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Abstract
Federated learning (FL), an emerging data-secure distributed train-
ing paradigm, unitesmassive isolated Internet of Things (IoT) device
nodes to collaboratively train a global neural network (NN) model
without the exposure of their local multimedia data. However, con-
strained by the synchronous NN model integration nature of FL,
there is a training latency inconsistency among heterogeneous de-
vices, which significantly deteriorates FL training efficiency. Mean-
while, frequent local NN training and transmission impose high
energy consumption pressure on users. To tackle these issues, this
paper proposes a premium multi-width NN-assisted hierarchical FL
(HFL) framework in heterogeneous cloud-edge-device computing
to achieve remarkable training speedup and energy conservation.
Specifically, a heterogeneity-aware NN width coefficient determina-
tion algorithm, which flexibly assigns a subnet with a suitable width
to each user device based on its computing ability, is first applied to
shorten the HFL training latency. Subsequently, to integrate subnets
with different width topologies, we design a width-aware adaptive
NN model integration approach to effectively ensure the accuracy
of the integrated global NN model. Finally, a latency-aware en-
ergy saving strategy is introduced to reduce energy consumption.
Experimental results demonstrate that our proposed framework
outperforms state-of-the-art benchmarks, and attains up to 42.42%
enhancement in accuracy, 81.5% reduction in training latency, and
40.9% optimization in energy cost.
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1 Introduction
Nowadays, artificial intelligence-empowered Internet of Things
(IoT) applications provide remarkable intelligent services to human-
ity across various multimedia fields, such as autonomous driving,
smart homes, and intelligent healthcare [1–4]. To offer high-quality
intelligent services, it is crucial to collect sufficient training data
for improving the performance of neural network (NN) models.
However, in most real-world IoT scenarios, data generated from
the device side is sensitive and can only be kept locally due to user
privacy issues, which hinders a remote data center from collecting
sufficient data to train a high-performance NN model [5–8].

To tackle the above obstacle, federated learning (FL), a forward-
looking distributed paradigm, can organize collaborative distributed
training for NN models among numerous devices while safeguard-
ing user data privacy [9–11]. In a typical FL system, an edge server
interacts with multiple devices over a wireless network, and the
server-device cooperative training is executed iteratively [12–15].
In detail, a round of FL training proceeds as follows. Firstly, the edge
server broadcasts the global NN model to devices. Secondly, each
device trains the received global NN model using the local private
dataset in parallel. Thirdly, each device uploads the trained NN
model to the edge server in parallel. Lastly, the trained NN models,
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received by the edge server, are aggregated into a new global NN
model via the FedAvg formula [16].

As information technology advances, the numerical scale of
IoT devices has expanded dramatically [17, 18]. Unfortunately, the
traditional edge server-coordinated FL system, built on a wireless
network, fails to communicate with IoT devices located in distant
places [19]. To deal with this challenge, a novel hierarchical FL
(HFL) system, which relies on the cloud-edge-device architecture,
is proposed [20, 21]. In HFL, a cloud server is linked to a few edge
servers via the backbone network, and each edge server connects
with some nearby user devices within a wireless network [19, 22].
Within this HFL system, each edge server is placed near user devices
to reduce the transmission cost, and to enable the cloud server to
offload transmission pressure onto edge servers.

In HFL, significant system heterogeneity exists in the computing
ability among numerous IoT devices, and it takes more time for
devices with weaker computing abilities to complete their local
training of NN models [23]. Limited by the synchronization nature
of FL, the slowest user device that completes local NN training
and model transmission tasks with the longest latency, called the
“straggler”, determines the actual latency per distributed training
round. In this context, even if some user devices with stronger com-
puting capabilities can complete their current local training round
of NN models quickly, they must still wait idly for synchronous
NN model integration before commencing the next round. This
idle waiting time hinders the entire HFL system from effectively
leveraging the abundant computing resources available in certain
heterogeneous devices [24, 25]. Consequently, the “barrel effect"
caused by the resource-constrained “straggler" in a synchronous
system significantly affect the HFL training efficiency.

Moreover, another issue that constrains the development of HFL
systems is devices’ high energy consumption cost [26]. Within HFL,
devices are required to undertake the task of training local NN
models on their local data and uploading the trained NN models
to the edge servers. For the pursuit of portability, batteries are still
used as a primary energy supply approach for IoT devices, which
means that many user devices are constrained by limited energy
[27]. As a result, the battery depletion from resource-intensive
NN model training and transmission tasks may reduce computing
speed and transmission stability, or even cause devices to shut
down and disconnect, thus affecting the efficiency and reliability
of HFL systems. In that context, it is urgent to explore an effective
framework that is well suited for dealing with the above challenges.

This paper makes the following major contributions.

• We first propose a heterogeneity-aware NN width coefficient
determination algorithm, which assigns customized subnets
in the global multi-width NN model to devices with different
computing abilities. In this way, heterogeneous devices can
complete training tasks within a similar timeframe, thus
achieving significant training acceleration.

• We then develop a width-aware adaptive NN model integra-
tion approach, which can accomplish adaptive NN model in-
tegration for subnets with different width topologies trained
by user devices to effectively ensure NN model accuracy. In
particular, the convergence analysis of our developed NN
model integration scheme is rigorously proved.

• Finally, we introduce a latency-aware energy saving ap-
proach, which can align the time required by devices to
complete each round of FL tasks. By adaptively lowering the
operating frequency of devices that complete tasks before
the unified deadline, this approach enables the FL training
process to proceed in an energy-efficient manner.

2 System Models
2.1 Hierarchical Federated Learning
A generic HFL system, consisting of 𝑁 heterogeneous devices𝑈 =

{𝑢1, · · · , 𝑢𝑁 },𝑀 edge servers 𝐸 = {𝑒1, · · · , 𝑒𝑀 } and a cloud server,
is considered in this paper. Here, each device 𝑢𝑛 (1 ≤ 𝑛 ≤ 𝑁 ) holds
a local private dataset 𝐷𝑛 = {𝑥𝑛,𝑖 , 𝑦𝑛,𝑖 } |𝐷𝑛 |𝑖=1 with a volume of |𝐷𝑛 |,
where 𝑥𝑛,𝑖 is the 𝑖th data instance and𝑦𝑛,𝑖 denotes its corresponding
data label. Aided by the collaboration of the cloud server and edge
servers, these 𝑁 devices collaborate to execute HFL training tasks
in parallel. Each user device 𝑢𝑛 utilizes its dataset 𝐷𝑛 to train its
local neural network (NN) model𝑊𝑛 , that is [26]

𝑚𝑖𝑛 : {𝐿𝑛 (𝑊𝑛, 𝐷𝑛 ) =
∑|𝐷𝑛 |
𝑖=1 𝑙 (𝑊𝑛, 𝑥𝑛,𝑖 , 𝑦𝑛,𝑖 )

|𝐷𝑛 |
}, (1)

where 𝑙 (𝑊𝑛, 𝑥𝑛,𝑖 , 𝑦𝑛,𝑖 ) is the loss function of the local NN model𝑊𝑛
at data point {𝑥𝑛,𝑖 , 𝑦𝑛,𝑖 }.

