG + βLD (17)

Here, α, β are tunable factors. The student GNN is trained
end-to-end using mini-batch AdamW optimization, effec-
tively balancing the transfer of rich semantic knowledge
from the teacher LLM with the structural learning capabili-
ties inherent to GNNs for the specific downstream task.

Complexity Analysis
Our proposed LinguGKD framework is structured into three
modular stages, each orchestrated to manage computational
complexity while maximizing efficiency and performance.
Initially, the fine-tuning of a pre-trained LLM involves a
complexity of O(|Dtune| ·L · d2L), where |Dtune| represents
the tuning dataset size, L is the prompt sequence length,
and dL denotes the hidden dimension of the LLM. This pro-
cess is executed once and sets the foundation for subsequent
stages, allowing pre-tuned graph-specific LLMs to be uti-
lized as they become available.

In the feature extraction phase, the task’s complexity is
bounded by O(|V| · k · L · d2L), where |V| is the total num-
ber of nodes and k is the maximum hop count around each
node. The extracted features are systematically cached, thus
enabling their reutilization across various knowledge distil-
lation tasks, effectively amortizing the computational cost
over time.

The final stage involves training the student GNN en-
hanced by our layer-adaptive multi-scale contrastive distilla-
tion mechanism. The training complexity for each epoch in-
volves the GNN’s message-passing steps, approximated by
O(|E|·dk), where |E| signifies the edge count and dk the dis-
tillation space dimension. Additionally, the local and global
distillation processes contribute to this computational frame-
work, with complexities of O(|V|·k ·m·dk) and O(|V|2 ·dk)
respectively—though the latter can be alleviated through ef-
ficient sampling strategies.

Overall, the modular design and strategic feature caching
inherent in our framework ensure that, in practical applica-
tions, the resource demands of conducting knowledge distil-
lation via LinguGKD remain comparable to those required
for conventional GNN training. This efficiency is achieved
while facilitating enhanced performance, thus reflecting the
judicious integration of LLM-derived semantic insights into
the GNN paradigm.

Experiments
Experimental Setup
Datasets and Model Selection We evaluated our Lin-
guGKD framework on three widely-used benchmark
datasets for node classification: Cora, PubMed (Yang, Co-
hen, and Salakhudinov 2016), and Arxiv (Hu et al. 2020).
These datasets represent academic papers as nodes and ci-
tations as edges. Table 1 summarizes the key statistics of
these datasets. Due to the lack of initial text attributes for

Cora PubMed Arxiv

# Node 2,708 19,717 169,343
# Edge 5,429 44,338 1,166,243
# Class 7 3 40
# Features 1433 500 128
Embedding Tech. BoW TF-IDF Skip-gram
|Dtr| : |Dval| : |Dtest| 6:2:2 6:2:2 5.4:1.8:2.8

Table 1: Dataset Statistics

each node in the original datasets, we reconstructed titles,
abstracts, and other text attributes for each node following
the method described in (He et al. 2024) for graph instruc-
tion tuning of the teacher LLM.

For teacher LLMs, we selected Llama2-7B (Touvron
et al. 2023) and Llama3-8B (Dubey et al. 2024). Our stu-
dent GNNs include GCN (Kipf and Welling 2017), GAT
(Veličković et al. 2018), GraphSAGE (Hamilton, Ying, and
Leskovec 2017), and GIN (Xu et al. 2018).

Experimental Results and Analyses
Our experimental analysis aims to validate the effectiveness
and efficiency of the proposed LinguGKD framework. We
focus on addressing the following key research questions:
RQ1: How do LinguGraph LLMs compare to existing

graph learning baselines?
RQ2: What performance gains do distilled GNNs achieve?
RQ3: How does LinguGKD compare to other graph knowl-

edge distillation frameworks?
RQ4: What are the trade-offs between LinguGraph LLMs

and distilled GNNs?
RQ5: How do different hyperparameters affect the perfor-

mance of LinguGKD?

Performance of LinguGraph LLMs (RQ1) We com-
pared LinguGraph LLMs against representative single-
model graph learning baselines from three authoritative
leaderboards2 3 4. Table 2 shows the node classification re-
sults, where LinguGraph LLMs consistently outperform ex-
isting baselines across all datasets. Notably, LinguGraph-
Llama3 (8B) achieves state-of-the-art results with accura-
cies of 91.51%, 95.59%, and 79.73% on Cora, PubMed,
and Arxiv, respectively. Performance improves with larger
model sizes and pre-training corpora, supporting the poten-
tial of LLMs as foundational models for graph learning (Ye
et al. 2024). These results establish LinguGraph LLMs as
strong teacher models for our KD framework.

Performance Gains of Distilled GNNs (RQ2) As shown
in Table 2, our LinguGKD framework significantly improves
student GNN performance across datasets, with the distilled
GNNs consistently outperforming their vanilla counterparts.

2https://paperswithcode.com/sota/node-classification-on-cora-
60-20-20-random

3https://paperswithcode.com/sota/node-classification-on-
pubmed-60-20-20-random

4https://ogb.stanford.edu/docs/leader nodeprop/



Methods Cora PubMed Methods Arxiv

Acc.↑ F1↑ Acc.↑ F1↑ Acc.↑ F1↑
GCN 86.53±0.92 85.66±0.78 86.12±0.93 85.64±0.82 GCN 71.74±0.21 71.04±0.37
GAT 86.12±0.95 85.05±0.88 85.49±0.76 84.89±0.71 GAT 73.66±0.33 72.44±0.19
GraphSAGE 87.08±0.85 85.96±0.73 87.69±0.92 87.38±0.68 GraphSAGE 71.19±0.26 70.87±0.45
GIN 86.60±0.91 85.37±0.74 85.84±0.92 85.31±0.63 GIN 71.62±0.47 71.13±0.33
BernNet (He et al. 2021) 88.52±0.95 87.96±0.85 88.48±0.41 87.52±0.79 GTAN (Wu and Wang 2022) 72.97±0.17 71.77±0.22
FAGCN (Bo et al. 2021) 88.85±1.36 87.92±0.65 89.98±0.54 88.72±0.53 UniMP (Shi et al. 2021) 73.11±0.20 72.14±0.38
GCNII (Chen et al. 2020) 88.93±1.37 87.58±0.71 89.80±0.30 88.96±0.62 GCNII (Chen et al. 2020) 72.74±0.00 72.22±0.44
RevGAT (Li et al. 2021) 89.11±0.00 87.65±0.58 88.50±0.05 87.12±0.73 RevGAT (Li et al. 2021) 74.02±0.18 73.56±0.29
ACM-GCN+ (Luan et al. 2022) 89.75±1.16 88.94±0.54 90.96±0.62 89.77±0.51 E2EG (Dinh et al. 2023) 73.62±0.14 72.96±0.26
Graphormer (Ying et al. 2021) 80.41±0.30 79.98±0.56 88.24±1.50 87.52±0.71 SGFormer (Wu et al. 2024) 72.63±0.13 71.58±0.42

LinguGraph-Llama2 (7B) 88.19±0.83 88.12±0.73 94.09±0.78 93.55±0.61 LinguGraph-Llama2 (7B) 75.67±0.52 75.60±0.41
LinguGraph-Llama3 (8B) 91.51±0.46 91.53±0.18 95.59±0.29 95.55±0.10 LinguGraph-Llama3 (8B) 79.73±0.18 79.29±0.56
GCN(Llama2) 90.59±0.71 89.62±0.66 88.97±0.82 88.56±0.71 GCN(Llama2) 73.87±0.22 73.87±0.61
GCN(Llama3) 90.77±0.28 90.35±0.37 89.76±0.44 89.46±0.37 GCN(Llama3) 74.68±0.45 74.29±0.32
GAT(Llama2) 90.33±0.67 89.72±0.59 87.93±0.28 87.42±0.36 GAT(Llama2) 74.92±0.14 74.48±0.28
GAT(Llama3) 91.51±0.35 91.45±0.58 88.31±0.76 87.93±0.65 GAT(Llama3) 75.71±0.41 75.06±0.36
GraphSAGE(Llama2) 90.22±0.77 89.89±0.19 89.96±0.50 89.67±0.34 GraphSAGE(Llama2) 72.53±0.61 72.42±0.49
GraphSAGE(Llama3) 91.70±0.51 91.08±0.62 90.14±0.56 89.96±0.48 GraphSAGE(Llama3) 75.38±0.38 75.22±0.32
GIN(Llama2) 90.26±0.67 89.20±0.48 87.73±0.29 87.20±0.30 GIN(Llama2) 73.71±0.25 73.42±0.10
GIN(Llama3) 91.33±0.28 91.05±0.53 89.22±0.79 88.87±0.61 GIN(Llama3) 75.64±0.46 75.28±0.39
Avg. Dist. Gains 4.61% 5.22% 2.79% 2.84% Avg. Dist. Gains 3.85% 4.22%