Further, every edge server 𝑒𝑚 (1 ≤ 𝑚 ≤ 𝑀) connects with a
device set 𝑈𝑚 = {𝑢1, · · ·, 𝑢 |𝑈𝑚 | }, and its dataset 𝜙𝑚 is expressed
as 𝜙𝑚 = ∪𝑢𝑛∈𝑈𝑚𝐷𝑛 . Each edge server 𝑒𝑚 and its device set 𝑈𝑚
aim to explore a NN model𝑊

′
𝑚 that minimizes the loss function

𝐿𝑚 (𝑊𝑚, 𝜙𝑚) on dataset 𝜙𝑚 , that is [28]

𝑚𝑖𝑛 : {𝐿𝑚 (𝑊 ′
𝑚, 𝜙𝑚 ) =

∑
𝑢𝑛 ∈𝑈𝑚

∑|𝐷𝑛 |
𝑖=1 𝑙 (𝑊𝑛, 𝑥𝑛,𝑖 , 𝑦𝑛,𝑖 )
|𝜙𝑚 | } . (2)

In HFL, the global dataset Φ can be expressed as Φ = ∪1≤𝑚≤𝑀𝜙𝑚 .
The cloud server organizes all𝑀 edge servers and 𝑁 user devices to
perform HFL training, which aims at obtaining a global NN model
𝑊𝐺 on the global dataset Φ to minimize the global loss function
𝐿𝐺 (𝑊𝐺 ,Φ), that is [19]

𝑚𝑖𝑛 : {𝐿𝐺 (𝑊𝐺 ,Φ) =
∑𝑀
𝑚=1 𝐿𝑚 (𝑊 ′

𝑚, 𝜙𝑚 )
|Φ | . (3)

2.2 Multi-Width Neural Network

0.75 ×1.00.5 ××

Figure 1: Illustration of multi-width neural network.

To accommodate heterogeneous devices with varying computa-
tional abilities, this paper introduces the multi-width neural net-
work that can elastically switch to subnets {𝜔1, 𝜔2, · · · , 𝜔𝐾 } of
varying widths, as shown in Fig. 1. Let 𝐾 denote a hyper-parameter
that defines the index number of subnets within the multi-width
neural network. Within the multi-width neural network, a width
list Υ = {𝜛1, 𝜛2, · · · , 𝜛𝐾 } is predefined. Here, a specific width coef-
ficient 𝜛𝑘 (1 ≤ 𝑘 ≤ 𝐾) can be chosen to activate the corresponding
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proportion of neurons at each layer within the multi-width neural
network, thereby switching to a subnet 𝜔𝑘 with width 𝜛𝑘 .

2.3 Local Calculation Cost Models
In HFL, devices adopt the widely used gradient descent to update
model parameters. Given a learning rate 𝛼 , the NN model𝑊 𝑝

𝑛 on
the device 𝑢𝑛 in the 𝑝th round is [29]

𝑊
𝑝+1
𝑛 =𝑊

𝑝
𝑛 − 𝛼∇𝐿𝑛 (𝑊 𝑝

𝑛 , 𝐷𝑛 ), (4)

where ∇𝐿𝑛 (𝑊 𝑝
𝑛 , 𝐷𝑛) denotes the calculated gradients of the loss

function on local dataset 𝐷𝑛 for the local model𝑊 𝑝
𝑛 .

In HFL, we use 𝜒𝑛 to represent the number of CPU cycles per
second that the 𝑛th device 𝑢𝑛 can execute, and the local training
latency 𝑇𝑐𝑎𝑙𝑛 of device 𝑢𝑛 can be expressed as [30]

𝑇𝑐𝑎𝑙𝑛 =
𝜎𝑛 |𝐷𝑛 |
𝜒𝑛

, (5)

where 𝜎𝑛 is the required CPU cycles for training NN models with a
data point and |𝐷𝑛 | is the total number of training data points on
device 𝑢𝑛 . As a result, 𝜎𝑛 |𝐷𝑛 | CPU cycles are needed to deal with
all data points on device 𝑢𝑛 , and the training energy cost 𝐸𝑐𝑎𝑙𝑛 can
be defined as [25]

𝐸𝑐𝑎𝑙𝑛 = 𝜑𝜎𝑛 |𝐷𝑛 |𝜒𝑛2, (6)

where 𝜑 denotes the effective switched capacitance concerning the
chip architecture.

In this work, we plan to leverage the above-mentioned multi-
width neural network in Subsection 2.2 to adapt to the devices’
heterogeneity. Here, the multi-width neural network comprises 𝐾
subnets {𝜔1, · · · , 𝜔𝑘 · · · , 𝜔𝐾 } and each subnet has a distinct compu-
tational cost. This property allows the multi-width neural network
to dynamically switch among subnets to accommodate heteroge-
neous devices with varying computational abilities and battery
capacities. Hence, let 𝜎𝑘 denote the number of CPU cycles required
to train one data point on the 𝑘th subnet 𝜔𝑘 of the multi-width
neural network model on user device 𝑢𝑛 , and Eq. (5) and Eq. (6) can
be modified to Eq. (7) and Eq. (8), respectively, that is

𝑇𝑐𝑎𝑙𝑛 =
𝜎𝑘 |𝐷𝑛 |
𝜒𝑛

, 𝜎𝑘 ∈ {𝜎1, 𝜎2, · · · , 𝜎𝐾 }, (7)

𝐸𝑐𝑎𝑙𝑛 = 𝜑𝜎𝑘 |𝐷𝑛 |𝜒𝑛2, 𝜎𝑘 ∈ {𝜎1, 𝜎2, · · · , 𝜎𝐾 }. (8)

2.4 Communication Cost Models
In HFL, each device 𝑢𝑛 uploads the local NN model to its corre-
sponding edge server 𝑒𝑚 within one training round. This work
considers a frequency-division multiple access (FDMA) sub-FL sys-
tem which has 𝐵 resource blocks (RBs) in total. For one user device
𝑢𝑛 , let 𝜏𝑛 and 𝜐𝑛 denote the transmission power and the channel
gain for device 𝑢𝑛 , respectively. Thus, its data transmission rate 𝑅𝑛
can be given as [19]

𝑅𝑛 = 𝜗𝑛𝐵log2 (1 +
𝜏𝑛𝜐𝑛

2

𝑁0
), (9)

where 𝑁0 is the background noise, and 𝜗𝑛 (0 ≤ 𝜗𝑛 ≤ 1.0) is the
ratio of communication resources configured for each device 𝑢𝑛 .
As a result, the local transmission latency 𝑇𝑐𝑜𝑚𝑛 , denoting the time
slot for user device 𝑢𝑛 to upload its selected subnet 𝜔𝑘 (1 ≤ 𝑘 ≤ 𝐾)

to the server, is defined as [31]

𝑇𝑐𝑜𝑚𝑛 =
𝜍𝑘

𝑅𝑛
, 1 ≤ 𝑘 ≤ 𝐾, (10)

where 𝜍𝑘 symbolizes the data volume required to transmit subnet
𝜔𝑘 in bits. The transmission energy cost 𝐸𝑐𝑜𝑚𝑛 for device 𝑢𝑛 to
transmit its subnet 𝜔𝑘 to the edge server is [32]

𝐸𝑐𝑜𝑚𝑛 = 𝜏𝑛𝑇
𝑐𝑜𝑚
𝑛 . (11)

2.5 Latency and Energy Models within One
Training Round

Let 𝑃 denote the total number of HFL training rounds. Based on the
synchronous fashion, the total latency 𝑇 𝑒𝑑𝑔𝑒𝑚,𝑝 of 𝑝th training round
of one sub-FL system coordinated by an edge server 𝑒𝑚 is decided
by the slowest one in set 𝑈𝑚 , that is [31]

𝑇
𝑒𝑑𝑔𝑒
𝑚,𝑝 = max

𝑢𝑛 ∈𝑈𝑚
{𝑇 𝑡𝑜𝑡𝑎𝑙𝑛,𝑝 }, (12)

where 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛,𝑝 is the total latency of 𝑝th training round for each
device 𝑢𝑛 in set 𝑈𝑚 . 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛,𝑝 denotes the sum of the local training
latency𝑇𝑐𝑎𝑙𝑛,𝑝 and transmission latency𝑇𝑐𝑜𝑚𝑛,𝑝 of device𝑢𝑛 within 𝑝th
training round, and 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛,𝑝 = 𝑇𝑐𝑎𝑙𝑛,𝑝 +𝑇𝑐𝑜𝑚𝑛,𝑝 .

Similarly, the global latency𝑇𝑔𝑙𝑜𝑏𝑎𝑙𝑝 for the overall HFL system in
𝑝th training round depends on the slowest edge server-coordinated
sub-FL system, that is [19]

𝑇
𝑔𝑙𝑜𝑏𝑎𝑙
𝑝 = max{𝑇 𝑒𝑑𝑔𝑒1,𝑝 ,𝑇

𝑒𝑑𝑔𝑒

2,𝑝 , · · · ,𝑇 𝑒𝑑𝑔𝑒
𝑀,𝑝

} . (13)

With respect to energy cost, in one sub-FL system coordinated by
edge server 𝑒𝑚 , the total energy cost 𝐸𝑒𝑑𝑔𝑒𝑚,𝑝 of 𝑝th training round
covering its device set 𝑈𝑚 is defined as [26]

𝐸
𝑒𝑑𝑔𝑒
𝑚,𝑝 =

∑︁
𝑢𝑛 ∈𝑈𝑚

{𝐸𝑐𝑎𝑙𝑛,𝑝 + 𝐸𝑐𝑜𝑚𝑛,𝑝 }, (14)

where 𝐸𝑐𝑎𝑙𝑛,𝑝 and 𝐸𝑐𝑜𝑚𝑛,𝑝 are the training energy cost and transmission
energy cost of the device 𝑢𝑛 (𝑢𝑛 ∈ 𝑈𝑚) within 𝑝th round, respec-
tively. Similarly, the global energy cost 𝐸𝑔𝑙𝑜𝑏𝑎𝑙𝑝 of 𝑝th training round
in this HFL system is defined as [19]

𝐸
𝑔𝑙𝑜𝑏𝑎𝑙
𝑝 =

𝑀∑︁
𝑚=1

𝐸
𝑒𝑑𝑔𝑒
𝑚,𝑝 . (15)

3 Our Proposed Framework
In this work, we design a multi-width neural network-assisted
efficient hierarchical federated learning (HFL) framework, which is
detailed in Algorithm 1. The workflow of this algorithm can be
summarized into the following two parts: the initialization part in
lines 1-6 and the iterative training part in lines 7-21.

In the initialization part, for each edge server-coordinated sub-
FL system, each edge server 𝑒𝑚 first broadcasts requests to all
devices in its device set 𝑈𝑚 for collecting device-related resource
information in line 2; Then, the information of all devices in 𝑈𝑚 is
transmitted to the cloud server via edge server 𝑒𝑚 in line 3. Based
on the device-related resource information, the cloud server adopts
Algorithm 2 to choose optimal subnets from the subnet sampling
pool of the global multi-width NN model for these devices in line 5,
and call Algorithm 4 to decide the device operating frequency list
for these devices in line 6.
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Within the second part, 𝑃 rounds of HFL training are iteratively
performed. At the beginning of each round, the latest global multi-
width NN model held by the cloud server is first delivered to all
edge servers in line 8. Then, all edge servers parallelly execute
NN model training and transmission tasks within their respective
sub-FL systems in lines 9-12. Specifically, an edge server 𝑒𝑚 first
organizes its devices to perform local FL training in parallel in
line 10, which is detailed in Procedure LOCAL_TRAIN. Then,
the edge server 𝑒𝑚 conveys trained subnet models uploaded by its
corresponding devices to the cloud server in line 11. After trained
subnet models from all𝑀 edge servers are received, the cloud server
adopts Algorithm 3 to integrate different subnet models into a
new global multi-width NN model𝑊 𝑝+1

𝐺
in line 13. Lastly, if the

target training round has not arrived, the algorithm continues the
next round from line 7.

In Procedure LOCAL_TRAIN, lines 16-21 detail the local train-
ing process within one sub-FL system coordinated by an edge server.
In line 18, each edge server delivers a customized subnet into each
device in its device set, and this customized subnet is determined
by the cloud server via Algorithm 2. Due to the adaptation of
subnets to heterogeneous devices with various computational abil-
ities, these customized devices can complete training in parallel
around the same timeline, thereby avoiding devices with weaker
computational abilities to slow down the entire training process.
Then, each user device 𝑢𝑛 with its customized subnet 𝜔𝜋𝑛 utilizes
the local dataset 𝐷𝑛 to perform local training using Eq. (4) in line
19. Finally, the subnet 𝜔𝜋𝑛,𝑛 trained by device 𝑢𝑛 is transferred to
its edge server 𝑢𝑚 in line 20.