Table 2: Node classification performance of various graph learning models across selected datasets, with the highest-
performing outcomes in bold, second-best scores highlighted in gray, and best baseline performances underlined. The prefix
LinguGraph− represents teacher LLMs obtained by fine-tuning different PLMs with graph instruction prompts, while GNNs
with different subscripts represent student models distilled from the corresponding teacher LLMs indicated by the subscripts.
The term Avg. Dist. Gains. refers to the average knowledge distillation gains obtained by different student GNNs.

Model Cora Arxiv

Teacher of baselines 88.93 73.91
Teacher of LinguGKD 91.51 79.73

KD (Hinton, Vinyals, and Dean 2015) 86.38 71.55
FitNet (Romero et al. 2015) 85.40 71.38
LSP (Yang et al. 2020) 84.92 71.52
GraphAKD (He et al. 2022) 86.39 -
G-CRD (Joshi et al. 2024) - 71.64
LinguGKD 90.77 74.68

Table 3: Results (%) of different knowledge distillation
methods. For baselines, GCNII is used as the teacher on
Cora, and GAT on Arxiv. LinguGKD uses LinguGraph-
Llama3 as the teacher. All methods use GCN as the student
model. ’-’ means not available.

For instance, on Cora, GCN(Llama3) achieves 90.77% ac-
curacy compared to 86.53% for vanilla GCN, representing
a 4.24% improvement. The average distillation gains range
from 2.79% (PubMed) to 4.61% (Cora). Notably, some dis-
tilled GNNs even surpass more complex models. For exam-
ple, GAT(Llama3) on Cora (91.51% accuracy) outperforms
RevGAT (89.11%) and ACM-GCN+ (89.75%).

The performance improvements across different datasets
and GNN architectures demonstrate the effectiveness and
generalizability of our LinguGKD framework. By trans-
ferring semantic knowledge and structural understanding
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Figure 2: Model size and inference time of different models.

from LLMs to GNNs, we enable simpler GNN models to
achieve competitive or superior performance compared to
more complex graph learning approaches.

Comparison with Other Graph Knowledge Distillation
Frameworks (RQ3) To evaluate LinguGKD’s effective-
ness, we compared it with state-of-the-art graph knowl-
edge distillation frameworks. Table 3 shows the performance
of different approaches on Cora and Arxiv datasets. Lin-
guGKD consistently outperforms existing methods, achiev-
ing accuracy improvements of 3.06 and 3.04 percentage
points on Cora and Arxiv, respectively. This significant gain
can be attributed to: (1) using LLMs as teacher models,
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Figure 3: The results of performance impacts as the varia-
tions of neighbor orders and hidden feature dimensions.

Methods Cora PubMed Arxiv

T. S. T. S. T. S.

Llama2 9.23 85.21 25.04 85.88 10.72 70.94
LinguGraph-Llama2 88.19 90.59 94.09 88.97 75.67 73.87
Llama3 14.92 85.48 30.17 86.06 15.31 70.58
LinguGraph-Llama3 91.51 90.77 95.59 89.76 79.73 74.68

Table 4: Node classification accuracy (%) of teacher LLMs
(T.) and their distilled student GNNs (S.) before and after
graph instruction tuning across different datasets.

providing richer semantic information, and (2) our novel
layer-adaptive multi-scale contrastive distillation strategy
that combines LLM’s semantic understanding with GNN’s
structural capabilities. These results highlight the potential
of leveraging LLMs for graph knowledge distillation and
demonstrate our approach’s effectiveness in transferring se-
mantic and structural knowledge to lightweight GNNs.