4 User Heterogeneity-Aware NNWidth
Coefficient Determination

4.1 Motivation and Rationality Analysis
In HFL, the structure of the NN model largely determines the lo-
cal calculation and communication overhead for devices. This fact
inspires us to design a multi-width NN-assisted efficient HFL frame-
work. To visualize the impact of NN model structure on HFL train-
ing, we first construct an HFL system consisting of 1 cloud server, 3
edge servers, and 6 heterogeneous devices, where each edge server
collaborates with 2 devices. Subsequently, we configure the NN
model structure as either the traditional NN model or the multi-
width NN model to compare the training time cost, as shown in Fig.
2. Specifically, when using the conventional NN model structure,
Fig. 2(a) exhibits the time cost of one training round in HFL. It is
seen that the 6th device, with the worst computational capability
among all heterogeneous devices, spends 70 seconds completing
local training of the NN model and 10 seconds uploading NN model.
Limited to the synchronous mechanism of FL, devices with stronger
computing capabilities remain idle until the slowest device com-
pletes its FL task, which significantly reduces training efficiency.

Fig. 2(b) shows the time cost of one training round in HFL based
on the multi-width NN model. By assigning narrow subnets to
devices with poor computational abilities, the local training time
and model upload latency of these devices are drastically reduced.
As a result, the overall training time cost for one HFL training round
is drastically reduced from 80 seconds to 28 seconds by using the
multi-width NN model.

Algorithm 1: Our proposed framework
Input: A cloud server,𝑀 edge servers {𝑒1, · · · , 𝑒𝑀 } with𝑀 device sets

{𝑈1, · · · ,𝑈𝑀 }, the maximum training round 𝑃 , the initial global
multi-width NN model𝑊𝐺 ;

Output: The well-trained global multi-width NN model𝑊 𝑃
𝐺
;

1 for𝑚 = 1 to𝑀 parallelly do
2 Edge server 𝑒𝑚 distributes requests to its user device set𝑈𝑚 to collect

device-related resource information;
3 All user devices in𝑈𝑚 upload their device-related resource information

to the cloud server through the edge server 𝑒𝑚 ;
4 end
5 According to the device-related resource information collected, call

Algorithm 2 to assign a subnet index 𝜋𝑛 (1 ≤ 𝜋𝑛 ≤ 𝐾 ) for each user
device 𝑢𝑛 (1 ≤ 𝑛 ≤ 𝑁 ) through𝑀 edge servers;

6 Based on the assigned subnet information, call Algorithm 4 to decide the
device operating frequency 𝜒∗𝑛 of each user device 𝑢𝑛 ;

7 for 𝑝 = 0 to (𝑃 − 1) do
8 The cloud server delivers the latest global multi-width NN model𝑊 𝑝

𝐺
to

𝑀 edge servers;
9 for𝑚 = 1 to𝑀 parallelly do
10 Edge server 𝑒𝑚 calls Procedure LOCAL_TRAIN to organize

devices in its device set𝑈𝑚 to perform local training;
11 Edge server 𝑒𝑚 transfers trained subnet models received from its

user devices in𝑈𝑚 to the cloud server;
12 end
13 The cloud server calls Algorithm 3 to merge multiple subnet models as

the latest global multi-width NN model𝑊 𝑝+1
𝐺

;
14 end
15 Return The well-trained global multi-width NN model𝑊 𝑃

𝐺
;

16 Procedure LOCAL_TRAIN (𝑒𝑚 ,𝑈𝑚 )
17 for Each user device 𝑢𝑛 in the device set𝑈𝑚 parallelly do
18 Edge server 𝑒𝑚 delivers a customized subnet 𝜔𝜋𝑛 to user device 𝑢𝑛 in

the device set𝑈𝑚 ;
19 Each user device 𝑢𝑛 trains subnet 𝜔𝜋𝑛 with local dataset 𝐷𝑛 by using

Eq. (4);
20 Each user device 𝑢𝑛 transfers the trained subnet 𝜔𝜋𝑛,𝑛 to its

coordinating edge server 𝑒𝑚 ;
21 end
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Figure 2: Time cost comparison based on the conventional
NN and multi-width NN.

4.2 User Heterogeneity-Aware NNWidth
Coefficient Determination Algorithm

As revealed in the previous subsection 4.1, considering that the unig-
norable divergences of computational ability exist among heteroge-
neous devices in HFL [23, 25], we introduce a user heterogeneity-
aware NN width coefficient determination algorithm that allocates
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subnets with appropriate widths for various heterogeneous devices,
as explained in Algorithm 2. This algorithm can be summarized
into three parts: the initialization part in lines 1-2, the benchmark-
ing timeline determination part in lines 3-9, and the subnet index
assignment part in lines 10-22.

Within the first part, according to the predefined subnet width
list, a multi-width NN model containing 𝐾 subnets is built in line
1. Then, the benchmarking timeline 𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 , denoting the ex-
pected timeline needed for devices to complete training, is initial-
ized to infinity in line 2. Within the second part, in lines 3–9, the
minimal delay across all 𝑁 devices using the full-width subnet is
set as the benchmarking timeline. Each device 𝑢𝑛 switches to sub-
net 𝜔𝐾 in line 4, then obtains its local training and transmission
latencies in lines 5–6. Their sum, 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 , is calculated in line 7, and
the benchmark timeline is updated to the smaller value between
𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 and itself in line 8. This process repeats over all devices to
finalize 𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 .

The last part iteratively assigns suitable subnet indexes for de-
vices in lines 10-22. Firstly, the timeline gap𝑇𝑔𝑎𝑝𝑛 , which represents
the difference between 𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 and the device’s latency 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 ,
is initialized to infinity in line 11. Then, 𝑢𝑛 searches subnet widths
from wide to narrow in lines 12-21. Device 𝑢𝑛 switches to subnet

Algorithm 2: NN width coefficient determination
Input: The predefined subnet width list Υ = {𝜛1, · · · , 𝜛𝐾 };
Output: A subnet width index list {𝜋1, 𝜋2, · · · , 𝜋𝑁 } for devices;

1 Construct a multi-width NN model𝑊 with 𝐾 subnets {𝜔1, · · · , 𝜔𝐾 } based
on the subnet width list {𝜛1, · · · , 𝜛𝐾 };

2 Initialize the benchmarking timeline𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 as∞;
3 for 𝑛 = 1 to 𝑁 do
4 Each device 𝑢𝑛 switches to the full-width subnet 𝜔𝐾 in multi-width NN

model𝑊 ;
5 Calculate the local training latency𝑇 𝑐𝑎𝑙𝑛 of device 𝑢𝑛 with the

full-width subnet 𝜔𝐾 by using Eq. (7);
6 Calculate the local transmission latency𝑇 𝑐𝑜𝑚𝑛 of device 𝑢𝑛 with the

full-width subnet 𝜔𝐾 by using Eq. (10);
7 Obtain the sum of local training latency and local transmission latency

𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 = 𝑇 𝑐𝑎𝑙𝑛 +𝑇 𝑐𝑜𝑚𝑛 ;
8 Refresh the benchmarking timeline𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 as

𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 = min{𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 ,𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 };
9 end

10 for 𝑛 = 1 to 𝑁 do
11 Initialize the timeline gap𝑇𝑔𝑎𝑝𝑛 = ∞ for the user device 𝑢𝑛 ;
12 for 𝑘 = 𝐾 to 1 do
13 Each device 𝑢𝑛 switches to the subnet 𝜔𝑘 with the width

coefficient𝜛𝑘 in the multi-width NN model𝑊 ;
14 Calculate the local training latency𝑇 𝑐𝑎𝑙𝑛 of device 𝑢𝑛 with subnet

𝜔𝑘 by using Eq. (7);
15 Calculate the local transmission latency𝑇 𝑐𝑜𝑚𝑛 of device 𝑢𝑛 with

subnet 𝜔𝑘 by using Eq. (10);
16 Record the sum of local NN model training latency and

transmission latency𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 = 𝑇 𝑐𝑎𝑙𝑛 +𝑇 𝑐𝑜𝑚𝑛 ;
17 if |𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 − 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 | < 𝑇𝑔𝑎𝑝𝑛 then
18 Update the subnet width index 𝜋𝑛 of device 𝑢𝑛 to 𝑘 ;
19 Refresh the timeline gap𝑇𝑔𝑎𝑝𝑛 of device 𝑢𝑛 as

𝑇
𝑔𝑎𝑝
𝑛 = |𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 − 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 | ;

20 end
21 end
22 end
23 Return Subnet width index list {𝜋1, · · · , 𝜋𝑁 } for user devices;

𝜔𝑘 with corresponding width coefficient 𝜛𝑘 in line 13, and com-
putes its total latency 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 in lines 14-16 Afterwards, in line 17,
if the difference between 𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 and 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 for the current
subnet is less than the timeline gap 𝑇𝑔𝑎𝑝𝑛 , the subnet index 𝜋𝑛 of
device 𝑢𝑛 is updated to 𝑘 and the timeline gap 𝑇𝑔𝑎𝑝𝑛 is updated to
|𝑇𝑏𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 −𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 | in lines 18-19.

5 Width-Aware NN Model Integration
5.1 Design Details
As described in Section 4, devices are assigned subnets with unequal
widths for accommodating their different computing capabilities.
Here, after devices have completed the training updates of subnets,
the traditional FedAvg formula cannot be directly applied to NN
model integration due to the different NN model structures.

Fig. 3 shows a visual illustration for our designed width-aware
adaptive NN model integration scheme. After the subnet models
trained by devices are transferred to the cloud server via multiple
edge servers, our scheme is used to merge these multi-width sub-
nets with different topological structures. Specifically, the cloud
server first splits each subnet model into corresponding subnet
areas. Then, for subnet areas in the same position, we weightedly
aggregate the corresponding parameters to build a new subnet area.
Subsequently, these updated subnet areas in different positions
are connected, and yield a new global multi-width NN model that
wisely incorporates knowledge from all subnet models. Here, con-
sidering the 𝑝th training round in our HFL system, each device 𝑢𝑛
utilizes its local dataset 𝐷𝑛 to train a subnet 𝜔𝑘,𝑛 with width coef-
ficient 𝑘 , and then 𝑢𝑛 uploads the well-trained subnet 𝜔𝑘,𝑛 to the
cloud server via its corresponding edge server. Formally, our width-
aware adaptive NN model integration scheme can be formulated as
follows

𝑊 𝑝+1 =

∑
𝑢𝑛 ∈𝔘𝐾 |𝐷𝑛 | (𝜔

𝑝+1
𝐾,𝑛

− 𝜔𝑝+1
𝐾−1,𝑛 )

|D𝔘𝑘
| + · · ·+∑

𝑢𝑛 ∈𝔘2 |𝐷𝑛 | (𝜔
𝑝+1
2,𝑛 − 𝜔𝑝+1

1,𝑛 )
|D𝔘2 |

+
∑
𝑢𝑛 ∈𝔘1 |𝐷𝑛 |𝜔

𝑝+1
1,𝑛

|D𝔘1 |
;

(16)

where 𝔘𝑘 =
⋃
𝜋𝑛≥𝑘 𝑢𝑛 denotes the union of user devices that

contains the 𝑘th subnet area, and |D𝔘𝑘
| = ∑

𝑢𝑛∈𝔘𝑘 |𝐷𝑛 | is the total
dataset volume of user devices in 𝔘𝑘 .

. . .

. . .

Parameters on the same subnet area are weighted 

aggregated to generate a new subnet area, respectively.

Combine all subnet areas to form 

a new global multi-width network.

Divide subnet models into different subnet areas.

Upload all trained subnet models from 

user devices to Cloud Server via edge servers.

Figure 3: Illustration for our designed width-aware adaptive
NN model integration scheme.
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Algorithm 3:Width-aware adaptive NN model integration
Input: A global multi-width NN model𝑊 𝑝 in 𝑝th training round, list of

subnets from 𝑁 devices {𝜔𝜋1,1, · · · , 𝜔𝜋𝑁 ,𝑁 };
Output: The latest global multi-width NN model𝑊 𝑝+1 ;

1 for 𝑘 = 1 to 𝐾 do
2 Initialize the device set that contains the 𝑘th subnet area as 𝔘𝑘 = ∅;
3 Initialize the dataset volume of device set 𝔘𝑘 as |D𝔘𝑘

| = 0;
4 for 𝑛 = 1 to 𝑁 do
5 if 𝜋𝑛 ≥ 𝑘 then
6 Update user device set 𝔘𝑘 = 𝔘𝑘 ∪𝑢𝑛 ;
7 Refresh the dataset volume |D𝔘𝑘

| = |D𝔘𝑘
| + |𝐷𝑛 | ;