Trade-offs between LinguGraph LLMs and Distilled
GNNs (RQ4) Figure 2 illustrates the trade-offs between
model size and inference time for LinguGraph LLMs and
distilled GNNs. LinguGraph LLMs offer superior perfor-
mance but at the cost of significantly larger model sizes
(6.74B-8.03B parameters, >25GB storage) and longer in-
ference times (>0.5s). In contrast, distilled GNNs achieve
comparable accuracy with much smaller footprints (few
million parameters, 0.03-0.04GB) and faster inference. On
Cora, GAT(Llama3) matches LinguGraph-Llama3’s 91.51%
accuracy while being orders of magnitude smaller and faster.
This makes distilled GNNs ideal for resource-constrained or
real-time applications, while LinguGraph LLMs are prefer-
able when computational resources are ample and maximum
accuracy is crucial. These trade-offs highlight the versatility
of our LinguGKD framework, offering flexible solutions for
various operational contexts in graph learning tasks.

Impact of Hyperparameters on LinguGKD Performance
(RQ5) We conducted an extensive analysis of two criti-
cal hyperparameters: neighbor orders (k) and hidden fea-
ture dimensions (dG) of GNNs, using the Cora dataset as
our benchmark. As show in Figure 3a, increasing neighbor
orders improves performance up to 2-hop, beyond which
over-smoothing occurs in vanilla GNNs but is mitigated in
distilled GNNs. Interestingly, Figure 3b reveals that while
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Figure 4: Comparison of loss convergence before and after
LLM fine-tuning. (a) Before fine-tuning, the distillation loss
(LD) and task-specific loss (LG) show conflicting trends.
(b) After fine-tuning, both losses decrease collaboratively,
indicating better alignment of transferred knowledge.
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Figure 5: Performance comparison of GNNs distilled with
LinguGKD and the ablated variants.

vanilla GNNs’ performance plateaus at 128 dimensions, dis-
tilled GNNs show continuous improvement up to 1024 di-
mensions, indicating better utilization of semantic informa-
tion. Based on these findings, we identified the 2-hop setting
and 1024-dimensional hidden features as optimal, balanc-
ing performance and efficiency for LinguGKD. These re-
sults demonstrate LinguGKD’s robustness across different
graph structures and its ability to effectively leverage high-
dimensional semantic spaces inherited from LLMs.

Ablation Study
Necessity of Graph Instruction Tuning In this study, we
underscore the pivotal role of graph instruction tuning in sig-
nificantly enhancing the performance of LLMs and the ef-
fectiveness of their knowledge distillation into GNNs. As
detailed in Table 4, the initial performance of pre-tuned
LLMs on graph-based node classification tasks was sub-
optimal, with accuracy ranging from 8% to 30%. Follow-
ing graph instruction tuning, a substantial improvement was
observed, with accuracy soaring to 75-95% across vari-
ous datasets. This improvement is largely attributed to the
LLMs’ improved ability to align pre-trained knowledge with
graph-specific tasks, thereby mitigating issues such as repet-
itive outputs commonly encountered with LLMs.

Furthermore, graph instruction tuning enhances the
knowledge distillation process, as shown in the increased
performance of distilled GNNs across all datasets (Table 4).
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Figure 6: Heatmap visualization of layer-adaptive factors
(γl) and classification-distillation loss weights (α, β) during
training on Cora and PubMed datasets. Darker colors indi-
cate higher values relative to the average.

The collaborative decrease in distillation and task-specific
losses post-tuning is depicted in Figure 4, illustrating bet-
ter alignment of transferred knowledge with the target tasks.
This aligns optimization objectives, leading to more ef-
fective and efficient learning processes. Our approach not
only facilitates increased model accuracy but also demon-
strates robustness and scalability across datasets of varying
sizes and complexities, reinforcing its applicability in di-
verse graph learning scenarios.