8 end
9 end

10 end
11 Cloud server integrates all 𝑁 subnets with different widths into a new global

multi-width NN model𝑊 𝑝+1 by using Eq. (16);
12 Return The merged global multi-width NN model𝑊 𝑝+1 ;

The above workflow of our width-aware adaptive NNmodel inte-
gration approach is detailed inAlgorithm3. Lines 1-10 sequentially
collect the information related to 𝐾 subnet areas. Specifically, let
𝔘𝑘 denote the device set that contains the 𝑘th subnet area, and it is
first constructed as an empty set in line 2. In line 3, let |D𝔘𝑘

| denote
the total dataset volume of devices in𝔘𝑘 , and |D𝔘𝑘

| is initialized as
zero. Subsequently, we iteratively mark the device set 𝔘𝑘 used for
the 𝑘th subnet area integration and the data volume information
in lines 4-9. After collecting all subnet area information, according
to Eq. (16), the cloud performs width-aware adaptive NN model
integration for the subnets with different widths in line 11. Finally,
line 12 returns the merged global multi-width NN model.

5.2 Convergence Analysis
Here, we analyze the training convergence of our proposed frame-
work. The primary distinctions of our proposed solution lie in the
different width subnet training on devices and width-aware adap-
tive NN model integration. Firstly, in the 𝑝th training round, the
training update of the adopted subnet 𝜔𝑘 with width coefficient 𝜋𝑘
on device 𝑢𝑛 is

𝜔
𝑝+1
𝑘,𝑛

= 𝜔
𝑝

𝑘,𝑛
− 𝛼𝑝∇𝐿𝑝𝑛 (𝜔

𝑝

𝑘,𝑛
,℘
𝑝
𝑛 ), (17)

where ℘𝑝𝑛 is the stochastic gradient sample. Secondly, the width-
aware NN model integration scheme on cloud server is

𝑊 𝑝+1 =

∑
𝑢𝑛 ∈𝔘𝐾 |𝐷𝑛 | (𝜔

𝑝+1
𝐾,𝑛

− 𝜔𝑝+1
𝐾−1,𝑛 )

|D𝔘𝑘
| + · · ·+∑

𝑢𝑛 ∈𝔘2 |𝐷𝑛 | (𝜔
𝑝+1
2,𝑛 − 𝜔𝑝+1

1,𝑛 )
|D𝔘2 |

+
∑
𝑢𝑛 ∈𝔘1 |𝐷𝑛 |𝜔

𝑝+1
1,𝑛

|D𝔘1 |
;

(18)

Taking Eq. (17) into Eq. (16), we can obtain

𝑊 𝑝+1 =𝑊 𝑝−

𝛼𝑝
∑︁1

𝑘=𝐾

∑
𝑢𝑛 ∈𝔘𝑘 (∇𝐿

𝑝
𝑛 (𝜔

𝑝

𝑘,𝑛
,℘
𝑝
𝑛 ) − ∇𝐿𝑝𝑛 (𝜔

𝑝

𝑘−1,𝑛,℘
𝑝
𝑛 ) )

|D𝔘𝑘
|︸                                                                      ︷︷                                                                      ︸

Θ𝑝

;

where Θ𝑝 represents the gradient update information in this round,
and let Θ̄𝑝 denote the gradient updatewith the full samplingmethod.
Here, some well-recognized assumptions in literatures [17, 33, 34]
are first presented as follows.

Assumption 1: For all a and b, {𝐿1, · · ·, 𝐿𝑁 } are L-smooth, that is

𝐿𝑛 (a) ≤ 𝐿𝑛 (b) + (a − b)𝑇∇𝐿𝑛 (b) +
𝐿

2
| |a − b| |22 .

Assumption 2: For all a and b, {𝐿1, · · ·, 𝐿𝑁 } are 𝜇-strong convex,
that is

𝐿𝑛 (a) ≥ 𝐿𝑛 (b) + (a − b)𝑇∇𝐿𝑛 (b) +
𝜇

2
| |a − b| |2 .

Assumption 3: The local training variance of stochastic gradient
updates on each device 𝑢𝑛 is upper bounded, that is

𝐸 | |∇𝐿𝑝𝑛 (𝑊
𝑝
𝑛 , ℘

𝑝
𝑛) − ∇𝐿𝑝𝑛 (𝑊

𝑝
𝑛 ) | |2 ≤ 𝜎2 .

Before carrying out the training convergence analysis, according
to Eq. (16) and Assumptions 1, 2, and 3, we can prove the following
Lemmas 1 and 2.

Lemma 1: With the assumption 3, the variance Θ𝑝 of the global
training gradient is bounded as follows

𝐸 | |Θ𝑝 − Θ̄𝑝 | |2 ≤ Υ,

where Υ =
∑1
𝑘=𝐾

∑
𝑢𝑛 ∈𝔘𝑘 𝜎

2

|D𝔘𝑘
| .

Lemma 2: With the learning rate 𝛼𝑝 ≤ 1
𝐿
and assumptions 1

and 2, the discrepancy between the global model update and the
optimal training process in each round satisfies

𝐸 | |𝑊 𝑝+1 −𝑊 ∗ | |2 ≤ (1 − 𝜇𝛼𝑝 )𝐸 | |𝑊 𝑝 −𝑊 ∗ | |2 + 𝛼2
𝑃Υ.

With the Lemmas 1 and 2, we can complete the training convergence
analysis, as illustrated by the Theorem.

Theorem: With the assumptions 1, 2, and 3, training conver-
gence guarantee for our proposed framework is

𝐸 [𝐿(𝑊 𝑝 )] − 𝐿(𝑊 ∗) ≤ 𝜇𝐿2Δ1 + 2Υ𝐿
𝜇2𝑝 + 2𝐿𝜇 − 𝜇2 .

where Υ =
∑1
𝑘=𝐾

∑
𝑢𝑛 ∈𝔘𝑘 𝜎

2

|D𝔘𝑘
| and 𝛼𝑝 = 2

𝜇𝑝+2𝐿−𝜇 .
Obviously, with the training rounds 𝑝 → ∞, (𝐸 [𝐿(𝑊 𝑝 )] −

𝐿(𝑊 ∗)) → 0. Thus, its training convergence is guaranteed.

6 Latency-Aware Energy Saving Strategy
Due to the complexity of NN design considerations, the number
of subnet widths is generally given. Under a given subnet width
list, the most suitable subnet width indexes are assigned to hetero-
geneous devices. In this context, when certain devices switch to
the customized subnets, they may complete the local training task
slightly faster than the maximum training latency. Thus, there is
idle time that cannot be effectively utilized due to the synchronous
mechanism. Oftentimes, almost all user devices support dynamic
voltage/frequency scaling (DVFS) techniques in reality, and each
device𝑢𝑛 operates at its highest CPU frequency 𝜒𝑚𝑎𝑥𝑛 by default. In-
spired by this, this work aims to explore an energy saving strategy,
as elaborated in Algorithm 4.