Effectiveness of Layer-Adaptive Multi-scale Contrastive
Distillation To evaluate our layer-adaptive multi-scale
contrastive distillation strategy, we conducted ablation stud-
ies through three variants: LinguGKD-l (without local dis-
tillation loss), LinguGKD-g (without global alignment loss),
and LinguGKD-la (without layer-adaptive mechanism). Re-
sults in Figure 5 show that the complete LinguGKD frame-
work consistently outperforms across diverse GNN archi-
tectures and datasets. The ablation of local or global distil-
lation components leads to suboptimal knowledge transfer,
while removing the layer-adaptive mechanism significantly
impairs the model’s ability to capture multi-scale graph rep-
resentations.

The efficacy of our adaptive mechanism is further sub-
stantiated through quantitative analysis presented in Figure
6, which reveals the distribution of layer-adaptive factors
(γl) and loss weights (α, β). The dataset-specific adaptation
patterns evidence the framework’s ability to capture graph
characteristics: higher first-order neighbor factors (γ1) in
Cora indicate dominance of local topology, while elevated
structure-free features (γ0) in PubMed suggest stronger de-
pendence on node attributes. This automatic adaptation,
combined with balanced optimization of distillation (β) and
task-specific (α) objectives, demonstrates LinguGKD’s ad-
vantage in maintaining knowledge fidelity across heteroge-
neous graphs.

Related Work
Recent advancements in graph learning have been signif-
icantly enriched by the integration of LLMs. Research in
this domain primarily follows three approaches: LLM as
Enhancer (LaE), LLM as Predictor (LaP), and LLM as
Teacher (LaT). He et al. (He et al. 2024) proposed TAPE,
which generates interpretive explanations and pseudo-labels
to enrich graph’s textual attributes, while Chen et al. (Chen
et al. 2024) introduced the Knowledge Entity Augmentation
(KEA) strategy, employing LLMs to generate knowledge
entities with textual descriptions. Ye et al. (Ye et al. 2024)
developed scalable prompting techniques that create direct
relational links between nodes through natural language,
outperforming traditional GNNs in node classification tasks.
The emerging LaT approach focuses on transferring LLM
knowledge to graph models. Pan et al. (Pan et al. 2024a)
leverage explicit knowledge transfer through prompting and
interpretation, extracting rationales from LLMs to guide
graph models, showing particular effectiveness on datasets
with complex domain knowledge like PubMed.

Parallel to these developments, graph knowledge distilla-
tion (He and Ma 2022; Wu et al. 2023; Joshi et al. 2024)
has emerged as a crucial technique for enhancing GNNs’
effectiveness and efficiency. He et al. (He and Ma 2022)
proposed SGKD, which focuses on transferring final output
representations, while Joshi et al. (Joshi et al. 2024) intro-
duced G-CRD, aligning intermediate node embeddings be-
tween teacher and student models.

Our LinguGKD framework introduces a novel perspective
within the LaT paradigm by directly aligning feature spaces
to preserve implicit semantic relationships from LLM’s at-
tention mechanism, which differs from existing explicit
knowledge extraction methods, showing superior perfor-
mance on datasets with straightforward relationships while
maintaining computational efficiency. The complementary
strengths of explicit rationale-based methods and our feature
alignment approach suggest promising directions for future
research in LLM-to-GNN knowledge transfer.

Conclusion
In this paper, we introduced LinguGKD, a novel LLM-
to-GNN knowledge distillation framework that effectively
bridges the semantic understanding of LLMs with the ef-
ficiency of GNNs for TAGs. It combines TAG-oriented in-
struction tuning for LLMs with a layer-adaptive multi-scale
contrastive distillation strategy, enabling efficient transfer
of complex semantic knowledge. Extensive experiments
demonstrated significant improvements in GNNs’ predic-
tive accuracy, while achieving superior inference speed and
reduced resource requirements compared to LLMs. Lin-
guGKD not only advances graph learning but also pro-
vides a practical solution for deploying advanced models in
resource-constrained environments, establishing a promis-
ing direction for leveraging LLM advancements to enhance
GNN performance. Our future work will explore extending
LinguGKD to dynamic and heterogeneous graphs, further
broadening its applicability in real-world scenarios.
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Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
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