This algorithm first initializes the maximum training latency
𝑇𝑚𝑎𝑥 within the current training round to 0 in line 1. Then, lines
2-7 sequentially compute the local NN model training and transmis-
sion latency for all devices, and continuously renew the maximum
training latency 𝑇𝑚𝑎𝑥 . Specifically, equipped with the correspond-
ing subnet 𝜔𝜋𝑛 , the local training latency 𝑇𝑐𝑎𝑙𝑛 and transmission
latency 𝑇𝑐𝑜𝑚𝑛 for each device 𝑢𝑛 can be calculated in lines 3-4, and
these are summed up to obtain its overall training delay 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛
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Algorithm 4: DVFS-based training energy saving
Input: A subnet width index list {𝜋1, 𝜋2, · · · , 𝜋𝑁 };
Output: The device operating frequency list {𝜒∗1 , 𝜒∗2 , · · · , 𝜒∗𝑁 };

1 Initialize the maximum training latency𝑇𝑚𝑎𝑥 in this round as 0;
2 for 𝑛 = 1 to 𝑁 do
3 Calculate the local training latency𝑇 𝑐𝑎𝑙𝑛 of device 𝑢𝑛 with its assigned

subnet 𝜔𝜋𝑛 by using Eq. (5);
4 Calculate the local transmission latency𝑇 𝑐𝑜𝑚𝑛 of device 𝑢𝑛 with its

assigned subnet 𝜔𝜋𝑛 by using Eq. (10);
5 Obtain the sum of local training latency and local transmission latency

𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 = 𝑇 𝑐𝑎𝑙𝑛 +𝑇 𝑐𝑜𝑚𝑛 ;
6 Renew the the maximum training latency𝑇𝑚𝑎𝑥 within the current

training round as𝑇𝑚𝑎𝑥 = max{𝑇𝑚𝑎𝑥 ,𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 };
7 end
8 for 𝑛 = 1 to 𝑁 do
9 Modify the device operating frequency of user device 𝑢𝑛 to

𝜒∗𝑛 = max( 𝜎𝑘 |𝐷𝑛 |
𝑇𝑚𝑎𝑥 −𝑇𝑐𝑜𝑚𝑛

, 𝜒𝑚𝑖𝑛𝑛 ) ;
10 end
11 Return The device operating frequency list {𝜒∗1 , 𝜒∗2 , · · · , 𝜒∗𝑁 };

used for completing one FL training round on the device 𝑢𝑛 in line
5. In line 6, according to the overall training delay 𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 of the
current user device, the maximum training delay 𝑇𝑚𝑎𝑥 is updated
as𝑇𝑚𝑎𝑥 = max{𝑇𝑚𝑎𝑥 ,𝑇 𝑡𝑜𝑡𝑎𝑙𝑛 }. Subsequently, lines 8-10 sequentially
tune the users’ device operating frequencies. Finally, a tuned device
operating frequency list for 𝑁 devices is obtained. Based on the
idle time, this strategy can effectively reduce energy cost.

7 Evaluation
7.1 Experimental Settings
A generic hierarchical FL system, containing one cloud server and
five edge server-coordinated sub-FL systems, is considered in this
paper. Within each edge server-coordinated sub-FL system, an
edge server connects with five heterogeneous devices. Here, the
minimum CPU operating frequency for each device is deemed as
0.3 GHz [19], while the maximum CPU operating frequency is
sampled from the range of [0.3, 2.0] GHz [19]. As in [35], it is set
that all devices can perform one MAC operation per CPU cycle. The
effective switched capacitance is assigned a value of 2 × 10−28 [30].
In terms of communication parameters, the overall resource blocks
𝐵 are given as 2 MHz [32] and the background noise 𝑁0 is 10−9

W [36]. The ratio of communication resources 𝜗 and transmission
power 𝜏 for devices are assumed to be 0.2 and 0.2 W [30].

This work utilizes popular CIFAR-10 [19], CIFAR-100 [31] and
SVHN [37] datasets to carry out performance comparison, and the
training data are randomly shuffled and dispensed to devices. In
HFL training, the well-known Wide Residual Networks [38] (WRN)
model is used for CIFAR-10 and CIFAR-100 datasets and Multi-
layer Perceptron (MLP) [35] model is employed for SVHN dataset.
Following the design principles of our solution, this WRN model is
tuned by the width list [0.35, 0.65, 1.0] to a multi-widthWRNmodel,
named WRN-[0.35, 0.65, 1.0], which consists of three subnets with
widths of 0.35, 0.65, and 1.0, respectively; let MLP-[0.35, 0.65, 1.0]
denote a multi-width MLP model with a width list [0.35, 0.65, 1.0],
and it has three MLP subnet models with widths of 0.35, 0.65, and
1.0, respectively. To substantiate the effectiveness of our proposed
method, we compare it with the well-known benchmarks. Original

FL [16] refers to the original FL. FedCS [39] prioritizes devices
with stronger computing resources to complete FL training within
the specified deadline. HFL [17] denotes a generic hierarchical FL.
HFedCS expands FedCS to the hierarchical FL system. SL [40] is a
separate training scheme without NN model aggregation.

7.2 Results on Training Accuracy
Figs. 4(a)-4(c) illustrate the accuracy curve of our method compared
to these of 5 benchmarks on CIFAR-10, CIFAR-100, and SVHN
datasets. It can be seen that our scheme exhibits a better accuracy
curve. For instance, on the CIFAR-10 dataset, as shown in Fig. 4(a),
our method achieves the best training result with 89.21% accuracy,
surpassing 58.51%, 81.48%, 70.02%, 85.96%, and 88.96% accuracy of
SL, ClassicFL, FedCS, HFedCS, and HFL benchmarks, respectively.
Similarly, in the CIFAR-100 and SVHN datasets, consistent exper-
imental observations can be obtained, as shown in Figs. 4(b) and
4(c). Overall, compared to benchmarks, our scheme can achieve up
to 42.42% accuracy benefits.

Here, we elaborate on the reasons for accuracy performance re-
sults. The lowest accuracy of SL is attributed to its separate training
mode. In addition, ClassicFL and FedCS fail to take full advantage
of the fact that the cloud server can accommodate more devices
and training data. For HFedCS and HFL, HFedCS excludes slower
devices from the training process to speed up training, which re-
duces data diversity; our method and HFL achieves similar accuracy.
Meanwhile, by deploying subnets of appropriate widths on hetero-
geneous devices, our method has significant advantages in terms
of training acceleration and energy cost.

7.3 Results on Training Latency
Table 1 presents the training latency of all methods, including our
method and benchmarks, to achieve various expected accuracies
on the CIFAR-10, CIFAR-100, and SVHN datasets. As observed, our
method can obtain significant latency optimization. For instance,
results on the CIFAR-100 dataset exhibit the training latency re-
quired for all methods to reach the expected accuracy milestones
of [55%, 60%, 65%], which confirms the dominant advantage of our
method. It is seen that benchmarks SL, ClassicFL, and FedCS can’t
reach the expected accuracy milestones of [55%, 60%, 65%] limited
to the insufficient training data. Among the HFedCS, HFL, and our
method, since HFedCS only selects devices with stronger compu-
tational abilities to perform FL training, its accuracy is notably
reduced compared to HFL and our method. Furthermore, compared
with HFL, our method achieves reductions in training latency of

Table 1: Training latency to achieve expected accuracy mile-
stones on three datasets

Dataset CIFAR-10 CIFAR-100 SVHN
Unit 1 ×103 s 1 ×103 s 1 ×101 s

Accuracy 75% 80% 85% 55% 60% 65% 65% 70% 75%
SL 55 55 55 55 55 55 55 55 55

ClassicFL 116.7 214.9 55 55 55 55 24.0 55 55
FedCS 55 55 55 55 55 55 55 55 55
HFedCS 16.9 24.8 66.1 51.3 55 55 7.4 16.0 55
HFL 79.6 108.8 204.2 201.6 283.9 477.6 13.2 29.4 91.2

Proposed 20.6 28.0 56.0 54.0 56.6 88.3 9.4 17.2 46.2
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(a) CIFAR-10 dataset.
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(b) CIFAR-100 dataset.
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(c) SVHN dataset.

Figure 4: Accuracy curves on three datasets.

73.24%, 80.06%, and 81.5% to reach three accuracy milestones. These
reductions are attributed to our user heterogeneity-aware NNwidth
coefficient determination algorithm, which is well adapted to the
computing abilities of heterogeneous devices, thereby eliminating
considerable idle time fragments.

7.4 Results on Energy Cost

Table 2: Energy consumption to achieve expected accuracy
milestones on three datasets

Dataset CIFAR-10 CIFAR-100 SVHN
Unit 1 ×103 J 1 ×103 J 1 ×101 J

Accuracy 75% 80% 85% 55% 60% 65% 65% 70% 75%
SL 55 55 55 55 55 55 55 55 55

ClassicFL 30.4 56.0 55 55 55 55 12.4 55 55
FedCS 55 55 55 55 55 55 55 55 55
HFedCS 83.5 122.6 326.0 235.1 55 55 20.8 44.8 55
HFL 103.7 141.7 266.2 262.9 370.1 622.6 34.0 75.7 234.9

Proposed 85.9 116.7 233.4 224.7 235.7 367.9 32.5 59.5 160.2

Table 2 exhibits the energy consumption comparison of our
method versus the benchmarks in achieving various expected accu-
racy milestones. The results demonstrate that substantial energy
costs can be reduced by our method. Specifically, on the CIFAR-10
dataset, only our method and benchmarks HFedCS and HFL can
achieve the highest expected accuracy milestone of 85.0%, and our
method can achieve 28.4% and 12.32% energy savings compared to
HFedCS and HFL. Similar results are obtained on the CIFAR-100
dataset. For instance, compared to HFL, our method can realize
energy reduction of 14.51%, 36.3%, and 40.9% at three expected ac-
curacy milestones, respectively. The primary reasons for energy
cost optimization lie in two facts. For one thing, our method assigns
subnets with appropriate widths to devices with different comput-
ing abilities, so that devices with weaker computing abilities can
accomplish their FL tasks of narrow subnets with less resource cost.
For another thing, our DVFS-based training energy-saving strat-
egy permits devices to adjust their device operating frequencies to
energy-saving gear configurations.

8 Related Work
Recently, researchers have begun to design asynchronous FL train-
ing mechanisms to address the system heterogeneity issue. Zhang et
al. [23] presented an adaptive asynchronous FL training mechanism
that can dynamically match the various computing capabilities of
devices to adjust their training workloads and shorten the training

latency. Wang et al. [25] presented a centralized NN model integra-
tion scheme to effectively mitigate the performance degradation
due to outdated NN models in the asynchronous aggregation. Of-
tentimes, the above asynchronous mechanisms [23, 25] may affect
the training convergence of FL and fail to reach satisfactory pre-
cision. Following the synchronous training regime, a greedy user
selection mechanism was developed by Nishio et al. in [39]. This
greedy mechanism speeds up the training by establishing a deadline
and selecting as many users as possible who are able to complete
FL tasks beforehand. Cui et al. [28] proposed an ISODATA-based
clustering technique to address the poor training efficiency issue.
However, these works [28, 39] overlook the significant constraints
imposed by energy consumption of FL training.

In the recent past, many researchers have been devoted to opti-
mizing the FL energy efficiency [26, 27, 41, 42]. Nguyen et al. [41]
transformed the channel and power decision problem for devices in
FL into a solvable stochastic optimization problem, and introduced
a reinforcement learning-based resource management strategy for
to effectively save energy. Focusing on NN compression, Zhang et
al. [42] developed an energy-efficient FL framework that jointly
adopts pruning, multi-task learning, and unsupervised migration
learning to optimize the NN model with respect to model parame-
ters and energy cost. Nevertheless, these studies [27, 41, 42] ignore
the computing ability heterogeneity of devices, which may impact
the computing efficiency of other devices. To improve FL energy
utilization with heterogeneous devices, Zhan et al. [26] presented
a computing resource management method based on reinforce-
ment learning. However, this mechanism markedly diminishes the
contributions of devices with superior computing capacity.

9 Conclusions
To tackle challenges of the system heterogeneity and excessive
energy consumption in HFL, this paper proposes a premium multi-
width NN-assisted HFL framework. Specifically, we first design a
heterogeneity-aware NNwidth coefficient determination algorithm,
which assigns a subnet with the customized width to each user.
Then, a width-aware adaptive NN model integration approach is
proposed to perform model integration for subnets with different
widths. Finally, a latency-aware energy saving approach is intro-
duced to fine-tune devices’ operating frequencies. Experiments
reveal that, compared with benchmarks, our framework achieves
superior accuracy performance and effectively reduce training la-
tency and energy consumption.
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